JPS62276738A - Ion beam apparatus - Google Patents

Ion beam apparatus

Info

Publication number
JPS62276738A
JPS62276738A JP12076186A JP12076186A JPS62276738A JP S62276738 A JPS62276738 A JP S62276738A JP 12076186 A JP12076186 A JP 12076186A JP 12076186 A JP12076186 A JP 12076186A JP S62276738 A JPS62276738 A JP S62276738A
Authority
JP
Japan
Prior art keywords
ion beam
ions
deflection
magnetic pole
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12076186A
Other languages
Japanese (ja)
Inventor
Makoto Koguchi
虎口 信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP12076186A priority Critical patent/JPS62276738A/en
Publication of JPS62276738A publication Critical patent/JPS62276738A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a compact ion beam apparatus with little change of irradiation angle by forming the first and the second electrode pairs, the first magnetic pole pair and the second magnetic pole pair which deflects a deflected ion beam to the same direction as that of the beam before it is deflected. CONSTITUTION:Electrostatic deflection and magnetic deflection are made to correspond to one direction out of two directions making a right angle with each other and the deflecting directions are made to be compensated mutually by shifting their positions in the direction of ions in the electrostatic deflection and magnetic deflection respectively by forming a deflecting part, which makes a two-dimensional scanning, with the first electrode pair 71 to deflect an ion beam to x-direction, the second electrodes pair 72 to make an x-direction speed component zero by deflecting the ion beam deflected to x-direction between the two electrodes 71 to a reverse direction, the first magnetic pole pair 81 to deflect the ion beam to y-direction and the second magnetic pole pair 82 to make a y-direction speed speed component zero by deflecting the ion beam deflected to y-direction between the two magnetic poles 81 to a reverse direction. Track directions of ions emitted by the deflecting part can be thus made to keep a constant angle with the whole surface of the substrate to be treated.

Description

【発明の詳細な説明】 3、発明の詳細な説明〜 〔発明の属する技術分野〕 本発明は半導体加工プロセスにおけるイオン注入装置と
して用いられるものであって、導入された原・料ガスま
たは金属蒸気をプラズマ化するプラズマ発生部と、この
プラズマ発生部中のプラズマから特定の極性を持つイオ
ンを引き出すイオン引出し部と、このイオン引出し部に
より引き出されたイオンの中から特定の電荷/質量比を
持つイオンのみを抽出する質量分析部と、この質量分析
部により抽出されたイオンに所定の運動エネルギを与え
る加速部とを用いて所定のイオンからなるイオンビーム
を得るとともに、このイオンビームを該ビームの進行方
向に対して垂直にかつ互いに直角な2方向に2次元的に
スキャンする偏向部を介し、イオンを照射、注入すべき
基板を保持してなる打込み室に導き、前記基板の表面に
イオンを照射、注入するイオンビーム装置に関スル。
Detailed Description of the Invention 3. Detailed Description of the Invention ~ [Technical Field to Which the Invention Pertains] The present invention is used as an ion implantation device in a semiconductor processing process, and is used as an ion implantation device in a semiconductor processing process. a plasma generation section that turns plasma into plasma, an ion extraction section that extracts ions with a specific polarity from the plasma in the plasma generation section, and an ion extraction section that extracts ions with a specific charge/mass ratio from among the ions extracted by the ion extraction section. An ion beam consisting of predetermined ions is obtained using a mass spectrometer that extracts only ions and an acceleration section that gives a predetermined kinetic energy to the ions extracted by the mass spectrometer. Ions are irradiated through a deflection unit that scans two-dimensionally in two directions perpendicular to the direction of travel and at right angles to each other, and guided into an implantation chamber that holds a substrate to be implanted, and the ions are irradiated onto the surface of the substrate. Regarding ion beam equipment for irradiation and implantation.

〔従来技術とその問題点〕[Prior art and its problems]

第4図に従来のイオン注入装置の構成例を示す。 FIG. 4 shows an example of the configuration of a conventional ion implanter.

