JPH01217900A - Accelerator - Google Patents

Accelerator

Info

Publication number
JPH01217900A
JPH01217900A JP3940888A JP3940888A JPH01217900A JP H01217900 A JPH01217900 A JP H01217900A JP 3940888 A JP3940888 A JP 3940888A JP 3940888 A JP3940888 A JP 3940888A JP H01217900 A JPH01217900 A JP H01217900A
Authority
JP
Japan
Prior art keywords
electromagnet
particles
pole
octupole
focusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3940888A
Other languages
Japanese (ja)
Inventor
Kazuo Hiramoto
和夫 平本
Masatsugu Nishi
西 政嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3940888A priority Critical patent/JPH01217900A/en
Publication of JPH01217900A publication Critical patent/JPH01217900A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to centralize particles having extents with two- pole deflection electromagnet at the center of orbit designed by providing a focusing eight-pole electromagnet having a large focusing function and a dispersing eight-pole magnet at the outlet of the two-pole deflection magnet. CONSTITUTION:At the outlet of two-pole deflection magnet 2, a focusing eight- pole electromagnet 7, and a dispersing eight-pole magnet 8 are arranged sequentially. The eight-pole magnet has a property to give strong focusing and dispersing forces by the arrangement of magnets forming the eight-pole magnet. Particles accelerated by means of a high frequency acceleration cavity (not shown) lose energy when they pass along the outer periphery side of orbit in the two-pole deflection magnet 2, and have extents when they pass along the inner periphery side of orbit therein. By the adoption of the electromagnets 7 and 8, the orbits of particles having respective extents can be resumed to those approximately equal to the original orbit designed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、大電流を加速するのに好適な加速器に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an accelerator suitable for accelerating large currents.

〔従来の技術〕[Conventional technology]

従来、シンクロトロン加速器では、第2図に示すように
、入射器1から入射された粒子は偏向電磁石2で軌道を
曲げられると共に、収束用4極電磁石3及び発散用4極
電磁石4により粒子を収束及び発散作用を受けながら設
計軌道5を周回する。
Conventionally, in a synchrotron accelerator, as shown in FIG. 2, the trajectory of particles injected from an injector 1 is bent by a bending electromagnet 2, and the particles are deflected by a converging quadrupole electromagnet 3 and a divergent quadrupole electromagnet 4. It revolves around the designed orbit 5 while being subjected to convergence and divergence effects.

粒子は、高周波加速空胴6を通過する際、高周波の位相
の差異により、加速あるいは減速されるが、周回を繰り
返すごとに加速され、エネルギーは上昇する。
When the particles pass through the high-frequency acceleration cavity 6, they are accelerated or decelerated due to the difference in the phase of the high-frequency waves, but each time they make a turn, they are accelerated and their energy increases.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述のように、粒子のエネルギーは、高周波加速空胴部
6によって加速され、周回を繰り返すごとに上昇する。
As described above, the energy of the particles is accelerated by the high-frequency acceleration cavity 6 and increases with each rotation.

電荷(e)を持ちしかも光束に近い速度で運動している
粒子を偏向電磁石で軌道を曲げられた場合、この時の運
動量をPOとし、偏向電磁石の磁束密度をBOとすると
、曲率半径ρは(1)式で与えられる。
If the trajectory of a particle having electric charge (e) and moving at a speed close to that of light flux is bent by a bending electromagnet, then if the momentum at this time is PO and the magnetic flux density of the bending electromagnet is BO, then the radius of curvature ρ is It is given by equation (1).

eB。eB.

粒子が高周波加速空胴6で加速され、エネルギーが増加
して、運動量がPo+ΔPOだけ増すと。
When a particle is accelerated in the high frequency acceleration cavity 6, its energy increases and its momentum increases by Po+ΔPO.

曲率半径は(2)大分だけ増加する。The radius of curvature increases by (2) a large amount.

eB。eB.

