JPH049825A - End surface reflection type optical amplifyer - Google Patents

End surface reflection type optical amplifyer

Info

Publication number
JPH049825A
JPH049825A JP11004290A JP11004290A JPH049825A JP H049825 A JPH049825 A JP H049825A JP 11004290 A JP11004290 A JP 11004290A JP 11004290 A JP11004290 A JP 11004290A JP H049825 A JPH049825 A JP H049825A
Authority
JP
Japan
Prior art keywords
waveguide
end surface
face
waveguides
reflection type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11004290A
Other languages
Japanese (ja)
Inventor
Makoto Haneda
誠 羽田
Shinji Tsuji
伸二 辻
Yuichi Ono
小野 佑一
Takashi Toyonaka
隆司 豊中
Aki Takei
亜紀 武居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11004290A priority Critical patent/JPH049825A/en
Publication of JPH049825A publication Critical patent/JPH049825A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve S/N by bringing two waveguides into contact with each other on at least one end surface. CONSTITUTION:When a signal which is inputted to a 1st waveguide is reflected by the end surface and guided to a 2nd waveguide, a natural light emission component generated in the 1st waveguide is transmitted except in a specific wavelength band according to the reflection characteristics of the end surface, so a signal which has excellent S/W is led to the 2nd waveguide. For the purpose, at least two slanting waveguides which cross each other on the end surface are provided, the end surface on their intersection side is coated with a film 11 which has reflection characteristics only to the specific wavelength, and a low-reflecting film 12 is formed on the other end surface. Consequently, the amplified signal which has the excellent S/N is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光ネットワーク、広帯域光通信等に用いられる
光増幅装置の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of an optical amplification device used in optical networks, broadband optical communications, and the like.

〔従来の技術〕[Conventional technology]

従来例の光増幅装置を第2図に示す。この装置は1本の
斜め導波路13を有した装置であり、導波路13はBH
構造により活性層7を埋込んだ構造となっており、1.
5μm帯又は1.3μm帯の光増幅素子として用いられ
る。このような装置はいずれもInP基板の上にn型I
nPバッファ層4b及びn型InPクラッド層4aをエ
ピタキシャル成長し、さらにInGaAsPの導波路層
(活性層)7及びp型InPクラッド層6をエピタキシ
ャル成長した後、メサエッチングにより導波路の断面を
幅約0.8〜1.3μm、厚さ約0.3μmに形成する
ことにより得られている。このあとp及びnのInP層
で埋込み、Pan部それぞれに電極を付けて光増幅素子
としている。
FIG. 2 shows a conventional optical amplification device. This device has one diagonal waveguide 13, and the waveguide 13 is a BH
It has a structure in which the active layer 7 is embedded; 1.
It is used as a 5 μm band or 1.3 μm band optical amplification element. All such devices have n-type I on an InP substrate.
After epitaxially growing the nP buffer layer 4b and the n-type InP cladding layer 4a, and further epitaxially growing the InGaAsP waveguide layer (active layer) 7 and the p-type InP cladding layer 6, mesa etching is performed to cut the cross section of the waveguide into a width of about 0.0mm. This is obtained by forming the film to have a thickness of 8 to 1.3 μm and a thickness of about 0.3 μm. Thereafter, it is buried with p and n InP layers, and electrodes are attached to each of the Pan parts to form a light amplifying element.

この装置は端面に低反射膜を付けることと、斜めストラ
イプ構造とすることで、反射による誘導放出を防ぎ、利
得偏差のない増幅特性を得ようとするものである。
This device uses a low reflection film on the end face and a diagonal stripe structure to prevent stimulated emission due to reflection and to obtain amplification characteristics without gain deviation.

一方、単一通過の利得を得る為にはストライプ長を長く
する等の方法があるが、同時に自然発光成分も上がるた
めS/N比を向上できない等の問題がある。
On the other hand, in order to obtain single-pass gain, there are methods such as increasing the stripe length, but at the same time the spontaneous luminescence component also increases, resulting in problems such as the inability to improve the S/N ratio.

なお、この種の装置として関連するものには特開平1−
289287がある。
Note that related devices of this type are disclosed in Japanese Patent Application Laid-open No. 1999-1-
There are 289287.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、端面反射率が下がらない場合端面間反
射による利得リップルが生じ、S/N比が劣化する問題
があった。本発明はこのS/N比を改善することを目的
としてなされたものである。
The conventional technology described above has a problem in that when the end face reflectance is not reduced, gain ripples occur due to reflection between end faces, and the S/N ratio deteriorates. The present invention was made for the purpose of improving this S/N ratio.