図化おいて、プラズマ発生部1は例えば熱陰極から放出
される電子を電磁界で加速し、導入されたガスの分子あ
るいは金属蒸気に衝突させてプラズマ化することにより
所定のイオンを生成させるものである。イオン引出し部
を構成する引出し電極系2は前記プラズマ発生部1を構
成するプラズマ室に設けられたスリットに対向して配置
され、前記プラズマ室との間1ど高電圧を印加してプラ
ズマ中から特定の極性を持つイオンを引き出す。このよ
うにして得られたイオンビームは、質量分析部を構成す
る質量分析マグネット3により図中の破線および一点鎖
線のように軌道を曲げられる。このとき、曲率半径はイ
オンの電荷/質量比によって異なるため、スリット4を
通過するイオンは電荷/質量比が特定のものに限られる
。加速部104を構成する加速管5は前述した方法で得
られた特定のイオンを所定の運動エネルギまで加速する
ものである。前記プラズマ発生部1と前記引出し電極系
2との間で得られたイオンの運動エネルギーが充分な大
きさであればこの加速管5は省く場合もある。レンズ系
6は得られたイオンビームを打込み室11に保持された
基板10の表面で所定の照射面積となるように収束させ
るものである。紙面に平行な上下方向をX方向9紙面に
垂直な方向をY方向′とし、前記特定イオンをX方向に
偏向させるX偏向電極対7およびY方向に偏向させるY
偏向電極対8にはそれぞれ異なった周波数の高電圧が印
加されており、前述したイオンビームは電極対7.8に
よって偏向を受けながら、基板10の全面に一様に照射
されることになる。リフレクタ電極対9には直流高電圧
が印加されており、基板10への照射直前にビーム軌道
を曲げてビーム中に存在する油性原子を取り除いている
In the diagram, a plasma generation unit 1 is one that generates predetermined ions by accelerating electrons emitted from a hot cathode using an electromagnetic field and colliding with introduced gas molecules or metal vapor to turn them into plasma. It is. The extraction electrode system 2 constituting the ion extraction section is disposed opposite to a slit provided in the plasma chamber constituting the plasma generation section 1, and a high voltage is applied between it and the plasma chamber to remove the plasma from the plasma. Extracts ions with specific polarity. The trajectory of the ion beam thus obtained is bent by the mass spectrometer magnet 3 constituting the mass spectrometer as shown by the broken line and the dashed-dotted line in the figure. At this time, since the radius of curvature differs depending on the charge/mass ratio of the ions, the ions passing through the slit 4 are limited to those having a specific charge/mass ratio. The acceleration tube 5 constituting the acceleration section 104 accelerates specific ions obtained by the method described above to a predetermined kinetic energy. If the kinetic energy of the ions obtained between the plasma generating section 1 and the extraction electrode system 2 is of sufficient magnitude, the accelerating tube 5 may be omitted. The lens system 6 focuses the obtained ion beam onto the surface of the substrate 10 held in the implantation chamber 11 to a predetermined irradiation area. The vertical direction parallel to the plane of the paper is the X direction; the direction perpendicular to the plane of the paper is the Y direction';
High voltages of different frequencies are applied to the deflection electrode pairs 8, and the aforementioned ion beam is uniformly irradiated onto the entire surface of the substrate 10 while being deflected by the electrode pairs 7.8. A high DC voltage is applied to the reflector electrode pair 9, and the beam trajectory is bent to remove oily atoms present in the beam just before irradiating the substrate 10.

このような装置においては第5図に示すように、基板1
0に対する照射角度θは、偏向角度をθS、中心での照
射角度を00とすれば、θO±θSの間で変化する。こ
のことは以下の欠点を生ずる。
In such a device, as shown in FIG.
The irradiation angle θ with respect to 0 changes between θO±θS, assuming that the deflection angle is θS and the irradiation angle at the center is 00. This results in the following drawbacks.

(1)照射角の変化に伴い打込み深さのバラツキを生ず
る。
(1) Variation in implantation depth occurs as the irradiation angle changes.

(2)照射角の変化に伴い照射面積が変化するため、打
込み密度のばらつきを生ずる。
(2) Since the irradiation area changes as the irradiation angle changes, variations in implantation density occur.

