JPH0498800A - Sor device - Google Patents

Sor device

Info

Publication number
JPH0498800A
JPH0498800A JP21166490A JP21166490A JPH0498800A JP H0498800 A JPH0498800 A JP H0498800A JP 21166490 A JP21166490 A JP 21166490A JP 21166490 A JP21166490 A JP 21166490A JP H0498800 A JPH0498800 A JP H0498800A
Authority
JP
Japan
Prior art keywords
electron beam
deflection
force
electron
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21166490A
Other languages
Japanese (ja)
Inventor
Shinichi Bandai
萬代 新一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP21166490A priority Critical patent/JPH0498800A/en
Publication of JPH0498800A publication Critical patent/JPH0498800A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To deflect and converge an electron beam at the same time in a SOR device for rotating the electron beam at a luminous flux in a synchrotron, so as to extract radiation light, by making the distance of a magnetic pole of a core different in a radius direction of deflection curvature. CONSTITUTION:When an electron beam 12 is moved horizontally from a sheet surface at a deflection part 2a of a vacuum container 2, and when a flux that passes an air gap between magnetic poles 16 and 17, is directed from the lower magnetic pole 17 to the upper magnetic pole 16, as indicated in the figure, a distance d1 on the inside in the radius direction of a deflection curvature is smaller than a distance d0 outside. Since Lorentz's force and inertia force due to the acceleration in the direction of a radius (r) of an electron rotated stably on the central trajectory, are balanced, the electron which is diverted from the central trajectory, receives a force F0 on the inside, or a force F1 on the outside, according to conditions. While an electron beam 12 is deflected at the deflection part 2a, it is also converged. By making the electron beam 12 deflected and converged at the same time at the deflection part 2a, only a little adjustment of the conversion force by quadrupole electromagnet for flattening, is required, and the control thereof is thus facilitated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電子ビームをシンクロトロン内で光速で周回
させて放射光を取り出すSOR装置に係り、特に偏向電
磁石の電子収束力を有効に利用したSOR装置に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an SOR device that extracts synchrotron radiation by making an electron beam circulate at the speed of light within a synchrotron, and in particular effectively utilizes the electron focusing power of a bending electromagnet. The present invention relates to an SOR device.

[従来の技術] 最近半導体のリソグラフィー用光源としてSOR装置が
注目されてきている。
[Prior Art] Recently, SOR devices have been attracting attention as light sources for semiconductor lithography.

SOR装置は、蓄積リング内の電子ビームを光速で周回
させ、電子ヒームが磁場で偏向される際に放射される放
射光(SOR光)を取り出すものである。
The SOR device rotates an electron beam in a storage ring at the speed of light and extracts synchrotron radiation (SOR light) emitted when the electron beam is deflected by a magnetic field.

通常大型のSOR装置は、線形加速器とシンクロトロン
と蓄積リングの3台の装置から構成されるか、小型のS
OR装置は、シンクロトロンと蓄積リングを兼用したも
のが現在開発されている。
Usually, a large SOR device consists of three devices: a linear accelerator, a synchrotron, and a storage ring, or a small SOR device consists of three devices: a linear accelerator, a synchrotron, and a storage ring.
An OR device that combines a synchrotron and a storage ring is currently being developed.

この小型のSOR装置においては、線形加速器より電子
エネルギ100 M e V以下の低いエネルギーの電
子がシンクロトロンに繰返し入射され、シンクロトロン
内に所定の蓄M電流が確保されたならばシンクロトロン
内の電子ビームエネルギーを最終エネルギーまで高めて
S O,R光を取り出すようにしている。
In this small SOR device, low-energy electrons of 100 M e V or less are repeatedly injected into the synchrotron from a linear accelerator, and once a predetermined accumulated M current is secured in the synchrotron, the The electron beam energy is increased to the final energy to extract SO and R light.

このSOR装置を第3図により説明する。This SOR device will be explained with reference to FIG.