また本発明の他の目的は、端面にて反射され素子内に戻
る(信号を含む)光を導波路に導き、増幅させることで
多分岐機能付の光増幅装置を提供することにある。
Another object of the present invention is to provide an optical amplification device with a multi-branching function by guiding light (including a signal) reflected at an end face and returning into the element into a waveguide and amplifying it.

(課題を解決するための手段〕 上記第1の目的を達成するために、端面にて交差する斜
めの導波路を少なくとも2本有し、この交差側の端面に
特定の波長帯に対してのみ反射特性を有する膜をコーテ
ィングし、他方の端面ば低反射膜とした構造を採用した
ものである。
(Means for Solving the Problems) In order to achieve the above first objective, at least two diagonal waveguides are provided that intersect at the end faces, and the end faces on the intersecting side are provided with only one waveguide for a specific wavelength band. It adopts a structure in which a film with reflective properties is coated, and the other end face is coated with a low-reflection film.

また、第2の目的を達成するために、上記の端面交差型
斜め導波路を所望とする複数本有し、端面の反射率を所
定量に設定した多分岐光増幅構造を採用したものである
In addition, in order to achieve the second objective, a multi-branch optical amplification structure is adopted, which has a desired plurality of the above-mentioned end face crossing diagonal waveguides and sets the end face reflectance to a predetermined amount. .

〔作用〕[Effect]

第1の目的に対しての作用について説明する。 The effect for the first purpose will be explained.

第1の導波路に入力された信号が端面にて反射され、第
2の導波路に導かれる時、第1の導波路にて発生した自
然発光成分は、上記端面の反射特性(特定の波長帯に対
して反射特性を有する)に従い、特定波長帯以外は透過
されるため、第2の導波路にはS/W比の良好な信号が
導かれる。従って上記の端面とは反対側の端面には低反
射膜を設けておけば、この側からS/N比の良好な増幅
信号を得ることができる。
When a signal input to the first waveguide is reflected at the end face and guided to the second waveguide, the spontaneous luminescence component generated in the first waveguide is caused by the reflection characteristics of the end face (specific wavelength Since wavelengths other than a specific wavelength band are transmitted, a signal with a good S/W ratio is guided to the second waveguide. Therefore, by providing a low reflection film on the end face opposite to the above-mentioned end face, an amplified signal with a good S/N ratio can be obtained from this side.

次に第2の目的に対しての作用について説明する。斜め
導波路をn本有し、端面において各導波路が接している
構造を有する多分岐光増幅装置において、第1の導波路
に入力された信号が端面にて反射され、第2の導波路に
導かれる時、第1の導波路に戻る戻り光P1よりは第2
の導波路へ導く光P2 を大きく取れることは自明であ
る。利得偏差ΔGは ΔG=(1+、077頁7Gs)”/ (1−1J臣T
■=−as)2−・a)(但し、R,、R,は両端面の
反射率、GSは単一通過利得である) で表わされ、第1の導波路に対しての反射率R2は極力
抑える必要があるが、第2の導波路への反射率R2′ 
 とすると、 R2′  ・Gs〜1 であれば第2の導波路に対しても同等の利得を得ること
が可能となる。同様にn本の導波路に対しても同等の利
得を得ることが可能である。本数nを規定するのは飽和
利得と雑音特性である。
Next, the effect for the second purpose will be explained. In a multi-branch optical amplification device that has n diagonal waveguides and has a structure in which each waveguide is in contact with each other at the end face, a signal input to the first waveguide is reflected at the end face, and the signal is transferred to the second waveguide. When guided by the second waveguide, the return light P1 returns to the first waveguide.
It is obvious that a large amount of light P2 can be guided to the waveguide. The gain deviation ΔG is ΔG = (1+, 7Gs on page 077)”/ (1-1JomiT
■=-as)2-・a) (where R,, R, is the reflectance of both end faces, and GS is the single pass gain), and the reflectance for the first waveguide is expressed as Although it is necessary to suppress R2 as much as possible, the reflectance R2' to the second waveguide
Then, if R2'·Gs~1, it is possible to obtain the same gain for the second waveguide. Similarly, it is possible to obtain the same gain for n waveguides. The number n is determined by saturation gain and noise characteristics.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

〈実施例1〉 第1図(、)は斜め導波路を2本有する実施例の光増幅
装置の断面構造図であり、同図(b)はその平面図であ
る。また、同図(c)〜(h)は上記装置の各部位での
光特性を示している。
<Example 1> FIG. 1(,) is a cross-sectional structural diagram of an optical amplifying device according to an embodiment having two oblique waveguides, and FIG. 1(b) is a plan view thereof. Moreover, the same figure (c) - (h) show the optical characteristic in each part of the said apparatus.