(3)定速スキャン電圧に対し基板上のビーム移動速度
が変化するため打込み密度のばらつきを生ずる。
(3) The beam movement speed on the substrate changes with respect to a constant scan voltage, resulting in variations in implantation density.

(41基板10の表面にパターニングされたマスク10
1が厚さを持つため、基板上の位置により、同一打込み
幅内の注入イオンの量と場所が103のように変化する
(41 Mask 10 patterned on the surface of the substrate 10
Since 1 has a thickness, the amount and location of implanted ions within the same implantation width vary depending on the position on the substrate, as shown in 103.

このような欠点はθSを小さくすることにより解決でき
るが、装置の大形化を招くため実用的でなく、特性のバ
ラツキの低減には限界があった。
Although such a drawback can be solved by reducing θS, it is not practical because it increases the size of the device, and there is a limit to reducing the variation in characteristics.

〔発明の目的〕[Purpose of the invention]

本発明の目的は前記従来の問題点を解決し、照射角度変
化のない小形のイオンビーム装置を提供することにある
An object of the present invention is to solve the above-mentioned conventional problems and provide a small ion beam device that does not change the irradiation angle.

〔発明の要点〕[Key points of the invention]

この発明&虞、イオンビームをその進行方向に対して垂
直にかつ互いに直角な2方向に2次元的にスキャンする
偏向部を、前記イオンビームを前記直角な2方向中の1
方向に偏向する第1の電極対と、この偏向したイオンビ
ームを偏向前の進行方向と同方向へ偏向する第2の電極
対と、および、前記イオンビームを前記直角な2方向中
の他の方向に偏向する第1の磁極対と、この偏向したイ
オンビームを偏向前の進行方向と同方向へ偏向する第2
の磁極対とで構成することにより、イオンビームをスキ
ャン幅に関係なく常に基板に対して一定の照射角度で入
射せしめるとともに、前記第1゜第2の電極対をそれぞ
れ前記第1.第2の磁極対の内側に配することにより、
前記の目的を達成しようとするものである。以下、本発
明の原理を実施例を参照しつつ詳細に説明する。
In the present invention, a deflection unit that scans the ion beam two-dimensionally in two directions perpendicular to the traveling direction and at right angles to each other is provided.
a first pair of electrodes that deflect the ion beam in the same direction as the direction of travel before deflection, and a second pair of electrodes that deflect the ion beam in the same direction as the direction of travel before deflection; a first pair of magnetic poles that deflects the ion beam in the same direction as the direction in which the ion beam is traveling before deflection;
The ion beam is always incident on the substrate at a constant irradiation angle regardless of the scan width, and the first and second electrode pairs are configured with the first and second electrode pairs, respectively. By placing it inside the second magnetic pole pair,
This aims to achieve the above objectives. Hereinafter, the principle of the present invention will be explained in detail with reference to examples.

〔発明の実施例〕[Embodiments of the invention]

第1図および第2図は本発明の実施例を示すもので、第
1図はビームの進入方向に対する偏向部の構成を示し、
第2図は第1図のA−A位置において矢印方向に見た偏
向部の正面断面図を表わしている。第1図において、7
1はビームを紙面に平行な上下方向(X方向)に加速す
るための第1の電極対、72はX方向へ加速されたビー
ムを逆方向に加速しX方向速度成分を零にもどすための
第2の電極対、81はビームを紙面に垂直な方向(X方
向)に加速するための第1の磁極対、82はX方向に加
速されたビームを逆方向に加速しX方向速度成分を零に
もどすための第2の磁極対である。前記第1の電極対7
1と第2の電極対72とには、図示しない電源から交番
電圧が180度位相をずらして印加されている。また、
前記第1の磁極対81と前記第2の$柩対82とは励磁
コイル関、84にて互いに逆方向磁界を発生するように
図示しない電源から交書電流で駆動されている。
FIG. 1 and FIG. 2 show an embodiment of the present invention, and FIG. 1 shows the configuration of the deflection section with respect to the direction of beam entry,
FIG. 2 shows a front sectional view of the deflection section taken along the line A--A in FIG. 1 in the direction of the arrow. In Figure 1, 7
1 is a first electrode pair for accelerating the beam in the vertical direction (X direction) parallel to the plane of the paper; 72 is for accelerating the beam accelerated in the X direction in the opposite direction to return the X direction velocity component to zero; A second electrode pair 81 is a first magnetic pole pair for accelerating the beam in the direction perpendicular to the plane of the paper (X direction), and 82 accelerates the beam accelerated in the X direction in the opposite direction to generate an X direction velocity component. This is the second magnetic pole pair for returning to zero. Said first electrode pair 7
Alternating voltages are applied to the first and second electrode pairs 72 from a power source (not shown) with a phase difference of 180 degrees. Also,
The first pair of magnetic poles 81 and the second pair of poles 82 are driven by an alternating current from a power source (not shown) so as to generate mutually opposite magnetic fields at an excitation coil 84.