従って、運動量がPoの粒子に比べ増加した分だけ偏向
電磁石2の中心より外側を通る。その結果、偏向電磁石
内2で粒子は広がり設計軌道からの水平方向変位が始ま
る。従って、シンタロトロン振動により、粒子のエネル
ギーが大きく変化すると、水平方向変位が大きくなり、
粒子が設計軌道内5で広がりを持ったまま運動するため
真空容器5の内壁に衝突し、エネルギーが大きく損失し
、大電流を維持できなくなる。
Therefore, the particles pass outside the center of the bending electromagnet 2 by the amount that their momentum has increased compared to the Po particle. As a result, the particles spread within the bending electromagnet 2 and begin to be displaced from the designed trajectory in the horizontal direction. Therefore, when the energy of a particle changes significantly due to syntarotron oscillation, the horizontal displacement increases,
Since the particles move in a spread manner within the designed trajectory 5, they collide with the inner wall of the vacuum vessel 5, causing a large loss of energy and making it impossible to maintain a large current.

本発明の目的は、上記問題を解決し、大電流を得ること
ができる加速器を提供することにある。
An object of the present invention is to solve the above problems and provide an accelerator that can obtain a large current.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題は、高エネルギーで加速された粒子を貯蔵し、
閉形軌道を有する真空容器と;該真空容器内の粒子の軌
道を偏向させる2極偏向電磁石と;該2極偏向電磁石内
を通過した粒子を収束させる収束用4極電磁石と;該収
束用4極電磁石で収束した粒子を発散させながら水平方
向ビームにする発散用4極電磁石と;該発散用4極電磁
石から出た粒子を加速する高周波加速空胴とからなる加
速器において;前記2極偏向電磁石を通過した粒子を収
束させる収束用8極電磁石と;該収束用8極電磁石で収
束した粒子を発散させながら軌道中心でしかも水平方向
ビームにする発散用8極電磁石とを前記2極偏向電磁石
の出口側部に粒子の進行方向に対して前方に発散用8極
電磁石、後方に収束用8極電磁石を設けることにより解
決される。
The above problem involves storing particles accelerated with high energy,
a vacuum container having a closed orbit; a two-pole bending electromagnet that deflects the trajectory of particles within the vacuum container; a converging quadrupole electromagnet that converges particles that have passed through the two-pole bending electromagnet; and the converging quadrupole electromagnet. In an accelerator consisting of a divergent quadrupole electromagnet that makes particles converged by the electromagnet diverge into a horizontal beam; and a high-frequency acceleration cavity that accelerates particles emitted from the divergent quadrupole electromagnet; A converging octupole electromagnet that converges the passing particles; and a diverging octupole electromagnet that diverges the particles converged by the converging octupole electromagnet and converts them into a horizontal beam at the center of the orbit at the exit of the two-pole bending electromagnet. This problem can be solved by providing an octupole electromagnet for divergence in the front and an octupole electromagnet for convergence in the rear with respect to the traveling direction of the particles on the sides.

〔作用〕[Effect]

収束力の大きい収束用8極電磁石及び発散用8極電磁石
を2極偏向電磁石の出口部に設け、該2極偏向電磁石で
広がりを有した粒子を設計軌道中心へ絞り込む。
A converging octupole electromagnet and a diverging octupole electromagnet with a large convergence force are provided at the exit portion of the 2-pole bending electromagnet, and the 2-pole bending electromagnet narrows the spread particles to the center of the designed trajectory.

〔実施例〕〔Example〕

本発明の実施例を第1図、第3図及び第4図を用いて説
明する。
Embodiments of the present invention will be described with reference to FIGS. 1, 3, and 4.

第3図は収束用8極電磁石の作用について示したもので
ある。図中には、設計軌道に垂直な面内でのN極、S極
の配置を示し、矢印は磁界の方向を示している。設計軌
道の垂直面のX軸(水平方向)上では、磁界(By)は
y方向(鉛直方向)を向いているが、X軸上の正負で磁
界(B y)の向きが異なる。従って、X軸上をZ方向
(Xs y+2は右手系)に電荷を持った粒子が通過す
ると。
FIG. 3 shows the operation of the converging octupole electromagnet. The figure shows the arrangement of N and S poles in a plane perpendicular to the designed trajectory, and the arrows indicate the direction of the magnetic field. On the X-axis (horizontal direction) of the vertical plane of the design trajectory, the magnetic field (By) is oriented in the y-direction (vertical direction), but the direction of the magnetic field (By) differs depending on whether it is positive or negative on the X-axis. Therefore, when a charged particle passes along the X-axis in the Z direction (Xs y+2 is right-handed).

