JPH01204399A - Electron accelerator - Google Patents

Electron accelerator

Info

Publication number
JPH01204399A
JPH01204399A JP2808688A JP2808688A JPH01204399A JP H01204399 A JPH01204399 A JP H01204399A JP 2808688 A JP2808688 A JP 2808688A JP 2808688 A JP2808688 A JP 2808688A JP H01204399 A JPH01204399 A JP H01204399A
Authority
JP
Japan
Prior art keywords
magnetic field
electrons
period
electron
vacuum vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2808688A
Other languages
Japanese (ja)
Inventor
Akihiro Mori
明博 毛利
Masao Takanaka
高仲 政雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2808688A priority Critical patent/JPH01204399A/en
Publication of JPH01204399A publication Critical patent/JPH01204399A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To make it possible to take out an electron beam of a large beam current, a long time width, a narrow kinetic momentum width, and a small emittance by injecting electrons from the inner diameter side of a vacuum vessel. CONSTITUTION:An electron gun 3 and a means 5 for generating magnetic field for circulation are provided, with the electron gun 3 being for injecting electrons to a vacuum vessel 2 from its inner diameter side and with the means 5 surrounding the vacuum vessel 2 and being for generating a magnetic field Bg which produces a constant magnetic field during a beam injection period, increases the intensity of the magnetic field in synchronism with the electron acceleration during the acceleration period, and circulates electrons in a stabilized manner by producing a constant magnetic field during the jet out period. Further, an acceleration magnetic field producing means 7 surrounding the circulation magnetic field generation means 5 and for producing a magnetic field Ba for inductively producing an electric field for accelerating electrons from the injection period to the jet out period, and a device 8 for taking out a beam from the outer diameter side of the vacuum vessel are provided. This arrangement makes it possible to obtain a large beam current, to make a kinetic momentum width narrow, to take out an electron beam of a small emittance, and to make the time width of the electron beam taken out longer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電子加速器、特に電子の加速エネルギーに
応じて周回軌道半径を変えることのできる電子加速器に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electron accelerator, and particularly to an electron accelerator whose orbital radius can be changed depending on the acceleration energy of electrons.

〔従来の技術〕[Conventional technology]

誘導電場で電子を加速する装置としてのベータトロンの
うち、この発明に近い従来の電子加速器を第4囚に断面
図で示す。この第4図において、中心軸1の回りに環状
に作られた真空容器2内へその外径側から電子銃6によ
って入射された電子は、周回用磁場ヨーク4に巻回され
た周回用磁場励磁コイA15の作る周回用磁場Bg(g
uidingmagnetic field)によって
真空容器2内を安定に周回させられる。周回用磁場ヨー
ク4の外側に設けられた加速用@場ヨーク6およびこの
加速用磁場ヨーク6に巻回された加速用磁場励磁コイル
7は、電子を加速するための加速を物Eを電子の周回運
動方向に誘導的に発生させるため罠、加速用磁場ヨーク
6内に加速用磁場Ba(acceleratingma
gnetic field)を作る。電子は、加速電場
Eによって加速され、最高エネルギーに達すると真空容
器2よりビーム取り出し装置8によって取り出される。
Of the betatrons, which are devices that accelerate electrons using an induced electric field, a conventional electron accelerator similar to the present invention is shown in a cross-sectional view in the fourth column. In FIG. 4, electrons incident by an electron gun 6 from the outer diameter side into a vacuum vessel 2 formed in an annular shape around a central axis 1 are exposed to an orbiting magnetic field wound around an orbiting magnetic field yoke 4. Circulating magnetic field Bg (g
It can be stably circulated within the vacuum container 2 by the magnetic field. An accelerating @field yoke 6 provided outside the orbiting magnetic field yoke 4 and an accelerating magnetic field excitation coil 7 wound around the accelerating magnetic field yoke 6 apply acceleration to accelerate an object E to an electron. An accelerating magnetic field Ba (accelerating magnetic field Ba) is generated in the trap and accelerating magnetic field yoke 6 in order to generate it inductively in the direction of circular motion.
Genetic field). The electrons are accelerated by the accelerating electric field E, and when they reach the maximum energy, they are extracted from the vacuum vessel 2 by the beam extraction device 8.