第3図は第1,2図に示す偏向部によって制御されるイ
オンビーム軌道の説明図である。図においてIa 、 
Ib面は第1図における第1の電極対71とtslの磁
極対81のそれぞれの作用を合わせて示す仮想の偏向板
、また[[a、[b面は同様に第2の電極対72と第2
の磁極対82とに対する仮想の偏向板である。偏向板I
a 、 Ibの間で電界8里がIa面からIb面へ向か
い、磁界B1がIb面からIa面へ向かっている時点で
は、偏向板I[a 、 nbの間の電界E2はI[b面
からTIa面へ、磁界B2はTIa面からIIb面へ向
かっている。通常のイオンビーム装置においてはイオン
の進行方向(z軸方向)の速度が大きいので、偏向板I
a 、 IbおよびIIa、IIbをイオンが通過する
時間は極めて小さく、1つのイオンlとついて見れば、
この時間内のEl、 B1. E2. B2の変化は無
視できる。イオンは磁界中では速度の方向がX方向に変
化するのみで、2軸方自速度の大きさは変化しない。従
って2軸に沿って速度ν0で入射した正イオンはIa−
Ib空間では磁界Blによりy細工方向に軌道を変化さ
せ、Ha  IIb空間では磁界B2によりy軸負方向
に軌道を変化させるから、この軌道変化を与えるB、、
B2の間にLl xBl =L2 x B2の関係が成
豆するよう、磁極対81.82の寸法と磁界とを与えれ
ば、二重破線りに示したように、偏向部からの射出方向
は2軸に平行となる。また、イオンは電界中ではX方向
にその滞留時間に従がって加速を受ける。従ってI、−
Ib空間では電界E1によりX軸方向へ変位し、IIa
  IIb空間では電界E2によりX軸負方向へ変位す
る。
FIG. 3 is an explanatory diagram of an ion beam trajectory controlled by the deflection section shown in FIGS. 1 and 2. FIG. In the figure Ia,
The Ib plane is a virtual deflection plate that shows the respective effects of the first electrode pair 71 and the TSL magnetic pole pair 81 in FIG. Second
This is a virtual deflection plate for the magnetic pole pair 82 of FIG. Deflection plate I
When the electric field 8R between a and Ib goes from the Ia plane to the Ib plane, and the magnetic field B1 goes from the Ib plane to the Ia plane, the electric field E2 between the deflection plates I[a and nb becomes I[b plane to the TIa plane, and the magnetic field B2 is directed from the TIa plane to the IIb plane. In a normal ion beam device, since the speed of the ions in the traveling direction (z-axis direction) is high, the deflection plate I
The time it takes for an ion to pass through a, Ib, IIa, and IIb is extremely short, and for one ion l,
El within this time, B1. E2. Changes in B2 can be ignored. In a magnetic field, the ion's velocity only changes in the X direction, but the magnitude of its own velocity in the two axes does not change. Therefore, positive ions incident at a velocity ν0 along the two axes are Ia−
In Ib space, the trajectory is changed in the y-work direction by the magnetic field Bl, and in Ha IIb space, the trajectory is changed in the negative y-axis direction by the magnetic field B2, so B gives this trajectory change.
If the dimensions of the magnetic pole pair 81 and 82 and the magnetic field are set so that the relationship Ll x Bl = L2 x B2 is established between B2, the direction of emission from the deflection section will be 2 as shown by the double dashed line. parallel to the axis. Further, in the electric field, ions are accelerated in the X direction according to their residence time. Therefore I, -
In Ib space, the electric field E1 causes displacement in the X-axis direction, and IIa
In the IIb space, the electric field E2 causes displacement in the negative direction of the X-axis.

