JPH0498053A - Air conditioning plant - Google Patents

Air conditioning plant

Info

Publication number
JPH0498053A
JPH0498053A JP21786990A JP21786990A JPH0498053A JP H0498053 A JPH0498053 A JP H0498053A JP 21786990 A JP21786990 A JP 21786990A JP 21786990 A JP21786990 A JP 21786990A JP H0498053 A JPH0498053 A JP H0498053A
Authority
JP
Japan
Prior art keywords
compressor
bypass circuit
refrigerant
piping
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21786990A
Other languages
Japanese (ja)
Other versions
JP2550762B2 (en
Inventor
Hideaki Tagashira
田頭 秀明
Masami Imanishi
正美 今西
Shunsuke Ohara
俊介 大原
Katsumi Kasano
笠野 勝美
Takeshi Yoshida
武司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2217869A priority Critical patent/JP2550762B2/en
Publication of JPH0498053A publication Critical patent/JPH0498053A/en
Application granted granted Critical
Publication of JP2550762B2 publication Critical patent/JP2550762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To prevent cold air from being blown into a room at a defrosting operation during heating operation and at the same time to prevent liquid from returning back to a compressor by a method wherein an air conditioner is constructed such that a heat exchanging operation can be carried out between a refrigerant circuit and a suction side pipe branched from a discharging side pipe of a compressor and connecting between an accumulator and the compressor, a three-way transfer valve is changed over to release the fourth bypassing circuit to perform a defrosting operation. CONSTITUTION:During defrosting operation, the fourth bypassing circuit 14 is opened by a three-way transfer valve 13, thereby gaseous refrigerant of high temperature and high pressure from a compressor 1 is sent to an outdoor side heat exchanger 3, resulting in that not only an efficient defrosting operation can be carried out within a short period of time, but also during cooling or heating operation, refrigerant in a suction pipe 1a for the compressor 1 is heated through a suction heat exchanger 11 by a part of the discharged gas of high temperature and high pressure from the compressor 1 with the first bypassing circuit 10 and then the compressor 1 can be efficiently controlled in its operation. With such an arrangement, it is possible to prevent a phenomenon of liquid returning to the compressor and at the same time it is also possible to prevent a heat loss and further it becomes possible to eliminate problems of blowing of cold air into a room.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷凍サイクル回路を用いて冷暖房運転を行な
う空気調和装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in an air conditioner that performs heating and cooling operations using a refrigeration cycle circuit.

〔従来の技術〕[Conventional technology]

従来この種の空気調和装置として、たとえば■日本技術
経済センター、昭和58年7月5日発行「ヒートポンプ
−突I星計とそのII−J P122図4.12などに
示されるような構成によるものが周知である。
Conventionally, this type of air conditioner has a configuration such as that shown in Figure 4.12 of ``Heat Pumps - Project I Star Meter and Its II-J P122'', published by Japan Technology and Economic Center, July 5, 1981. is well known.

このような空気調和装置の概略構成を、第5図を用いて
簡単に説明すると、図中符号1は圧縮機、2は四方切換
弁、3は室外側熱交換器、4.5は冷房運転時、暖房運
転時にそれぞれ膨張機構として機能する第1および第2
の絞り装置、6は室内側熱交換器、7はアキュムレータ
で、これらを順次冷媒配管で連結接続することで冷凍サ
イクル回路が構成されている。なお、8,9は室内側、
室外側熱交換器6.3にそれぞれ送風する室内側および
室外側送風機で、また4a、4bは第1の絞り装W4を
構成する第1の減圧装置(キャピラリチューブ)および
これをバイパスする回路中に設けられた第1の逆止弁、
5a、5bは第2の絞り装置5を構成する第2の減圧装
置(キャピラリチューブ)およびこれをバイパスする回
路中に設けられた第2の逆止弁である。
The schematic structure of such an air conditioner will be briefly explained using FIG. 5. In the figure, reference numeral 1 is a compressor, 2 is a four-way switching valve, 3 is an outdoor heat exchanger, and 4.5 is a cooling operation. The first and second parts each function as an expansion mechanism during heating operation.
6 is an indoor heat exchanger, and 7 is an accumulator. A refrigeration cycle circuit is constructed by sequentially connecting these devices through refrigerant piping. In addition, 8 and 9 are on the indoor side,
Indoor and outdoor air blowers respectively blow air to the outdoor heat exchanger 6.3, and 4a and 4b are the first pressure reducing device (capillary tube) constituting the first restrictor W4 and the circuit that bypasses this. a first check valve provided in;
5a and 5b are a second pressure reducing device (capillary tube) constituting the second throttle device 5 and a second check valve provided in a circuit that bypasses the second pressure reducing device (capillary tube).