粒子はx=Oの方向へ収束作用を受ける。The particles are converged in the direction of x=O.

8極電磁石の入口部でのdx/dzをPXo、8極電磁
石通過後のdx/dzをPxは(3)式のように近似で
きる。
The dx/dz at the entrance of the octupole electromagnet can be approximated as PXo, and the dx/dz after passing through the octupole electromagnet as Px can be approximated as shown in equation (3).

P x = P xo + A x 3− (3)ここ
で、 A:定数 である。
P x = P xo + A x 3- (3) Here, A: constant.

Aが負の収束用8極電磁石ではXの正負にかかわらずX
が大きくなるにつれて大きな収束作用を受ける。
In a converging 8-pole electromagnet where A is negative, X regardless of whether X is positive or negative.
The larger the value, the greater the convergence effect.

一方、図中の極性を各々N極をS極に、slをN極に変
えると、磁石の方向が全て反転するため、X軸上ではX
の正負にかかわらず発散作用を受ける。
On the other hand, if you change the polarity in the figure from N pole to S pole and sl to N pole, the directions of the magnets will all be reversed, so on the X axis
It receives a divergent effect regardless of whether it is positive or negative.

第1図は本発明の作用を示す。第3図で示した2つの作
用を持った電磁石すなわち収束用8極電磁石7及び発散
用8極電磁石8を2極偏向電磁石2の出口側部に粒子の
進行方向に対して前方に収束用8極電磁石7を後方に発
散用8極電磁石8を設置する。まず、高周波加速空胴6
で粒子を加速して、エネルギーが増加し2極偏向電磁石
内2を通過時に粒子は該2極偏向電磁石2の軌道外周側
を通り、エネルギーを失い該2極偏向電磁石内2の軌道
内周側を通る。この広がりを持った粒子が該2極偏向電
磁石2の通過後、収束用8極電磁石7までの距離を短く
することにより設計軌道内5の内壁への衝突は少なく、
エネルギーの損失も少なくすむ。また、収束用8極電磁
石7及び発散用8極電磁石8を用いることにより、各々
の広がりを持った粒子の軌道をいずれも元の設計軌道と
近似的に等しい軌道に戻すことができる。また、これら
の効果は、第3図のy軸上を通る粒子にも同様のことが
言える。
FIG. 1 shows the operation of the present invention. Electromagnets having two functions as shown in FIG. 3, that is, an octupole electromagnet 7 for convergence and an octupole electromagnet 8 for divergence, are placed on the exit side of the bipolar bending electromagnet 2 in the forward direction with respect to the traveling direction of the particles. An octupole electromagnet 8 for divergence is installed behind the polar electromagnet 7. First, high frequency acceleration cavity 6
When the particles are accelerated, their energy increases, and when they pass through the bipolar bending electromagnet 2, they pass on the outer circumference of the orbit of the bipolar bending electromagnet 2, and lose energy and move toward the inner circumference of the orbit of the bipolar bending electromagnet 2. pass through. After the particles with this spread pass through the two-pole bending electromagnet 2, by shortening the distance to the focusing eight-pole electromagnet 7, collisions with the inner wall of the designed orbit 5 are reduced.
Energy loss is also reduced. Further, by using the converging octupole electromagnet 7 and the divergent octupole electromagnet 8, the trajectories of the particles having their respective spreads can be returned to trajectories approximately equal to the original designed trajectories. Furthermore, the same effects can be applied to particles passing on the y-axis in FIG.