なお、各ヨークは、励磁コイルおよびその励磁電源と組
合せて使用され、電磁石を構成している。
Note that each yoke is used in combination with an excitation coil and its excitation power source to constitute an electromagnet.

電子は真空容器2内で周回運動するが、それは電子の連
動型Pと鎖交する周回用磁場Bg  との、下式で与え
られる平衡状態による。
The electrons orbit within the vacuum container 2, and this is due to the equilibrium state given by the following equation between the interlocking type P of the electrons and the interlinking orbiting magnetic field Bg.

P=eBgρ             ([)ただし
、eは電子の電荷、ρは□その運動の曲率半径である。
P=eBgρ ([) where e is the charge of the electron, and ρ is the radius of curvature of its motion.

電子は、その運動軌道面内の磁束の時間変化で誘導発生
された加速電場Eによって加速される。
The electrons are accelerated by an accelerating electric field E induced by the time change of the magnetic flux in the plane of their orbital motion.

軌道面内の面積分である。This is the area integral within the orbital plane.

また、−射的に、ビームのベータトロン振動の安定性は
、周回用磁場Bg が次式によって与えられると成立す
る。
In addition, radiationally, the stability of the betatron oscillation of the beam is established when the orbiting magnetic field Bg is given by the following equation.

Bg == B(、(r/R)−n         
  taJたyし、BQ  は磁場定数、nは0 (n
 (1を満す値である。
Bg == B(, (r/R)-n
taJ, BQ is the magnetic field constant, n is 0 (n
(The value satisfies 1.

式(3)は、主に、周回用磁場ヨーク4の磁極面の構造
の作り方によって満足される。従って、ビームを安定に
加速するには式illおよび(2)を消すように、周回
用磁場Bg および加速用磁場Ba  を時間的に変化
させる必要がある。そのような磁場を作るために、周回
用磁場励磁コイル5、加速用磁場励磁コイル7にそれぞ
れ第5図のグラフ図に示す、よ5な異なるオフセット値
で相似的な正弦状半波的パターンの電流を流す。従って
、電源としては、ko半波電源が使用される。ビームの
入射から出射までの軌道は、おおよそ第6図の平面図に
示すような入射軌道11、加速軌道12および出射軌道
16をたどる。
Equation (3) is mainly satisfied depending on how the structure of the magnetic pole surface of the circulating magnetic field yoke 4 is created. Therefore, in order to stably accelerate the beam, it is necessary to temporally change the orbiting magnetic field Bg and the accelerating magnetic field Ba so as to eliminate equations ill and (2). In order to create such a magnetic field, similar sinusoidal half-wave patterns are applied to the circulating magnetic field excitation coil 5 and the acceleration magnetic field excitation coil 7 with different offset values as shown in the graph of FIG. Pass current. Therefore, a KO half-wave power source is used as the power source. The trajectory of the beam from incidence to emission approximately follows an incident trajectory 11, an acceleration trajectory 12, and an exit trajectory 16 as shown in the plan view of FIG.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の電子加速器では、(1)真空容器の外径側より電
子を入射するため、広範囲の運動量の電子ビームを周回
、加速することが出来ない、(2)周回用励磁電流と加
速用励磁電流とが相似的に供給されているので、広範囲
の運動量の電子ビームを周回、加速することが出来ない
、(3)取り出される電子ビームの時間幅が短い、そし
て(4)電子ビームのエミツタンスが太きいため、取り
出し時に運動量の狭い電子ビームを取り出すことが出来
ないといった問題点があった。
In conventional electron accelerators, (1) electrons are injected from the outer diameter side of the vacuum vessel, making it impossible to orbit and accelerate electron beams with a wide range of momentum; (2) excitation current for orbiting and excitation current for acceleration; (3) The time width of the emitted electron beam is short, and (4) the emittance of the electron beam is large. Therefore, there was a problem in that an electron beam with a narrow momentum could not be extracted at the time of extraction.

