JPH02137385A - Semiconductor optical amplifier - Google Patents

Semiconductor optical amplifier

Info

Publication number
JPH02137385A
JPH02137385A JP29128888A JP29128888A JPH02137385A JP H02137385 A JPH02137385 A JP H02137385A JP 29128888 A JP29128888 A JP 29128888A JP 29128888 A JP29128888 A JP 29128888A JP H02137385 A JPH02137385 A JP H02137385A
Authority
JP
Japan
Prior art keywords
active region
refractive index
optical amplifier
region
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29128888A
Other languages
Japanese (ja)
Inventor
Jitsushiyun Kuruma
車 日濬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29128888A priority Critical patent/JPH02137385A/en
Publication of JPH02137385A publication Critical patent/JPH02137385A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain this optical amplifier which can be manufactured easily, whose coupling efficiency with reference to a single-mode fiber is good and whose characteristic is excellent by a method wherein a window region is constituted of a material whose refractive index is nearly equal to an equivalent refractive index of an active region. CONSTITUTION:The following are provided: a stripe-shaped active region 15 filled with a semiconductor layer having a confinement effect with reference to a signal beam; a window region 16 which is connected to one end or both ends of the active region 15 and which is transparent with reference to the signal beam. In this case, the window region 16 is constituted of a material whose refractive index is nearly equal to an equivalent refractive index of the active region 15. Thereby, a reflection is not caused at a boundary part 19 of the active region and the window region; a prescribed value or lower is obtained as an average end-face reflectance of an optical amplifier; a prescribed interfiber optical amplification gain can be obtained with reference to an incident beam.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、端面反射率の抑制によって、入力光波長変動
に対して、信号利得の変動が少なく、かつ、シングルモ
ードファイバとの結合損失も小さい半導体光増幅器に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention suppresses the reflectance of the end face, thereby reducing fluctuations in signal gain with respect to fluctuations in wavelength of input light and reducing coupling loss with a single mode fiber. Concerning small semiconductor optical amplifiers.

〔従来の技術〕[Conventional technology]

半導体光増幅器は、長距離伝送系での中継器として用い
ることによって、中継器の小型化、再生中継間隔の拡大
を可能にする。また、光検出器の直前で、光装置増幅器
として用いることによって、直接検波方式に比べて受光
レベルを改善できる。さらに、光交換における交換器の
損失補償器として用いることによって、OE、EO変換
を施すことなく、多チャネルの交換システムを実現でき
るなど多くの利点を有することから盛んに研究開発が進
められている。従来の半導体光増幅器は半導体レーザを
しきい値以下にバイアスして用いる共振型と半導体レー
ザの両端面の端面反射率を無反射コーティング(ARコ
コ−ィング)、窓端面構造などの手段を用いて抑制した
進行波型に分けられる。入力光波長変動に対する利得変
動および入力光強度増加に対する利得飽和が小さいこと
などの点から、進行波型光増幅器は、共振型半導体光増
幅器に比べて有利である。しかし、このような特性のよ
い進行波型半導体光増幅器を得るためには、端面反射率
を0.1%以下に抑える必要がある。しかし、従来用い
られてきたARココ−ィング技術のみで、所望の端面反
射率を再現性よく得ることは非常に困難である。従って
、端面反射率の抑制には、窓端面構造を有する半導体光
増幅器が有望である。
By using a semiconductor optical amplifier as a repeater in a long-distance transmission system, it is possible to reduce the size of the repeater and expand the regenerative repeating interval. Furthermore, by using the optical device as an amplifier immediately before the photodetector, the light reception level can be improved compared to the direct detection method. Furthermore, by using it as a loss compensator for an exchanger in optical switching, it has many advantages such as the ability to realize a multi-channel switching system without performing OE or EO conversion, so research and development is actively underway. . Conventional semiconductor optical amplifiers are of the resonant type, in which the semiconductor laser is biased below the threshold value, and the end face reflectance of both end faces of the semiconductor laser is reduced using means such as anti-reflection coating (AR co-coating), window end face structure, etc. It can be divided into suppressed traveling wave types. Traveling wave optical amplifiers are advantageous over resonant semiconductor optical amplifiers in that they have small gain fluctuations with respect to input light wavelength fluctuations and small gain saturation with respect to increases in input light intensity. However, in order to obtain a traveling wave semiconductor optical amplifier with such good characteristics, it is necessary to suppress the end face reflectance to 0.1% or less. However, it is extremely difficult to obtain desired end face reflectance with good reproducibility using only the conventionally used AR co-coating technology. Therefore, a semiconductor optical amplifier having a window end face structure is promising for suppressing the end face reflectance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第2図は本発明者らが作製した従来例である窓端面構造
を持つ半導体増幅器である。二重チャネル・プレナー埋
め込みへテロ構造(DC−PBH構造)を基本構造とし
ており、7字形の窓端面を有する。以下、問題点を指摘
する前に従来例である窓端面構造を持つ半導体増幅器の
素子構造を製作工程に沿って説明する。
FIG. 2 shows a conventional semiconductor amplifier having a window end face structure manufactured by the present inventors. The basic structure is a double channel planar embedded heterostructure (DC-PBH structure), and has a figure-7 window end face. Hereinafter, before pointing out the problems, the element structure of a conventional semiconductor amplifier having a window end face structure will be explained along with the manufacturing process.