以上の効果により、シンクロトロン振動に伴いエネルギ
ー振動が生じても1粒子のX方向(水平方向)変位、X
方向(鉛直方向)変位を小さく抑えることができ、大電
流加速が可能となる。
Due to the above effects, even if energy oscillations occur due to synchrotron oscillations, the displacement of one particle in the X direction (horizontal direction),
Directional (vertical) displacement can be kept small, and large current acceleration is possible.

第4図は第1図で示したものよりさらに大きく偏向させ
た場合の実施例について示す。粒子を180’偏向させ
るのに2極偏向電磁石2(曲率半径:0.6m)を2つ
使用し、粒子を10 M e Vから600 M e 
Vまで加速する加速器の一部を示したものである。高周
波加速空胴6には振幅が電子エネルギーに換算して5k
eVの高周波を印加する。従って粒子は、高周波加速空
胴6を通過する際、高周波の位相の差異により、最大5
keVのエネルギーの増加あるいは減少が生じる。この
現象が繰り返し生じ、粒子が円形軌道をエネルギー変化
(振動)しながら周回する。このエネルギー振動(シン
クロトロン振動)の周期(時間)が円形軌道の周回回数
にしておよそ200回程変周ある。すなわち、zoO回
程変周回した後、エネルギーは元の値に戻る。この効果
により、例えば、10 M e Vで加速器に入射され
た粒子は、およそ9.7〜10.3MeVでエネルギー
が変化しながら平均エネルギーが増加する。エネルギー
10.3M e Vに対する軌道を第4図に破線で示し
、エネルギー9 、7 M e V に対する軌道を一
点鎖線で示す。エネルギー10.3MeV、9.7Me
Vの粒子の2極偏向電磁石2の出口側部でのX方向(水
平方向)変位は各々±2.4C!l となる。そこで、
(3)式を用いて収束用8極電磁石7の出口部でのPK
を求める。ここでパラメータAを約380と定めると、
収束用8極電磁石7へ入射する際のPxoは、エネルギ
ーが10 、3〜9 、7 M e Vに変化してもお
よそゼロであるから、収束用8極電磁石7の出口部での
P8は、エネルギー9 、7 MeVの場合6 mra
dに、エネルギー10 、3 M e Vの場合−6m
radとなる。収束用8極電磁石7から発散用8極電磁
石8の間に長さ1.5mの磁場のない直線部を設ける。
FIG. 4 shows an embodiment in which the deflection is made larger than that shown in FIG. Two dipole bending electromagnets 2 (radius of curvature: 0.6 m) were used to deflect the particles 180', and the particles were deflected from 10 M e V to 600 M e
This shows a part of the accelerator that accelerates to V. The high frequency acceleration cavity 6 has an amplitude of 5k in terms of electron energy.
A high frequency of eV is applied. Therefore, when particles pass through the high-frequency acceleration cavity 6, due to the difference in the high-frequency phase, a maximum of 5
An increase or decrease in energy of keV occurs. This phenomenon occurs repeatedly, and the particles move around in a circular orbit while changing energy (vibrating). The period (time) of this energy oscillation (synchrotron oscillation) varies approximately 200 times in terms of the number of revolutions of the circular orbit. That is, after changing the zoO times, the energy returns to its original value. Due to this effect, for example, when a particle is injected into an accelerator at 10 MeV, its average energy increases while the energy changes from approximately 9.7 to 10.3 MeV. The trajectory for an energy of 10.3 M e V is shown by a broken line in FIG. 4, and the trajectory for an energy of 9 and 7 M e V is shown by a dashed line. Energy 10.3MeV, 9.7Me
The displacement of the particles V in the X direction (horizontal direction) at the exit side of the bipolar bending electromagnet 2 is ±2.4C each! It becomes l. Therefore,
Using equation (3), PK at the exit part of the converging 8-pole electromagnet 7
seek. Here, if parameter A is set as approximately 380, then
Since Pxo when entering the converging octupole electromagnet 7 is approximately zero even if the energy changes from 10, 3 to 9, or 7 M e V, P8 at the exit of the converging octupole electromagnet 7 is , 6 mra for energy 9,7 MeV
d, energy 10, −6 m for 3 M e V
It becomes rad. A straight section with a length of 1.5 m without a magnetic field is provided between the converging 8-pole electromagnet 7 and the divergent 8-pole electromagnet 8.