この発明は、上述したような問題点を解決するためにな
されたもので、(1)広範囲の運動量の電子ビームを入
射1周回、加速し、従って大きいビーム電流が得られ、
(2)取り出される電子ビームの時間幅が長(、(3)
運動量幅の狭い電子ビームが取り出せ、そして(4)エ
ミツタンスの小さい電子ビームが取り出せる電子加速器
を得ることを目的としている。
This invention was made to solve the above-mentioned problems; (1) an electron beam with a wide range of momentum can be accelerated through one incident revolution, and therefore a large beam current can be obtained;
(2) The time width of the extracted electron beam is long (, (3)
The objective is to obtain an electron accelerator that can extract an electron beam with a narrow momentum width and (4) an electron beam with a small emittance.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る電子加速器は、入射された電子のビーム
を広範囲の運動量で周回、加速させる空間領域を有する
真空容器と、この真空容器へその内径側から前記電子を
入射させる電子銃と、前記真空容器を囲み、前記ビーム
の入射期間中は一定の磁場を作り、加速期間中は前記電
子の加速と同期して磁場の強さを増し、そして出射期間
中はまた一定の磁場を作り、これにより前記電子を安定
に周回させる磁場を生成する周回用磁場生成手段と、こ
の周回用磁場生成手段を囲み、前記入射期間から前記出
射期間まで前記電子を加速させる電場を誘導的に作るた
めの磁場を生成する加速用磁場生成手段と、前記真空容
器の外径側から前記ビームを取り出す装置とを設けたも
のである。
The electron accelerator according to the present invention includes: a vacuum vessel having a spatial region for orbiting and accelerating an incident electron beam with a wide range of momentum; an electron gun for injecting the electrons into the vacuum vessel from the inner diameter side; surrounding the container, creating a constant magnetic field during the injection period of the beam, increasing the strength of the magnetic field in synchronization with the acceleration of the electrons during the acceleration period, and creating a constant magnetic field again during the exit period, thereby A circulating magnetic field generating means for generating a magnetic field that stably circulates the electrons, and a magnetic field that surrounds the circulating magnetic field generating means and inductively generates an electric field that accelerates the electrons from the injection period to the exit period. The apparatus is provided with an accelerating magnetic field generating means and a device for extracting the beam from the outer diameter side of the vacuum vessel.

〔作 用〕[For production]

電子を真空容器の内径側より入射することによって入射
エネルギーのビームの平衡軌道が電子銃の出口位置にと
れる結果、電子ビームのベータトロン振幅が小さくなり
(換言すれば、二きツタンスが小さい)、そして旋回軌
道が平衡軌道の外側にあるので平衡軌道から加速の旋回
軌道への移行は容易である□。
By injecting electrons from the inner diameter side of the vacuum vessel, the equilibrium trajectory of the incident energy beam can be set at the exit position of the electron gun, resulting in the betatron amplitude of the electron beam becoming smaller (in other words, the secondary tutance is smaller). Since the orbit is outside the equilibrium orbit, the transition from the equilibrium orbit to the accelerating orbit is easy□.

〔実施例〕〔Example〕

この発明の一実施例を第1図に断面図で示す。 An embodiment of the invention is shown in cross-section in FIG.