第3図において、1はシンクロトロンで、電子ビームが
周回する環状の真空容器2と、その真空容器2内を周回
する電子ビームにエネルギーを補給する高周波加速空洞
3と、電子ビームを偏向する常V、導型痢向電磁石4と
から構成される。5は電子発生装置、6は加速管、7は
入射部の偏向電磁石、8は光取り出しライン、9は露光
装置である。
In Fig. 3, 1 is a synchrotron, which includes an annular vacuum vessel 2 in which an electron beam circulates, a high-frequency acceleration cavity 3 that replenishes energy to the electron beam orbiting inside the vacuum vessel 2, and a constant-frequency accelerating cavity 3 that deflects the electron beam. V, and a conductive electromagnet 4. Reference numeral 5 designates an electron generator, 6 an acceleration tube, 7 a deflection electromagnet at the entrance section, 8 a light extraction line, and 9 an exposure device.

電子発生装置5からの電子は、加速管6で、例えば4ヲ
M e Vまで加速され、入射部の偏向電磁石7で偏向
されて真空容器2内に入射される。
Electrons from the electron generator 5 are accelerated to, for example, 4 M e V in an accelerating tube 6, deflected by a deflecting electromagnet 7 in the entrance section, and then entered into the vacuum vessel 2.

この真空容器2内に入射された電子は、偏向電磁石4で
偏向され、かつ高周波加速空洞3でエネルギーを補給さ
れながら真空容器2内を光速で周回する。この電子の入
射を繰返行い、シンクロトロン1内に所定の電流が蓄積
された後、偏向電磁石4の磁場を順次高めて電子ビーム
のエネルギーを最終エネルギー(例えば800 M e
 V ) iで高め、その間、偏向磁石4で偏向される
ビームの接線方向に放射されるSOR光を光取り出しラ
イン8より取り出し、露光装置9に入射し、半導体のリ
ングラフィを行う・ [発明が解決しようとする課題] ところで、このシンクロトロン1には、真空容器2内を
周回する電子ビームのサイズを調整すべく水平用四i電
磁石10.垂直用四極S磁石11が設けられ、これら電
磁石で電子の収束を調整している。さて第4図は水平用
四極電磁石10の概略を示したものである。第4図にお
いて電子ビーム12が真空容器2内において、図示の紙
面から左右両方に移動するとすると、水平用四i を磁
石10の各磁極間の磁束B+、Boを図示のように作用
させることにより電子ビーム12を両側から収束させる
力F、、Foを生じさせて電子ビーム12の水平方向の
収束力を調整できる。また垂直用四極電磁石11も電子
ビームを境に電子ビームを上下から収束させるように磁
場を形成すればよい。
The electrons entering the vacuum container 2 are deflected by the deflection electromagnet 4, and circulate within the vacuum container 2 at the speed of light while being supplied with energy in the high frequency acceleration cavity 3. After this electron injection is repeated and a predetermined current is accumulated in the synchrotron 1, the magnetic field of the bending electromagnet 4 is gradually increased to adjust the energy of the electron beam to the final energy (for example, 800 M e
V) i during which the SOR light emitted in the tangential direction of the beam deflected by the deflecting magnet 4 is taken out from the light extraction line 8 and enters the exposure device 9 to perform phosphorography of the semiconductor. Problems to be Solved] By the way, this synchrotron 1 is equipped with a horizontal four-i electromagnet 10. to adjust the size of the electron beam orbiting within the vacuum vessel 2. A vertical quadrupole S magnet 11 is provided, and these electromagnets adjust the convergence of electrons. Now, FIG. 4 schematically shows the horizontal quadrupole electromagnet 10. In FIG. 4, if the electron beam 12 moves in the vacuum chamber 2 both to the left and right from the plane of the paper shown in the figure, by applying the horizontal 4i to the magnetic fluxes B+ and Bo between the magnetic poles of the magnet 10 as shown in the figure. By generating forces F, , Fo that converge the electron beam 12 from both sides, the horizontal convergence force of the electron beam 12 can be adjusted. Further, the vertical quadrupole electromagnet 11 may also form a magnetic field so as to converge the electron beam from above and below with the electron beam as the boundary.