まず、n−rnP基板1の上面にノンドープInGaA
sP活性層2、アンチメルトバック層(AMB1’!>
3、I) −1nPクラッド層4を液相成長(LPE)
法によりそれぞれ厚さ0.1 tl m 、 0.01
μm、1μrnで順次結晶成長した後、この多層半導体
結晶の活性領域15に相当する部分において、[110
]方向に、深さ1.5μm、幅4μmの2本の溝12.
13とそれによって挟まれる幅1.2μmのメサストラ
イプ14を形成する。また、窓領域16に相当する部分
において、溝12.13から連続し、メサストライプが
存在しない幅4μm、深さ1.5μmの溝11を形成す
る。以上のメサストライプ形成、窓領域形成は1回のフ
ォトリソグラフィの手法により行うことができる。窓領
域16の長さは30μmである。次に溝11゜12.1
3を形成した上記半導体多層結晶の上にメサストライプ
14の上部を除いて、P −TnP電流ブロック層5、
n−InP電流ブロック層6を、そしてメサストライプ
14を含む全面にp −1nl’埋め込み層7、波長組
成1.2μmのP ” −TnGaAsPコンタクト層
8をそれぞれ、平坦部での厚さ1μm、0.5μm、6
ttm、0.5μmで順次LPE法により結晶成長した
。さらにコンタクト層8の上及びn −Inf’基板1
の下にTiハUからなる電極9.10を形成する。最後
に、両端面にECRプラズマCVD法により、厚さ22
00人の5iONによる無反射コーティング膜17.1
8を形成して半導体光増幅器が出来上る。この従来の窓
端面構造を有する半導体光増幅器は、埋め込め成長にI
nPを用いており、活性領域の等偏屈折率と窓領域の屈
折率が異なる。そのため活性領域と窓領域の境界部19
での反射率以下には端面反射率を抑制できないという問
題点を有していた。本発明の目的は、製作が容易で、シ
ングルモールドファイバとの結合効率もよく、特性の優
れた進行波型半導体光増幅器を提供することにある。
First, non-doped InGaA is placed on the top surface of the n-rnP substrate 1.
sP active layer 2, anti-meltback layer (AMB1'!>
3. I) -1nP cladding layer 4 by liquid phase epitaxy (LPE)
The thicknesses are 0.1 tl m and 0.01 tl m, respectively, by the method.
After successive crystal growth of μm and 1 μrn, [110
] direction, two grooves 12. with a depth of 1.5 μm and a width of 4 μm.
13 and a mesa stripe 14 having a width of 1.2 μm sandwiched therebetween. Further, in a portion corresponding to the window region 16, a groove 11 having a width of 4 μm and a depth of 1.5 μm is formed, which is continuous from the groove 12.13 and has no mesa stripe. The above mesa stripe formation and window region formation can be performed by one photolithography method. The length of the window region 16 is 30 μm. Next groove 11°12.1
A P-TnP current blocking layer 5, except for the upper part of the mesa stripe 14, is formed on the semiconductor multilayer crystal formed with
An n-InP current blocking layer 6, a p-1nl' buried layer 7 on the entire surface including the mesa stripe 14, and a P''-TnGaAsP contact layer 8 with a wavelength composition of 1.2 μm, each having a thickness of 1 μm at the flat part and 0. .5 μm, 6
Crystals were grown sequentially by the LPE method at ttm and 0.5 μm. Furthermore, on the contact layer 8 and the n-Inf' substrate 1
An electrode 9.10 made of Ti film is formed below. Finally, both end faces are coated with a thickness of 22 mm using the ECR plasma CVD method.
Anti-reflection coating film 17.1 by 00 people's 5iON
8, a semiconductor optical amplifier is completed. This conventional semiconductor optical amplifier with a window end face structure is suitable for buried growth.
nP is used, and the equipolarized refractive index of the active region and the refractive index of the window region are different. Therefore, the boundary 19 between the active region and the window region
There was a problem in that the end face reflectance could not be suppressed below the reflectance at . An object of the present invention is to provide a traveling wave semiconductor optical amplifier that is easy to manufacture, has good coupling efficiency with a single molded fiber, and has excellent characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するためには、信号光に対して閉じ込
め効果を有する半導体層で埋め込んだストライプ状の活
性領域を有し、この活性領域の一方または両方の端部に
接続して信号光に対して透明な窓領域を有する半導体光
増幅器において、活性領域の等偏屈折率にほぼ等しい屈
折率を持つ材料で窓領域を構成した。
In order to solve the above problems, it is necessary to have a striped active region buried in a semiconductor layer that has a confinement effect for signal light, and connect it to one or both ends of this active region to allow signal light to be trapped. On the other hand, in a semiconductor optical amplifier having a transparent window region, the window region is made of a material having a refractive index approximately equal to the equipolarized refractive index of the active region.