その結果1発散用8極電磁石8にはエネルギー9 、7
 M e Vの粒子はx=−1,5anの位置でP x
o = 6 mradで入射し、エネルギー10 、3
 M e Vの場合はx=1.5alの位置でPx。
As a result, the 8-pole electromagnet 8 for 1 divergence has energy 9, 7
The particle of M e V is P x at the position x=-1,5an
Incident at o = 6 mrad, energy 10,3
In the case of M e V, Px at the position of x = 1.5al.

= −6mradで入射する。従って9発散用8極電磁
石8については(3)式のパラメータAを1900とし
ておくことにより1発散用8極電磁石8の出口部の粒子
はX方向変位の大きさが1.5an となり、X方向変
位を小さくおさえて周回させることができる。また、粒
子の平均的なエネルギーが上昇していく過程においても
上記のようなエネルギー変化が生じるが、これについて
も、収束用8極電磁石7及び発散用8極電磁石の磁界強
度を変え、(3)式のパラメータAを調整することによ
ってX方向の変位を抑えたままで加速できる。
= -6 mrad. Therefore, for the 9-diverging 8-pole electromagnet 8, by setting the parameter A in equation (3) to 1900, the particle at the exit of the 1-diverging 8-pole electromagnet 8 will have a displacement in the X direction of 1.5 an. It can be rotated with small displacement. In addition, the above-mentioned energy change also occurs in the process in which the average energy of particles increases, but this can also be solved by changing the magnetic field strengths of the converging octupole electromagnet 7 and the divergence octupole electromagnet 7, ) By adjusting the parameter A in the equation, acceleration can be achieved while suppressing the displacement in the X direction.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、収束力の大きい収束用8極電磁石及び
発散用8極電磁石を2極偏向電磁石の出口部に設けるこ
とにより、該2極偏向電磁石で大きな広がりを有した粒
子を設計軌道中心へ小さく絞り込めるので真空容器の内
壁に衝突してエネルギーを損失することが少く大電流加
速が実現できる。
According to the present invention, by providing a converging octupole electromagnet with a large convergence force and a diverging octupole electromagnet at the exit part of a 2-pole bending electromagnet, particles having a large spread can be moved to the center of the designed orbit by the 2-pole bending electromagnet. Since it can be narrowed down to a small size, there is less energy loss due to collision with the inner wall of the vacuum container, and large current acceleration can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明する図、第2図は従来の加
速器を示す図、第3図は収束用8極電磁石を示す図、第
4図は本発明の一実施例を示す図である。 1・・・入射器、2・・・2極偏向電磁石、3・・・収
束用4極電磁石、4・・・発散用4極電磁石、5・・・
設計軌道(真空容器)、6・・・高周波加速空胴、7・
・・収束用8極電磁石、8・・・発散用8極電磁石。
Fig. 1 is a diagram explaining the present invention in detail, Fig. 2 is a diagram showing a conventional accelerator, Fig. 3 is a diagram showing a focusing octupole electromagnet, and Fig. 4 is a diagram showing an embodiment of the present invention. It is. 1... Injector, 2... 2-pole bending electromagnet, 3... 4-pole electromagnet for convergence, 4... 4-pole electromagnet for divergence, 5...
Design trajectory (vacuum vessel), 6... High frequency acceleration cavity, 7.
... 8-pole electromagnet for convergence, 8... 8-pole electromagnet for divergence.