しかしながら、これら四極電磁石は、電子蓄積運転やS
OR運転時、電子ビームのエネルギーに応じて、すなわ
ち偏向磁石4の磁場の強さに応じて制御し、収束力を調
整する必要がある。特に電子ビームは水平方向に広がり
やすいなめ、水平用四極電磁石10の制御が複雑になる
と共にその消費;力ら大きくなる問題かある。
However, these quadrupole magnets are not suitable for electron storage operation or S
During OR operation, it is necessary to control and adjust the focusing force according to the energy of the electron beam, that is, according to the strength of the magnetic field of the deflection magnet 4. In particular, since the electron beam tends to spread horizontally, the control of the horizontal quadrupole electromagnet 10 becomes complicated and its power consumption becomes large.

本発明は上記事情を考慮してなされたちので、四極電磁
石の励磁量を軽減して電子ビームを水平垂直方向に収束
できるSOR装置を提供することを目的とする。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide an SOR device that can focus an electron beam in horizontal and vertical directions by reducing the amount of excitation of a quadrupole electromagnet.

[課題を解決するための手段] 本発明は、上記の目的を達成するために、電子ビームが
周回する真空容器と、その真空容器の偏向部が、偏向コ
イルが巻き付けられたコアの磁極間に位置するようにな
っている偏向電磁石とを備えたSOR装置において、上
記コアの磁極の間隔を、電子ビームの偏向曲率半径方向
で磁場分布を持たせるべく相違させたものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a vacuum vessel in which an electron beam circulates, and a deflection section of the vacuum vessel between the magnetic poles of a core around which a deflection coil is wound. In this SOR device, the spacing between the magnetic poles of the core is varied in order to provide a magnetic field distribution in the direction of the deflection curvature radius of the electron beam.

[作用] 上記の構成によれば、コアの磁極の間隔を偏向曲率半径
方向で相違させることで、すなわち偏向部の軌跡に対し
て外側より内側の磁場が強くなる磁場分布をもたせるこ
とで偏向部で電子ビームを収束することかできる。
[Function] According to the above configuration, by making the spacing between the magnetic poles of the core different in the direction of the radius of deflection curvature, that is, by creating a magnetic field distribution in which the magnetic field is stronger on the inside than on the outside with respect to the locus of the deflection part, the deflection part It is possible to focus the electron beam with

二実M%Jコ 以下、本発明の好適実施例を添付図面に基づいて説明す
る。
Preferred embodiments of the present invention will now be described with reference to the accompanying drawings.

先すSOR装置の全体構成は第3図で説明したとおりで
ある。
The overall configuration of the SOR device is as described above with reference to FIG.

偏向電磁石4は、第1図に示すように断面C字状のコア
15の上下の磁f#l16,17に、それぞれ偏向コイ
ル18を設けて構成されている。この磁極片16.17
間に真空容器2の偏向部2aが位!される。この真空容
器2の偏向部2aの曲率中心が図で見て左側にあるとす
ると、磁極16゜17の間隔dは、その偏向部2aを通
る電子ビーム12を中心に偏向曲率半径方向で内側の間
隔d+が外側の間隔d0より小さくなるように形成され
る。またコイル18への通電は、下部の磁極17がN極
、上部の磁極片16がS極となるようにされる。
As shown in FIG. 1, the deflection electromagnet 4 is constructed by providing deflection coils 18 on the upper and lower magnets f#l 16 and 17 of a core 15 having a C-shaped cross section, respectively. This pole piece 16.17
The deflection part 2a of the vacuum container 2 is in between! be done. Assuming that the center of curvature of the deflection section 2a of the vacuum vessel 2 is on the left side in the figure, the spacing d between the magnetic poles 16° and 17 is the distance d of the inner side in the direction of the radius of deflection curvature centering on the electron beam 12 passing through the deflection section 2a. The distance d+ is formed to be smaller than the outer distance d0. Further, the coil 18 is energized so that the lower magnetic pole 17 is the north pole and the upper magnetic pole piece 16 is the south pole.