第1図の構成要素は、第4図のものと同一でありその符
号も同一である。電子は、真空容器2内へその内径側か
ら電子銃6によって連続的に入射される。第2図のグラ
フ図から分かるように、入射期間中、入射エネルギーの
ビーム平衡軌道が電子銃出口位置にあるように周回用磁
場Bg  を一定に保持し、かつ電子ビームを加速する
ために加速用磁J4Ba  を印加する。加速に伴ない
、電子ビームは、中心軸10回りの旋回状の安定平衡軌
道に沿って真空容器2内を内周側から外周側へ移動する
(第6図参照〕。連続入射された電子ビームのうち、最
初の電子ビームが取り出し装置8に達する直前になった
時に電子ビームの入射を止める。この間、広範囲の運動
量の電子ビームを真空容器2内に受は入れるために、真
空容器2は水平方向に大きい隙間の断面を有する構造と
なっている。次の加速期間において、周回用磁場Bg 
 を、加速用磁場Ba  の増加に同期し増加させると
、電子ビームは各運動量に応じた安定軌道に沿って周回
運動をしながら加速される。最外周の電子が所定のエネ
ルギーに達した時に、周回用磁場Bg  の増加を止め
て一定値に保持する。この後の出射期間において加速用
磁場Ba  を増加し続けると、電子ビームはさらに加
速され続けるので、電子ビームは旋回しながら外周側へ
移動し、次から次へ取り出し装置8に飛び込む。この取
り出し装置8は静電型インフレクタ、セプタム電磁石、
キツカー電磁石等で構成される取り出し装置8によって
電子ビームが旋回軌道から出射軌道へ導かれる。第2図
には、周回用磁場Eg 加速用磁場Ba  を作るそれ
ぞれ周回用励磁電流1g 、加速用励磁電流1a の−
例が示されている。また、第6図には、電子銃6による
真空容器2への電子ビームの入射から出射までの軌道が
示されているが、従来装置におけるような入射軌道はな
く、入射された電子はすぐ加速されて旋回軌道14&を
入り、旋回運動をする。
The components in FIG. 1 are the same as those in FIG. 4, and their symbols are also the same. Electrons are continuously injected into the vacuum container 2 from the inner diameter side by the electron gun 6. As can be seen from the graph in Figure 2, during the injection period, the orbiting magnetic field Bg is held constant so that the beam equilibrium trajectory of the incident energy is at the electron gun exit position, and the accelerating magnetic field Bg is kept constant to accelerate the electron beam. Apply magnetism J4Ba. As the electron beam accelerates, the electron beam moves from the inner circumferential side to the outer circumferential side within the vacuum vessel 2 along a stable equilibrium orbit in a spiral shape around the central axis 10 (see Fig. 6).The electron beam is continuously incident. The incidence of the electron beam is stopped just before the first electron beam reaches the extraction device 8. During this time, the vacuum vessel 2 is kept horizontal in order to receive the electron beam with a wide range of momentum into the vacuum vessel 2. It has a structure with a cross section with a large gap in the direction.In the next acceleration period, the orbiting magnetic field Bg
When is increased in synchronization with the increase in the accelerating magnetic field Ba, the electron beam is accelerated while orbiting along a stable orbit corresponding to each momentum. When the outermost electrons reach a predetermined energy, the circulating magnetic field Bg stops increasing and is held at a constant value. When the accelerating magnetic field Ba continues to increase during the subsequent emission period, the electron beam continues to be further accelerated, so the electron beam moves toward the outer circumference while rotating and jumps into the extraction device 8 one after another. This extraction device 8 includes an electrostatic inflector, a septum electromagnet,
The electron beam is guided from the orbit to the exit orbit by an extraction device 8 composed of a Kitzker electromagnet or the like. Figure 2 shows the orbiting excitation current 1g and the acceleration excitation current 1a which create the orbiting magnetic field Eg and the accelerating magnetic field Ba, respectively.
An example is shown. Furthermore, although FIG. 6 shows the trajectory of the electron beam from the electron gun 6 entering the vacuum vessel 2 to its emission, there is no trajectory of the electron beam unlike in the conventional device, and the incident electrons are immediately accelerated. Then, it enters the turning orbit 14& and performs a turning movement.

そして、加速期間には、周回軌道12に入って周回運動
する。この周回軌道12の動径方向の位置は、入射期間
の始めに入射された電子ビームの周回軌道はど外側にあ
る。さらに出射期間には、電子ビームはまた旋回運動し
て取り出し装置8に飛び込み、出射軌道13に導かれる
Then, during the acceleration period, it enters the orbit 12 and performs a circular motion. The position of this orbit 12 in the radial direction is on the outer side of the orbit of the electron beam incident at the beginning of the injection period. Furthermore, during the emission period, the electron beam also makes a circular movement and flies into the extraction device 8 and is guided to the emission trajectory 13.