〔実施例〕〔Example〕

第1図に本発明の一実施例である窓端面構造を持つ半導
体光増幅器を示す。作製工程は次のようなものである。
FIG. 1 shows a semiconductor optical amplifier having a window end face structure, which is an embodiment of the present invention. The manufacturing process is as follows.

まず、n −1nP基板1の上面にノンドープInGa
AsP活性層2、アンチメルトバック層(AMB層)、
p−1nPクラッド層4を液相成長(LPE)法により
それぞれ厚さ0.1μm、0.01μm、1μmで順次
結晶成長した後、この多層半導体結晶の活性領域15に
相当する部分において、[110]方向に、深さ1.5
μm、幅4μmの2本の溝12,13とそれによって挟
まれる幅1.2μmのメサストライプ14を形成する。
First, non-doped InGa is placed on the top surface of the n-1nP substrate 1.
AsP active layer 2, anti-meltback layer (AMB layer),
After the p-1nP cladding layer 4 was successively grown to thicknesses of 0.1 μm, 0.01 μm, and 1 μm by liquid phase epitaxy (LPE), [110 ] direction, depth 1.5
Two grooves 12 and 13 each having a width of 4 μm and a mesa stripe 14 having a width of 1.2 μm sandwiched therebetween are formed.

また、窓領域16に相当する部分において、溝12.1
3から連続し、メサストライプが存在しない幅4μm、
深さ1.5μmの111を形成する。窓領域16の長さ
は30μmである。上記活性領域の等偏屈折率は3.2
4程度であるが、これと同じ屈折率を持ツI(lo、9
1GaO・09^S0.2P0・8  (以下InGa
AsPと表す)を埋め込み成長に用いる。すなわち、上
記半導体多層結晶の上にメサストライプ14の上部を除
いて、p −1nGaAsP電流ブロツク7120、n
 −InGaAsP電流ブロック層21を、そして全面
にp −1nGaAsP埋め込み層22、波長組成1.
2μmのp ” −InGaAsPコンタクト層8をそ
れぞれ、平坦部での厚さ1μm、0.5μm、6μm、
0.5μmで順次LPE法により結晶成長した。さらに
、コンタクト層8の上及びn −1nP基板1の下にT
i/Auからなる電極9.10を形成する。最後に、両
端面にECRプラズマCVD法により、厚さ2200人
の5iONによる無反射コーティング膜17.18を形
成する。このようにして作製した半導体光増幅器では、
活性領域と窓領域の境界部19での反射がなくなり、光
増幅器の平均端面反射率として0.01%以下が得られ
た。また、波長1.55μm、強度−35dBmの入射
光に対して注入電流70mA時に18dElのファイバ
間光増幅利得を得た。さらに、このとき、端面反射率が
十分抑制された結果として、入射光波長を15人(ファ
ブリペローモードに対する自由スペクトルレンジ以上)
掃引した時の増幅率変化は1dB以下と非常に小さかっ
た。
Furthermore, in the portion corresponding to the window region 16, the groove 12.1
Continuing from 3, width 4 μm with no mesa stripe,
111 with a depth of 1.5 μm is formed. The length of the window region 16 is 30 μm. The equipolarized refractive index of the above active region is 3.2
4, but it has the same refractive index as I(lo, 9
1GaO・09^S0.2P0・8 (hereinafter InGa
AsP) is used for implant growth. That is, p -1nGaAsP current blocks 7120, n
-InGaAsP current blocking layer 21, p -1nGaAsP buried layer 22 on the entire surface, wavelength composition 1.
The p''-InGaAsP contact layer 8 of 2 μm has a thickness of 1 μm, 0.5 μm, 6 μm at the flat part, respectively.
Crystals were sequentially grown to 0.5 μm using the LPE method. Furthermore, T is formed on the contact layer 8 and below the n −1nP substrate 1
An electrode 9.10 made of i/Au is formed. Finally, anti-reflection coating films 17 and 18 made of 5iON with a thickness of 2200 mm are formed on both end faces by ECR plasma CVD. In the semiconductor optical amplifier manufactured in this way,
There was no reflection at the boundary 19 between the active region and the window region, and the average end face reflectance of the optical amplifier was 0.01% or less. Furthermore, for incident light with a wavelength of 1.55 μm and an intensity of -35 dBm, an inter-fiber optical amplification gain of 18 dEl was obtained when the injection current was 70 mA. Furthermore, at this time, as a result of sufficiently suppressing the end face reflectance, the incident light wavelength was reduced to 15 nm (more than the free spectral range for the Fabry-Perot mode).