B、、B、によるX方向速度成分の変化を滞留時間に考
慮して、El/B、 = E、zB、となるように電磁
界強度の関係を取れば、1点@線Cのように、射出方向
は2軸に平行となる。従って、以上のような電界偏向と
磁界偏向とを組み合わせることにより、イオンの軌道を
i線13で示すように常に基板面に一定の角度で照射す
るように設定することが可能となった。
If we take into account the change in the velocity component in the X direction due to B, ,B in the residence time and take the relationship of electromagnetic field strength such that El/B, = E, zB, we get one point @ line C. , the injection direction is parallel to the two axes. Therefore, by combining the electric field deflection and magnetic field deflection as described above, it has become possible to set the trajectory of the ions so that they are always irradiated onto the substrate surface at a constant angle, as shown by the i-line 13.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、イオンビームをその進行方向に垂
直なx、X方向に2次元的にスキャンするための偏向部
を、X方向にイオンビームを偏向する第1の電極対と、
この第1の電極対の間でX方向に偏向したイオンビーム
を逆方向に偏向してX方向の速度成分を零にするための
第2の電極対と、X方向にイオンビームを偏向する第1
の磁極対と、この第1の磁極対の間でX方向に偏向した
イオンビームを逆方向に偏向してX方向の速度成分を零
にするための第2の磁極対とにより構成して電界偏向と
磁界偏向とを直角2方向のそれぞれ1方向に対応させ、
かつ電界偏向と磁界偏向のそれぞれにおいてイオンの進
行方向に位置をずらせて偏向方向を補正し合うようにし
たので、偏向部から射出されるイオンの軌道方向を常に
基板の被加工面全面にわたり一定の角度とすることがで
き、これにより、 (1)基板面の照射位置による打込み深さのばらつきが
なくなる。
As described above, the deflection unit for two-dimensionally scanning the ion beam in the x and X directions perpendicular to its traveling direction includes the first electrode pair that deflects the ion beam in the X direction;
A second electrode pair for deflecting the ion beam deflected in the X direction between the first electrode pair in the opposite direction to make the velocity component in the X direction zero, and a second electrode pair for deflecting the ion beam in the X direction. 1
and a second magnetic pole pair for deflecting the ion beam deflected in the X direction between the first magnetic pole pair in the opposite direction and zeroing out the velocity component in the X direction. The deflection and the magnetic field deflection correspond to each of the two orthogonal directions,
In addition, since the electric field deflection and magnetic field deflection are shifted in position in the ion traveling direction to correct each other, the trajectory direction of the ions ejected from the deflection section is always kept constant over the entire surface to be processed of the substrate. (1) There is no variation in implant depth depending on the irradiation position on the substrate surface.

(2)基板面の照射位置による照射面積の変化がなくな
り、打込み密度のばらつきがな(なる。
(2) There is no change in the irradiation area depending on the irradiation position on the substrate surface, and there is no variation in implantation density.

(3)照射角が変化しないから照射位置による照射時間
の変化がなくなり、打込み密度のばらつきがなくなる。
(3) Since the irradiation angle does not change, there is no change in irradiation time depending on the irradiation position, and there is no variation in implantation density.

(4)照射角の変化がないから基板表面のマスクの厚さ
の影響がなく、微細パターンへのイオン打込みが可能で
ある。
(4) Since there is no change in the irradiation angle, ion implantation into fine patterns is possible without being affected by the thickness of the mask on the substrate surface.