斜め導波路13及び14の端面11に対する角度は各々
84度、−84度であり、端面11の16の位置にて交
差する様に端面襞間を行う。この角度は対称であれば有
効に反射光を取り出すことが出来るが、特に対称にする
必要はない。
The angles of the oblique waveguides 13 and 14 with respect to the end surface 11 are 84 degrees and -84 degrees, respectively, and the end surface folds are formed so that they intersect at position 16 of the end surface 11. If this angle is symmetrical, reflected light can be effectively extracted, but it is not necessary to make it particularly symmetrical.

1.5μm帯光増幅素子の場合、InP基板3の上にn
型1nPバッファ層4b及びn型InPクラッド層4a
をエピタキシャル成長し、さらにI n G a A 
s Pの導波路層(活性層)7及びp型InPクラッド
層6をエピタキシャル成長した後、メサエッチングによ
り導波路層7の断面を幅約0.8 μm、厚さ0.3μ
mに形成し、p型InP5b及びn型InP5aにて埋
込んだBH埋込構造を採用している。また、p型電極1
はCu−Au、n型電極2はAuGeNi−Pd−Au
構造である。ここで、端面12には低反射コーティング
膜が形成され、波長1.55μmの時の反射率は0.1
%、センター上50n が1%以下であり、第1図(h.)の様な特性を有して
いる。一方、端面11には、波長1.55μmの時の反
射率が約5%,センター±1 0 n. m以上±11
00n以内の反射率が0.05%〜0.5%であり、第
1図(e)の様な特性を有する反射膜が形成されている
In the case of a 1.5 μm band optical amplification element, n
Type 1nP buffer layer 4b and n-type InP cladding layer 4a
is epitaxially grown, and further I n Ga A
After epitaxially growing the sP waveguide layer (active layer) 7 and the p-type InP cladding layer 6, mesa etching is performed to form a cross section of the waveguide layer 7 with a width of approximately 0.8 μm and a thickness of 0.3 μm.
A BH buried structure is adopted in which the conductive layer is formed to have a thickness of 50 m and is filled with p-type InP5b and n-type InP5a. In addition, p-type electrode 1
is Cu-Au, and n-type electrode 2 is AuGeNi-Pd-Au.
It is a structure. Here, a low reflection coating film is formed on the end face 12, and the reflectance at a wavelength of 1.55 μm is 0.1.
% and 50n on the center is 1% or less, and has the characteristics as shown in FIG. 1 (h). On the other hand, the end face 11 has a reflectance of about 5% at a wavelength of 1.55 μm and a center ±10 n. m or more ±11
A reflective film having a reflectance within 00n of 0.05% to 0.5% and having characteristics as shown in FIG. 1(e) is formed.

次に動作について説明する。入力信号はa図の様な波形
をしており、18の方向から入射し、15の位置で導波
路13にとり込まれる。導波路13を通過する間に光増
幅され、交差部16の位置に到達した時の波形は第1図
(d)の様になる。
Next, the operation will be explained. The input signal has a waveform as shown in figure a, enters from the direction 18, and is taken into the waveguide 13 at the position 15. The light is amplified while passing through the waveguide 13, and when it reaches the intersection 16, the waveform becomes as shown in FIG. 1(d).

端面コーテイング膜11の反射特性は第1図(e)の通
りであり、端面11において反射され、導波路14に取
込まれる波形は第1図(f)の様になる。すなわち入力
信号の波長と端面コーテイング膜11の反射ピーク値を
合せておくことにより、入力信号の反射に対して、それ
以外の自然発光成分の反射を抑えることができ、雑音特
性を10〜20dB改善することができる。
The reflection characteristics of the end face coating film 11 are as shown in FIG. 1(e), and the waveform reflected at the end face 11 and taken into the waveguide 14 is as shown in FIG. 1(f). In other words, by matching the wavelength of the input signal and the reflection peak value of the end face coating film 11, it is possible to suppress the reflection of other natural light emission components compared to the reflection of the input signal, improving the noise characteristics by 10 to 20 dB. can do.

上述の様に2段増幅された光は第1図(g)の様になり
、従来の素子を単にカスケード接続した場合に較べ、雑
音特性を10〜20dB改善し、かつ七ノリシックに2
段接続していることから余分な結合損失がない。本発明
においては、素子長を600μmとしており、−段での
内部利得は約30dB得られ、端面反射により約14d
B損失するが、totalとしては46dBの利得を得
ることができる。
The light that has been amplified in two stages as described above becomes as shown in Figure 1 (g), which improves the noise characteristics by 10 to 20 dB compared to the case where conventional elements are simply connected in cascade.
There is no extra coupling loss due to the stage connection. In the present invention, the element length is 600 μm, and the internal gain at the − stage is approximately 30 dB, and due to end face reflection, the internal gain is approximately 14 dB.
Although there is a loss of B, a total gain of 46 dB can be obtained.