The change in amplification factor during sweeping was very small, less than 1 dB.

なお、上記実施例においては、DC−PBH構造を用い
て作製した例を示したが、他の構造例えばBH槽構造ど
を用いて構成しても良い。また用いる半導体材料もIn
P系に限るものではない。特に、窓領域の構成材料とし
てInGaAsPを用いた例を示したが、活性領域の等
偏屈折率と屈折率を等しくできる材料であれば、他の材
料でも良い。
In the above embodiment, an example was shown in which a DC-PBH structure was used, but other structures such as a BH tank structure may be used. In addition, the semiconductor material used is In
It is not limited to P-type. In particular, an example is shown in which InGaAsP is used as the constituent material of the window region, but other materials may be used as long as the material can make the refractive index equal to the equipolarized refractive index of the active region.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように、従来の窓端面構造を有す
る半導体光増幅器においては、活性領域と窓領域の境界
部での反射が窓端面構造による平均端面反射率の抑制効
果を制限したという問題点を解決し、半導体光増幅器に
おける平均反射率をさらに抑制できるようにした。その
結果、入力光波長変動による利得変動の抑制や、利得飽
和の軽減点で、半導体光増幅器を特性を飛躍的に改善す
ることができる。
As explained above, the present invention solves the problem that, in a conventional semiconductor optical amplifier having a window end face structure, reflection at the boundary between the active region and the window region limits the effect of suppressing the average end face reflectance by the window end face structure. This problem has been solved, and the average reflectance in semiconductor optical amplifiers can be further suppressed. As a result, the characteristics of the semiconductor optical amplifier can be dramatically improved by suppressing gain fluctuations due to input light wavelength fluctuations and reducing gain saturation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ本発明の実施例及び従来例
である端面窓構造を有する進行波型半導体光増幅器の構
造図である。 1−−− n −1nP基板、2・・・ノンドープIn
GaAsP活性層、3・・・アンチメルトバック層、4
・・・p −1nPクラッド層、5・・・p −InP
電流電流ブラフ2層・・・rh−1nP電流ブロック層
、7・・・p −1oP埋め込み暦、8− P ” −
1nGaAsPコタクト層、9.10−・・電極、11
,12.13・・・溝、14・・・メサストライプ、1
5・・・活性領域、16・・・窓領域、17゜18・・
・無反射コーテイング膜、19・・・活性領域と窓領域
の境界、20・・・p −InGaAsP電流ブロック
層、21 ・・n −1nGaAsP電流ブロック層、
22−・・p −1n6aAsF’埋め込み層(ただし
、011割り−はIn0091Ga0.09A!9.2
PO08を表す)。 代理人 弁理士  内 原  晋 第1図
FIGS. 1 and 2 are structural diagrams of a traveling wave semiconductor optical amplifier having an end face window structure, which is an embodiment of the present invention and a conventional example, respectively. 1--- n -1nP substrate, 2... non-doped In
GaAsP active layer, 3... anti-meltback layer, 4
...p-1nP cladding layer, 5...p-InP
Current current bluff 2 layers...rh-1nP current blocking layer, 7...p-1oP embedded calendar, 8-P''-
1nGaAsP contact layer, 9.10--electrode, 11
, 12.13...Groove, 14...Mesa stripe, 1
5...Active region, 16...Window region, 17°18...
・Anti-reflective coating film, 19...Boundary between active region and window region, 20...p-InGaAsP current blocking layer, 21...n-1nGaAsP current blocking layer,
22-...p-1n6aAsF' buried layer (011- is In0091Ga0.09A!9.2
(represents PO08). Agent: Susumu Uchihara, patent attorney Figure 1