次に本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

SOR装置の運転は第3図で説明したとおりである。令
弟2図に示すように真空容器2の偏向部、2 a−C−
電子ヒーム12が紙面より水平に移動するとし、かつ磁
極16.17間のエアギャップを通る磁束が図示のよう
に下部の磁極17がら上部の磁極16に向がうように作
用するとする。この場合偏向曲率半径方向内側の間隔d
+が外側の開隔doより小さくなるように形成される6
安定に中心起動を周回している電子は、ローレンツ力q
−Bz−v(q:電荷、Bz:垂直磁束密度、V:速度
)と、半径r方向の加速度−v2/ρ(ρ:平行起動の
半径)による慣性力がつりあっているので、 ρ これに対して、中心軌道からずれた電子に働く力は、 ここで Bz(ρ)    ρ となる磁場分布をつくると、 ρ r       ρ       ρ r            ρ となり、r〉ρのとき、ΔF<Oとなり電子は内側に力
Foをうけ、rくρのとき、ΔF>Oとなり電子は外測
に力F、をうける。
The operation of the SOR device is as explained in FIG. As shown in Figure 2, the deflection section of the vacuum container 2, 2 a-C-
Assume that the electron beam 12 moves horizontally from the plane of the paper, and that the magnetic flux passing through the air gap between the magnetic poles 16 and 17 acts in such a way that the lower magnetic pole 17 is directed toward the upper magnetic pole 16 as shown. In this case, the distance d inside the deflection curvature in the radial direction
6 formed so that + is smaller than the outer opening do
An electron stably orbiting around the center is subject to the Lorentz force q
-Bz-v (q: electric charge, Bz: perpendicular magnetic flux density, V: velocity) and the inertial force due to acceleration in the radius r direction -v2/ρ (ρ: radius of parallel activation) are balanced, so ρ On the other hand, the force acting on an electron shifted from the center orbit becomes ρ r ρ ρ r ρ if we create a magnetic field distribution such that Bz(ρ) ρ, and when r>ρ, ΔF<O and the electron is inside When r is ρ, ΔF>O, and the electron is externally subjected to a force F.

従って電子ビーム12は偏向部2aで偏向される間に収
束されることとなる。
Therefore, the electron beam 12 is converged while being deflected by the deflection section 2a.

このように偏向部2aで電子ビームエ2が偏向されると
共に収束されることで、従来のように水平用四@電磁石
による収束力の調整が但がですみ、その制御が容易にな
る。
Since the electron beam 2 is deflected and focused by the deflection section 2a in this manner, the adjustment of the focusing force using horizontal electromagnets as in the conventional method is not required, and its control becomes easy.

[発明の効果] 以上説明したことから明らがなように本発明によれば次
のごとき優れた効果を発揮する。
[Effects of the Invention] As is clear from the above explanation, the present invention exhibits the following excellent effects.