〈実施例2〉 第3図に本発明の第2の実施例の平面図を示す。<Example 2> FIG. 3 shows a plan view of a second embodiment of the invention.

断面構造は第2図(a)と同様である。但し導波路をn
本有しておりその分素子の長さが長い。また、第2図(
a)と同様に、斜め導波路の角度は端面lidに対して
各々84度、−84度で、導波路の両端以外は端面11
aと12aで交差している。端面の幅は600μmを採
用した。
The cross-sectional structure is the same as that in FIG. 2(a). However, the waveguide is n
The length of the element is correspondingly longer. Also, Figure 2 (
Similarly to a), the angle of the oblique waveguide is 84 degrees and -84 degrees, respectively, with respect to the end surface lid, and the angles of the oblique waveguide are 84 degrees and -84 degrees, respectively, with respect to the end surface 11 except for both ends of the waveguide.
It intersects at a and 12a. The width of the end face was 600 μm.

端面11a,12aにコーティングされる膜の反射率R
1,R2はそれぞれ約0.1%の低反射膜を用いた。
Reflectance R of the film coated on the end surfaces 11a and 12a
1 and R2 each used a low reflection film of about 0.1%.

本実施例の構造において、1ケの導波路での単一通過利
得Gsは約30clBであるので、J[=17・05〜
1 となり、各出力端p1, p2・・・Pnから得られる
利得はおよそ30dBとなった。この時の利得偏差は約
1.5dB 程度であった。これは導波路が斜めである
為、反射の戻り光が少ないためである。
In the structure of this example, the single pass gain Gs in one waveguide is about 30clB, so J[=17.05~
1, and the gain obtained from each output terminal p1, p2...Pn was approximately 30 dB. The gain deviation at this time was about 1.5 dB. This is because the waveguide is oblique, so there is less reflected return light.

自然発光成分は増幅段数が上るごとに増加するがこれは
外部でのフィルターにより除去可能である。
The spontaneous luminescence component increases as the number of amplification stages increases, but this can be removed by an external filter.

〔発明の効果〕〔Effect of the invention〕

実施例1で述べた様に、本発明の第1の新機能は,導波
路2段増幅により利得が40dB以上とれること、また
、反射特性を利用し,自然発光成分を抑えることにより
雑音特性を改善できることである。これにより性能が従
来より格段に向上し、またモノリシックに作成できるこ
とから経済的にも従来より向上することができる。
As described in Example 1, the first new feature of the present invention is that the gain can be increased to 40 dB or more using two-stage waveguide amplification, and that the noise characteristics can be improved by suppressing the spontaneous luminescence component by using reflection characteristics. This is something that can be improved. As a result, the performance is significantly improved compared to the conventional one, and since it can be manufactured monolithically, it is also possible to improve the economy compared to the conventional one.

また実施例2で述べた構成によれば、多分岐機能を持つ
光増幅素子を得ることができ、加入者系等の伝送におい
て信号の分配が可能で、経済的にも優位である。
Further, according to the configuration described in the second embodiment, it is possible to obtain an optical amplification element having a multi-branching function, and it is possible to distribute signals in transmissions such as subscriber systems, which is economically advantageous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す光増幅装置の断面
構造図,平面図、及び各部位の光特性図、第2図は従来
の光増幅装置の断面図および平面図、第3図は本発明の
第2の実施例を示す光増幅装置の平面図である。 1・・・P摺電極層,2・・・D型置極層、3・・・n
型InP基板.4a・=n型InPクラッド層、4b・
・n型1nPバッファ層、5a・・・n型InP埋込層
、5b・・・p型InP埋込層、6・・・p型InPク
ラッド層,7・・・導波路(活性M)、11・・・特定
波長反射膜.12低反射膜、13・・・第1斜めストラ
イプ型導波路、14・・・第2斜めストライプ型導波路
、15・・・信号入力部,16・・・信号反射部、17
・・信号呂力部,18・・・入力信号光、19・・・出
力信葛 <e) ■ 図
FIG. 1 is a cross-sectional structural diagram, a plan view, and an optical characteristic diagram of each part of an optical amplification device showing a first embodiment of the present invention, and FIG. 2 is a cross-sectional view, a plan view, and a diagram of a conventional optical amplification device. FIG. 3 is a plan view of an optical amplification device showing a second embodiment of the present invention. 1...P sliding electrode layer, 2...D type electrode layer, 3...n
Type InP substrate. 4a・=n-type InP cladding layer, 4b・
- n-type 1nP buffer layer, 5a... n-type InP buried layer, 5b... p-type InP buried layer, 6... p-type InP cladding layer, 7... waveguide (active M), 11...Specific wavelength reflective film. 12 Low reflection film, 13... First diagonal stripe type waveguide, 14... Second diagonal stripe type waveguide, 15... Signal input section, 16... Signal reflection section, 17
... Signal power section, 18... Input signal light, 19... Output signal <e) ■ Figure