Claims (1)

【特許請求の範囲】[Claims] 信号光に対して閉じ込め効果を有する半導体層で埋め込
んだストライプ状の活性領域を有し、この活性領域の一
方または両方の端部に接続して信号光に対して透明な窓
領域を有する半導体光増幅器において、活性領域の等価
屈折率にほぼ等しい屈折率を持つ材料で窓領域を構成し
たことを特徴とする半導体光増幅器。
A semiconductor optical device having a striped active region embedded in a semiconductor layer that has a confinement effect on signal light, and a window region connected to one or both ends of the active region and transparent to the signal light. 1. A semiconductor optical amplifier characterized in that a window region is formed of a material having a refractive index substantially equal to the equivalent refractive index of an active region.
JP29128888A 1988-11-18 1988-11-18 Semiconductor optical amplifier Pending JPH02137385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29128888A JPH02137385A (en) 1988-11-18 1988-11-18 Semiconductor optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29128888A JPH02137385A (en) 1988-11-18 1988-11-18 Semiconductor optical amplifier

Publications (1)

Publication Number Publication Date
JPH02137385A true JPH02137385A (en) 1990-05-25

Family

ID=17766941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29128888A Pending JPH02137385A (en) 1988-11-18 1988-11-18 Semiconductor optical amplifier

Country Status (1)

Country Link
JP (1) JPH02137385A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272375A (en) * 2008-05-01 2009-11-19 Sumitomo Electric Ind Ltd Method of manufacturing semiconductor laser, and semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272375A (en) * 2008-05-01 2009-11-19 Sumitomo Electric Ind Ltd Method of manufacturing semiconductor laser, and semiconductor laser

Similar Documents

Publication Publication Date Title
JPS60134219A (en) Optical switch
JPH04243216A (en) Production of optical waveguide and optical integrated element and production thereof
JPH05249331A (en) Waveguide type beam spot conversion element and production thereof
JP2746326B2 (en) Semiconductor optical device
JPS59205787A (en) Single axial mode semiconductor laser
JPH0497206A (en) Semiconductor optical element
US4897845A (en) Semiconductor optical amplifying element
JPH02137385A (en) Semiconductor optical amplifier
JPH08248364A (en) Light intensity modulation element and semiconductor laser with light intensity modulation element
JPH07176822A (en) Semiconductor light source and its manufacture
JP2643319B2 (en) Semiconductor optical amplifier
JPH0410582A (en) Semiconductor optical element
JPH04264429A (en) Optical modulating element
KR100433298B1 (en) Fabricating method of spot-size converter semiconductor optical amplifier
JP3154419B2 (en) Semiconductor optical amplifier
JPH02185084A (en) Semiconductor laser type optical amplifier
JPH02127624A (en) Semiconductor optical amplifier
JPS59184585A (en) Semiconductor laser of single axial mode
JP2556299B2 (en) Semiconductor optical integrated device and manufacturing method thereof
JPS62286017A (en) Optical switch
JPS63271987A (en) Semiconductor light emitting element
JPH01118817A (en) Optical modulator
JPS594870B2 (en) semiconductor light emitting device
JPH05167199A (en) Semiconductor optical amlifier
JPH07193330A (en) Optical semiconductor element and manufacture thereof