Claims (1)

【特許請求の範囲】[Claims] 1、高エネルギーで加速された粒子を貯蔵し、閉軌道を
有する真空容器と;該真空容器内の粒子の軌道を偏向さ
せる2極偏向電磁石と;該2極偏向電磁石内を通過した
粒子を収束させる収束用4極電磁石と;該収束用4極電
磁石で収束した粒子を発散させながら水平方向ビームに
する発散用4極電磁石と;該発散用4極電磁石を通過し
た粒子を加速する高周波加速空胴とを有する加速器にお
いて;前記2極偏向電磁石を通過した粒子を収束させる
収束用8極電磁石と;該収束用8極電磁石で収束した粒
子を発散させながら設計軌道中心にしかも水平方向のビ
ームにする発散用8極電磁石とを前記2極偏向電磁石の
出口側部に粒子の進行方向に対して前方に発散用8極電
磁石を後方に収束用8極電磁石を設けたことを特徴とす
る加速器。
1. A vacuum container that stores particles accelerated with high energy and has a closed orbit; A dipolar bending electromagnet that deflects the trajectory of the particles in the vacuum container; Converges the particles that have passed through the dipole bending electromagnet. a converging quadrupole electromagnet; a diverging quadrupole electromagnet that makes the particles converged by the converging quadrupole electromagnet diverge into a horizontal beam; a high-frequency acceleration space that accelerates the particles passing through the divergent quadrupole electromagnet; In an accelerator having a body; a focusing octupole electromagnet that focuses the particles that have passed through the two-pole bending electromagnet; and a focusing octupole electromagnet that causes the particles focused by the focusing octupole electromagnet to diverge and form a beam centered on the designed trajectory and in a horizontal direction. An accelerator characterized in that an octupole electromagnet for divergence and an octupole electromagnet for convergence are provided at the exit side of the two-pole bending electromagnet in front with respect to the traveling direction of particles, and an octupole electromagnet for convergence at the rear.
JP3940888A 1988-02-24 1988-02-24 Accelerator Pending JPH01217900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3940888A JPH01217900A (en) 1988-02-24 1988-02-24 Accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3940888A JPH01217900A (en) 1988-02-24 1988-02-24 Accelerator

Publications (1)

Publication Number Publication Date
JPH01217900A true JPH01217900A (en) 1989-08-31

Family

ID=12552166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3940888A Pending JPH01217900A (en) 1988-02-24 1988-02-24 Accelerator

Country Status (1)

Country Link
JP (1) JPH01217900A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105392270A (en) * 2015-10-16 2016-03-09 中国科学院上海应用物理研究所 Medical proton synchrotron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105392270A (en) * 2015-10-16 2016-03-09 中国科学院上海应用物理研究所 Medical proton synchrotron

Similar Documents

Publication Publication Date Title
JP3246364B2 (en) Synchrotron accelerator and medical device using the same
JPH05109499A (en) Accelerator, ejecting method for charged particle, and ejecting device for charged particle
JPH11513528A (en) Method for extracting charged particles from isochronous cyclotron and apparatus applying this method
JPH10233299A (en) Charged particle beam expander
JPWO2015145558A1 (en) Circular accelerator, operation method of circular accelerator, and particle beam therapy system
WO1990010368A1 (en) Method of cooling charged particle beam
JPH04109598A (en) Source of high-speed automatic beam
JP3857096B2 (en) Charged particle beam extraction apparatus, circular accelerator, and circular accelerator system
JPH01217900A (en) Accelerator
US4937531A (en) External ion injection apparatus for a cyclotron
WO1987001900A1 (en) Method of introducing charged particles into magnetic resonance type accelerator and magnetic resonance type accelerator based on said method
JP4276160B2 (en) Circular charged particle accelerator and method of operating the circular charged particle accelerator
JPH1064699A (en) Circular accelerator
JPS61183900A (en) Fast atomic beam source
JPH08148298A (en) Accelerator and operating method thereof
JP3027822B2 (en) Method and apparatus for micro-bunching of charged particle beam
JP2993185B2 (en) Charged particle beam transport device
EP1089602A1 (en) Electron accelerator
JPH0498800A (en) Sor device
CN116918460A (en) Circular accelerator and particle beam therapy system
JPH04277459A (en) Irradiation device with low energy ion
JPH0561760B2 (en)
JP2022044405A (en) Charged particle accelerator and charged particle acceleration method
JPH03283400A (en) Linear accelerator
JP2021163530A (en) Accelerator