Claims (1)

【特許請求の範囲】 1、端面に対して斜方導波路を有する装置において、少
なくとも一方の端面において二本の導波路が接している
ことを特徴とする端面反射型増幅装置。 2、二本の導波路が接している側の端面には、入力信号
に対する反射率をそれ以外の波長よりも高く設定するこ
とを特徴とした反射膜を設け、入力側の導波路を通つた
光が上記反射膜による反射後もう一方の導波路に導かれ
る様に設定されたことを特徴とする第1項記載の端面反
射型光増幅装置。 3、一つの装置の中に上記導波路を複数本有し、一本の
導波路により得られる利得を打ち消す程度以上の端面反
射率を有する上記第1項記載の端面反射型光増幅装置。
[Scope of Claims] 1. An end-face reflection type amplifier device having an oblique waveguide with respect to the end face, characterized in that two waveguides are in contact with each other on at least one end face. 2. A reflective film is provided on the end face of the side where the two waveguides are in contact, which is characterized by setting the reflectance of the input signal higher than that of other wavelengths, so that the signal passing through the waveguide on the input side is 2. The end-reflection type optical amplification device according to claim 1, wherein the light is guided to the other waveguide after being reflected by the reflective film. 3. The edge reflection type optical amplification device according to item 1 above, which has a plurality of the waveguides in one device, and has an edge reflectance that is at least enough to cancel out the gain obtained by one waveguide.
JP11004290A 1990-04-27 1990-04-27 End surface reflection type optical amplifyer Pending JPH049825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11004290A JPH049825A (en) 1990-04-27 1990-04-27 End surface reflection type optical amplifyer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11004290A JPH049825A (en) 1990-04-27 1990-04-27 End surface reflection type optical amplifyer

Publications (1)

Publication Number Publication Date
JPH049825A true JPH049825A (en) 1992-01-14

Family

ID=14525640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11004290A Pending JPH049825A (en) 1990-04-27 1990-04-27 End surface reflection type optical amplifyer

Country Status (1)

Country Link
JP (1) JPH049825A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165823A (en) * 2010-02-08 2011-08-25 Anritsu Corp Semiconductor optical amplifier and optical module using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165823A (en) * 2010-02-08 2011-08-25 Anritsu Corp Semiconductor optical amplifier and optical module using the same

Similar Documents

Publication Publication Date Title
JP4977377B2 (en) Semiconductor light emitting device
JP2873856B2 (en) Optical amplifier
JPH04211209A (en) Integrated optical semiconductor element
JP3991615B2 (en) Semiconductor optical amplifier and semiconductor laser
JPH04243216A (en) Production of optical waveguide and optical integrated element and production thereof
JP6961621B2 (en) Optical integrated device and optical transmitter module
JP2003177369A (en) Semiconductor optical modulator, mach-zehnder type optical modulator using the same and method of manufacturing semiconductor optical modulator
JPH02199430A (en) Semiconductor optical switch and semiconductor optical switch array
US5202948A (en) Traveling-wave type light amplifier
JPH10319454A (en) Wavelength converter for binary optical signal
JP5718007B2 (en) Manufacturing method of semiconductor optical waveguide device
JP7247120B2 (en) Optical integrated device and optical module
JP3017869B2 (en) Semiconductor optical amplifier
JPH049825A (en) End surface reflection type optical amplifyer
JP3100641B2 (en) Traveling wave type semiconductor optical amplifier
JP3766637B2 (en) Optical coupling element and optical device
WO2021024997A1 (en) Semiconductor optical amplifier array element
WO2017152401A1 (en) Optical amplifier
US6791746B2 (en) Extended bandwidth semiconductor optical amplifier
JPH04264429A (en) Optical modulating element
JP2836051B2 (en) Light wavelength filter
JPH04255270A (en) Optical integrated element
JPH01251685A (en) Light amplifier
JPH02260679A (en) Semiconductor laser device
JPH02137385A (en) Semiconductor optical amplifier