〔発明の効果〕〔Effect of the invention〕

以上、詳しく説明したように、この発明は、入射された
電子のビームを広範囲の運動蓋で周回、加速させる空間
領域を有する真空容器と、この真空容器へその内径側か
ら前記電子を入射させる電子銃と、前記真空容器を囲み
、前記ビームの入射期間中は一定の磁場を作り、加速期
間中は前記電子の加速と同期して磁場の強さを増し、そ
して出射期間中はまた一定の磁場を作り、これにより前
記電子を安定に周回させる磁場を生成する周回用磁場生
成手段と、この周回用磁場生成手段を囲み、前記入射期
間から前記出射期間まで前記電子を加速させる電場を誘
導的に作るための磁場を生成する加速用磁場生成手段と
、前記真空容器の外径側から前記ビームを取り出す装置
とを備えているので、大きいビーム電流が得られ、運動
量幅が狭(、またエミツタンスも小さい電子ビームを取
り出せ。
As described above in detail, the present invention provides a vacuum container having a spatial region in which an incident electron beam is orbited and accelerated by a wide range of motion lid, and an electron beam which is incident on the vacuum container from the inner diameter side thereof. A gun and the vacuum vessel are surrounded by a constant magnetic field during the injection period of the beam, the strength of the magnetic field increases in synchronization with the acceleration of the electrons during the acceleration period, and a constant magnetic field again during the exit period. and an orbiting magnetic field generating means for generating a magnetic field for stably orbiting the electrons, and an electric field that surrounds the orbiting magnetic field generating means and accelerating the electrons from the input period to the exit period in an inductive manner. Since it is equipped with an accelerating magnetic field generating means that generates a magnetic field for generating a magnetic field, and a device that extracts the beam from the outer diameter side of the vacuum vessel, a large beam current can be obtained and the momentum width is narrow (and the emittance is also small). Take out a small electron beam.

取り出された電子ビームの時間幅が長(、そして周回用
刃口運用のW&場を別々に制御できるのでビーム制御を
容易に行えるという効果を奏する。
Since the time width of the extracted electron beam is long (and the W and field for the operation of the rotating cutting edge can be controlled separately, the beam control can be easily performed).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す断面図、第2図は第
1図の実施例で使用される電流の時間変化を示すグラフ
図、第6図は第1図の実施例におけるビーム軌道を示す
平面図、第4図は従来の電子加速器を示す断面図、第5
図は従来の電子加速器で使用される電流の時間変化を示
すグラフ図、第6図は従来の電子加速器のビーム軌道を
示す平面図である。 図において、(2)は真を容器、(6Jは電子銃、(4
)は周回用磁場ヨーク、(5)は周回用磁場励磁コイル
、(6)は加速用磁場ヨーク、(7)は加速用磁場励磁
コイル、(8)はビーム取り出し装置である。 なお、各図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, FIG. 2 is a graph showing the time change of the current used in the embodiment of FIG. 1, and FIG. 6 is a beam diagram in the embodiment of FIG. 1. Figure 4 is a plan view showing the orbit, Figure 4 is a sectional view showing a conventional electron accelerator, Figure 5 is a cross-sectional view showing the conventional electron accelerator.
The figure is a graph showing the temporal change in current used in a conventional electron accelerator, and FIG. 6 is a plan view showing the beam trajectory of the conventional electron accelerator. In the figure, (2) is a container, (6J is an electron gun, (4
) is an orbiting magnetic field yoke, (5) is an orbiting magnetic field excitation coil, (6) is an acceleration magnetic field yoke, (7) is an acceleration magnetic field excitation coil, and (8) is a beam extraction device. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 入射された電子のビームを広範囲の運動量で周回、加速
させる空間領域を有する真空容器と、この真空容器へそ
の内径側から前記電子を入射させる電子銃と、前記真空
容器を囲み、前記ビームの入射期間中は一定の磁場を作
り、加速期間中は前記電子の加速と同期して磁場の強さ
を増し、そして出射期間中はまた一定の磁場を作り、こ
れにより前記電子を安定に周回させる磁場を生成する周
回用磁場生成手段と、この周回用磁場生成手段を囲み、
前記入射期間から前記出射期間まで前記電子を加速させ
る電場を誘導的に作るための磁場を生成する加速用磁場
生成手段と、前記真空容器の外径側から前記ビームを取
り出す装置とを備えたことを特徴とする電子加速器。
a vacuum vessel having a spatial region for orbiting and accelerating an incident electron beam with a wide range of momentum; an electron gun for injecting the electrons into the vacuum vessel from the inner diameter side; A magnetic field that creates a constant magnetic field during the period, increases the strength of the magnetic field in synchronization with the acceleration of the electrons during the acceleration period, and creates a constant magnetic field again during the emission period, thereby making the electrons orbit stably. an orbiting magnetic field generating means for generating, and surrounding this orbiting magnetic field generating means,
comprising an accelerating magnetic field generating means for inductively generating an electric field for accelerating the electrons from the injection period to the exit period, and a device for extracting the beam from the outer diameter side of the vacuum container. An electron accelerator featuring
JP2808688A 1988-02-09 1988-02-09 Electron accelerator Pending JPH01204399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2808688A JPH01204399A (en) 1988-02-09 1988-02-09 Electron accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2808688A JPH01204399A (en) 1988-02-09 1988-02-09 Electron accelerator