などの効果が得られる。また、第1の電極対を第1の磁
極対の内側に配するとともに第2の電極対を第2の磁極
対の内側に配し、同一空間内で電界偏向と磁界偏向とを
IKねて行なうようにしたので、前述の効果が小形な偏
向部、従って小形なイオンビーム装置によって得られる
という効果が合わせて得られる。
Effects such as this can be obtained. In addition, the first electrode pair is arranged inside the first magnetic pole pair, and the second electrode pair is arranged inside the second magnetic pole pair, and the electric field deflection and the magnetic field deflection are controlled by IK in the same space. By doing so, the above-mentioned effects can be obtained with a small deflection section and therefore with a small ion beam device.

なお、スキャン幅が小さく、偏向補正すなわち第2′の
電極対および第2の磁極対が不要な場合にも電S界併用
による小形化のメリットが存在することはいうまでもな
い。
It goes without saying that even when the scan width is small and the deflection correction, that is, the 2' electrode pair and the second magnetic pole pair are unnecessary, there is an advantage of miniaturization by combined use of the electric S field.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明に基づいて構成されるイオ
ンビーム装置の偏向部の実施例を示す図る。第3図は本
発明によるイオンビーム軌道制御の原理を示す説明図、
第4図は従来のイオンビーム装置の構成例を示す説明図
、第5図は基板面に対する照射角度の相違に基づく打込
み状態のちがいを示す説明図である。 1・・・プラズマ発生部、2・・・引出し電極系(イオ
ン引出しm)、3・・・質量分析部、5・・・加速管、
7・・・X偏向電極対、8・・・YB向電電極対10・
・・基板、1】・・・打込み室、12・・・イオンビー
ム、71・・・第1の電極対、72・・・第2の電極対
、81・・・第1の磁極対、82・・・第2の磁極対、
104・・・加速部、107・・・偏向部。 第1図 第2図 第3図
FIGS. 1 and 2 illustrate an embodiment of a deflection section of an ion beam apparatus constructed according to the present invention. FIG. 3 is an explanatory diagram showing the principle of ion beam trajectory control according to the present invention;
FIG. 4 is an explanatory diagram showing an example of the configuration of a conventional ion beam apparatus, and FIG. 5 is an explanatory diagram showing differences in implantation conditions based on differences in irradiation angle with respect to the substrate surface. DESCRIPTION OF SYMBOLS 1... Plasma generation part, 2... Extraction electrode system (ion extraction m), 3... Mass spectrometry part, 5... Accelerator tube,
7...X deflection electrode pair, 8...YB deflection electrode pair 10.
... Substrate, 1] ... Implantation chamber, 12 ... Ion beam, 71 ... First electrode pair, 72 ... Second electrode pair, 81 ... First magnetic pole pair, 82 ...second magnetic pole pair,
104... Acceleration section, 107... Deflection section. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1)導入された原料ガスまたは金属蒸気をプラズマ化す
るプラズマ発生部と、このプラズマ発生部中のプラズマ
から特定の極性を持つイオンを引き出すイオン引出し部
と、このイオン引出し部により引き出されたイオンの中
から特定の電荷/質量比を持つイオンのみを抽出する質
量分析部と、この質量分析部により抽出されたイオンに
所定の運動エネルギを与える加速部とを用いて所定のイ
オンからなるイオンビームを得るとともに、このイオン
ビームを該ビームの進行方向に対して垂直にかつ互いに
直角な2方向に2次元的にスキャンする偏向部を介し、
イオンを照射、注入すべき基板を保持してなる打込み室
に導き、前記基板の表面にイオンを照射、注入するイオ
ンビーム装置において、前記偏向部が、前記イオンビー
ムを前記直角な2方向中の1方向に偏向する第1の電極
対と、この偏向したイオンビームを偏向前の進行方向と
同方向へ偏向する第2の電極対と、および、前記イオン
ビームを前記直角な2方向中の他の方向に偏向する第1
の磁極対と、この偏向したイオンビームを偏向前の進行
方向と同方向へ偏向する第2の磁極対とからなるととも
に、前記第1の電極対が前記第1の磁極対の内側に配さ
れ前記第2の電極対が前記第2の磁極対の内側に配され
たことを特徴とするイオンビーム装置。
1) A plasma generation section that turns the introduced raw material gas or metal vapor into plasma, an ion extraction section that extracts ions with a specific polarity from the plasma in this plasma generation section, and a An ion beam consisting of predetermined ions is generated using a mass spectrometer that extracts only ions with a specific charge/mass ratio from the inside, and an accelerator that gives a predetermined kinetic energy to the ions extracted by the mass spectrometer. through a deflection unit that scans the ion beam two-dimensionally in two directions perpendicular to the traveling direction of the beam and at right angles to each other,
In an ion beam device that guides ions into an implantation chamber that holds a substrate to be irradiated and implanted, and irradiates and implants ions onto the surface of the substrate, the deflection unit directs the ion beam in two orthogonal directions. A first electrode pair that deflects the ion beam in one direction, a second electrode pair that deflects the deflected ion beam in the same direction as the traveling direction before deflection, and a second electrode pair that deflects the ion beam in one direction. The first deflected in the direction of
and a second magnetic pole pair that deflects the deflected ion beam in the same direction as the traveling direction before deflection, and the first electrode pair is arranged inside the first magnetic pole pair. An ion beam device characterized in that the second electrode pair is arranged inside the second magnetic pole pair.
JP12076186A 1986-05-26 1986-05-26 Ion beam apparatus Pending JPS62276738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12076186A JPS62276738A (en) 1986-05-26 1986-05-26 Ion beam apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12076186A JPS62276738A (en) 1986-05-26 1986-05-26 Ion beam apparatus