(1)コアのS極の間隔を偏向曲率半径方向で相違させ
る二とで、電子ビームを偏向と同時に収束することがで
きる。
(1) By making the spacing between the S poles of the core different in the direction of the radius of deflection curvature, the electron beam can be deflected and focused at the same time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す要部断面図、第2図は
本発明における偏向電磁石の作用を説明する詳細断面図
、第3図はSOR装置の全体平面図、第4図はSOR装
置において電子ビームを収束させる際の説明図である。 図中、1はシンクロトロン、2は真空容器、2aは偏向
部、4は偏向電磁石、12は電子ビーム、15はコア、
16.17は磁極、18はコイルである。 第1図 特許出願人  石川島播磨重工業株式会社代理人弁理士
  絹  谷  信 雄(外1名)第2図
FIG. 1 is a cross-sectional view of essential parts showing an embodiment of the present invention, FIG. 2 is a detailed cross-sectional view explaining the action of the bending electromagnet in the present invention, FIG. It is an explanatory diagram when converging an electron beam in an SOR device. In the figure, 1 is a synchrotron, 2 is a vacuum vessel, 2a is a deflection section, 4 is a deflection electromagnet, 12 is an electron beam, 15 is a core,
16 and 17 are magnetic poles, and 18 is a coil. Figure 1 Patent applicant: Ishikawajima-Harima Heavy Industries Co., Ltd. Representative patent attorney Nobuo Kinutani (1 other person) Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、電子ビームが周回する真空容器と、その真空容器の
偏向部が、偏向コイルが巻き付けられたコアの磁極間に
位置するようになされている偏向電磁石とを備えたSO
R装置において、上記コアの磁極の間隔を、電子ビーム
の偏向曲率半径方向で磁場分布を持たせるべく相違させ
たことを特徴とするSOR装置。
1. An SO equipped with a vacuum vessel in which an electron beam circulates, and a deflection electromagnet in which the deflection part of the vacuum vessel is positioned between the magnetic poles of a core around which a deflection coil is wound.
An SOR device characterized in that, in the R device, the spacing between the magnetic poles of the core is made different in order to provide a magnetic field distribution in the direction of the deflection curvature radius of the electron beam.
JP21166490A 1990-08-13 1990-08-13 Sor device Pending JPH0498800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21166490A JPH0498800A (en) 1990-08-13 1990-08-13 Sor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21166490A JPH0498800A (en) 1990-08-13 1990-08-13 Sor device

Publications (1)

Publication Number Publication Date
JPH0498800A true JPH0498800A (en) 1992-03-31

Family

ID=16609553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21166490A Pending JPH0498800A (en) 1990-08-13 1990-08-13 Sor device

Country Status (1)

Country Link
JP (1) JPH0498800A (en)

Similar Documents

Publication Publication Date Title
JP4008030B2 (en) Method for extracting charged particles from isochronous cyclotron and apparatus applying this method
US5172401A (en) High-speed scan type x-ray generator
JP4713799B2 (en) Isochronous sector-focused cyclotron and method for extracting charged particles from the cyclotron
US2193602A (en) Device for accelerating electrons to very high velocities
JPH05109499A (en) Accelerator, ejecting method for charged particle, and ejecting device for charged particle
CN207802493U (en) Petal-shaped accelerator and its c-type connector motor magnet
WO2017145259A1 (en) Heavy particle radiation therapy apparatus
JPH0498800A (en) Sor device
JPH07191169A (en) Ion deflecting magnet and method for ion deflecting
JP2001023798A (en) Deflecting magnet and device using the same
US4937531A (en) External ion injection apparatus for a cyclotron
JP4276160B2 (en) Circular charged particle accelerator and method of operating the circular charged particle accelerator
JPH01217900A (en) Accelerator
JPH0753280Y2 (en) Bending electromagnet for SOR device
JPH01204399A (en) Electron accelerator
JP2021174617A (en) Secondary particle generation device, radioactive isotope generation device, secondary particle generation method and radioactive isotope generation method
JPH03122999A (en) Deflecting electric magnet and charged particle accelerating method for circular accelerator using same
JP2000306700A (en) Charged particle accelerator and charged particle accelerating method
JPH0364898A (en) Polarized electromagnet
JPH0436944A (en) Ring-shaped x-ray generating device
JPH01204400A (en) Electron accelerator
JPH01204398A (en) Electron injection device
JPH0412442A (en) High-speed scanning type x-ray generator
JPH01195700A (en) X-ray generator
JPS62276738A (en) Ion beam apparatus