Publications (1)

Publication Number Publication Date
JPH01204399A true JPH01204399A (en) 1989-08-16

Family

ID=12238972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2808688A Pending JPH01204399A (en) 1988-02-09 1988-02-09 Electron accelerator

Country Status (1)

Country Link
JP (1) JPH01204399A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004073364A1 (en) * 2003-02-17 2004-08-26 Mitsubishi Denki Kabushiki Kaisha Charged particle accelerator
JP2009026653A (en) * 2007-07-20 2009-02-05 Mitsubishi Electric Corp X-ray generating device
JP2011210560A (en) * 2010-03-30 2011-10-20 High Energy Accelerator Research Organization Deflection electromagnet system with acceleration function

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004073364A1 (en) * 2003-02-17 2004-08-26 Mitsubishi Denki Kabushiki Kaisha Charged particle accelerator
US7259529B2 (en) 2003-02-17 2007-08-21 Mitsubishi Denki Kabushiki Kaisha Charged particle accelerator
CN100359993C (en) * 2003-02-17 2008-01-02 三菱电机株式会社 Charged particle accelerator
DE112004000137B4 (en) * 2003-02-17 2015-10-22 Mitsubishi Denki K.K. Method of operating a charged particle accelerator
JP2009026653A (en) * 2007-07-20 2009-02-05 Mitsubishi Electric Corp X-ray generating device
JP2011210560A (en) * 2010-03-30 2011-10-20 High Energy Accelerator Research Organization Deflection electromagnet system with acceleration function

Similar Documents

Publication Publication Date Title
US5017882A (en) Proton source
US5285166A (en) Method of extracting charged particles from accelerator, and accelerator capable of carrying out the method, by shifting particle orbit
JP2019133745A (en) Circular accelerator, particle beam therapy system including circular accelerator, and method of operating circular accelerator
US5138271A (en) Method for cooling a charged particle beam
US8525449B2 (en) Charged particle beam extraction method using pulse voltage
JP2001326100A (en) Direct current electron beam acceleration device and method of direct current electron beam acceleration
JP7240262B2 (en) Accelerator, particle beam therapy system and ion extraction method
JP2019096404A (en) Circular accelerator and particle therapy system
JPH01204399A (en) Electron accelerator
US2890348A (en) Particle accelerator
JP3857096B2 (en) Charged particle beam extraction apparatus, circular accelerator, and circular accelerator system
WO2017145259A1 (en) Heavy particle radiation therapy apparatus
US5300861A (en) Method in a pulsed accelerator for accelerating a magnetized rotating plasma
US2943265A (en) Electron cyclotron
US2905842A (en) Device for producing sustained magnetic self-focusing streams
JP2008071494A (en) Charged particle beam accelerator, and particle beam irradiation system using the same
US4849705A (en) Method of incidence of charged particles into a magnetic resonance type accelerator and a magnetic resonance type accelerator in which this method of incidence is employed
US2970273A (en) Method of producing large circular currents
JP4276160B2 (en) Circular charged particle accelerator and method of operating the circular charged particle accelerator
US2922061A (en) Particle accelerator
US2925505A (en) Device for producing sustained magnetic self-focusing streams
JPH01204400A (en) Electron accelerator
US3324325A (en) Dielectric wall stabilization of intense charged particle beams
US4481475A (en) Betatron accelerator having high ratio of Budker parameter to relativistic factor
JPH07111199A (en) Accelerator, beam radiation method, and medical device