Publications (1)

Publication Number Publication Date
JPS62276738A true JPS62276738A (en) 1987-12-01

Family

ID=14794336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12076186A Pending JPS62276738A (en) 1986-05-26 1986-05-26 Ion beam apparatus

Country Status (1)

Country Link
JP (1) JPS62276738A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6471047A (en) * 1987-09-10 1989-03-16 Ulvac Corp Ion beam parallel scanning system
KR100442990B1 (en) * 1995-06-12 2004-10-28 지멕 컨설팅 인코포레이티드 Systems and Methods for Generating Nested Static and Time-Varying Magnetic Fields

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6471047A (en) * 1987-09-10 1989-03-16 Ulvac Corp Ion beam parallel scanning system
KR100442990B1 (en) * 1995-06-12 2004-10-28 지멕 컨설팅 인코포레이티드 Systems and Methods for Generating Nested Static and Time-Varying Magnetic Fields

Similar Documents

Publication Publication Date Title
US4276477A (en) Focusing apparatus for uniform application of charged particle beam
JP3975363B2 (en) System and method for generating an oscillating magnetic field in a working gap useful for irradiating surfaces with atomic and molecular ions
KR100226381B1 (en) System for magnetic ion beam scanning and implanting
EP1981058B1 (en) Ion implantation apparatus and ion implantation method
JP3797672B2 (en) High-speed magnetic scanning of heavy ion beams
US5751002A (en) Ion implantation apparatus
US6207963B1 (en) Ion beam implantation using conical magnetic scanning
EP1774559A2 (en) Electrostatic lens for ion beams
US6774377B1 (en) Electrostatic parallelizing lens for ion beams
JPH07101602B2 (en) Device for scanning a high current ion beam with a constant incident angle
JPH04226021A (en) Method for irradiating body with charged particle beam
KR101244116B1 (en) Systems and methods for ion beam focusing
JP5004318B2 (en) Ion implanter
WO2006054528A1 (en) Ion implantation device
JP6453756B2 (en) Ion beam processing equipment
TWI830283B (en) Ion implantation system
JPS62276738A (en) Ion beam apparatus
JP3235466B2 (en) Ion implanter
JP2756704B2 (en) Charge neutralizer in ion beam irradiation equipment
JP2006147244A (en) Ion implanting device
JP3067784B2 (en) Electrostatic accelerator
KR200309898Y1 (en) Ion implanter
JPS6313250A (en) Ion beam device
JP2006202546A (en) Ion irradiation apparatus
JP2006161122A (en) Film deposition system