このような構成による空気調和装置において、冷房運転
時(冷媒の流れを図中太い実線による矢印で示す)には
、圧縮機1から吐出された高温高圧のガス冷媒は、四方
切換弁2を通り、室外側熱交換器3で室外側送風機9に
よって送風される室外空気と熱交換し、ガス冷媒が凝縮
液化される。
In an air conditioner with such a configuration, during cooling operation (the flow of the refrigerant is indicated by the thick solid line arrow in the figure), the high temperature and high pressure gas refrigerant discharged from the compressor 1 passes through the four-way switching valve 2. In the outdoor heat exchanger 3, the gas refrigerant is condensed and liquefied by exchanging heat with outdoor air blown by the outdoor fan 9.

そして、第1の絞り装置4側でのバイパス回路中の第1
の逆止弁4bを通り、第2の絞り装置5を構成する第2
の減圧装置5a側に導入されて減圧され、低温低圧の液
冷媒となる。その後、この液冷媒は室内側熱交換器6に
入り、室内側送風機8によって送風される室内空気と熱
交換し、室内空気を冷却するとともに、これにより液冷
媒が蒸発ガス化され、四方切換弁2、アキュムレータ7
を通り圧縮機1に戻るという冷房時の冷凍サイクルが構
成され、以後冷媒は上述した冷凍サイクル経路内を順次
液化、気化を繰り返しながら循環される。
Then, the first throttle device in the bypass circuit on the side of the first throttle device 4
through the check valve 4b and forming the second throttle device 5.
The refrigerant is introduced into the pressure reducing device 5a and is depressurized, becoming a low-temperature, low-pressure liquid refrigerant. After that, this liquid refrigerant enters the indoor heat exchanger 6 and exchanges heat with the indoor air blown by the indoor blower 8 to cool the indoor air. 2. Accumulator 7
A refrigeration cycle during cooling is configured in which the refrigerant passes through the refrigerant and returns to the compressor 1, and thereafter the refrigerant is circulated through the above-mentioned refrigeration cycle path while repeating liquefaction and vaporization in sequence.

一方、暖房運転時(冷媒の流れを図中細い実線による矢
印で示す)には、圧縮機1から吐出された高温高圧のガ
ス冷媒は、暖房側に切換えられた四方切換弁2を通り、
室内側熱交換器6に入り、室内側送風機8によって送風
される室内空気と熱交換して室内空気を加熱するととも
に、これによりガス冷媒が凝縮液化される。そして、こ
の液冷媒は、第2の絞り装置5をバイパスする回路中の
第2の逆止弁5bを通り、第1の絞り装W4を構成する
第1の減圧装fi4aに導かれて減圧され、低温低圧の
液冷媒となる。その後、液冷媒は室外側熱交換器3に入
り、室外側送風機9によって送風される室外空気と熱交
換し室外空気から採熱して室外空気を冷却するとともに
、これにより液冷媒が蒸発ガス化し、四方切換弁2、ア
キュムレータ7を通り圧縮機1に戻り、これにより暖房
時の冷凍サイクルが構成される。
On the other hand, during heating operation (the flow of refrigerant is shown by the thin solid arrow in the figure), the high temperature and high pressure gas refrigerant discharged from the compressor 1 passes through the four-way switching valve 2 which is switched to the heating side.
The gas refrigerant enters the indoor heat exchanger 6 and exchanges heat with the indoor air blown by the indoor blower 8 to heat the indoor air, and thereby condenses and liquefies the gas refrigerant. Then, this liquid refrigerant passes through the second check valve 5b in the circuit that bypasses the second throttle device 5, is led to the first pressure reducing device fi4a that constitutes the first throttle device W4, and is depressurized. , it becomes a low-temperature, low-pressure liquid refrigerant. After that, the liquid refrigerant enters the outdoor heat exchanger 3, exchanges heat with the outdoor air blown by the outdoor fan 9, collects heat from the outdoor air and cools the outdoor air, and as a result, the liquid refrigerant evaporates into gas. It passes through the four-way switching valve 2 and the accumulator 7 and returns to the compressor 1, thereby forming a refrigeration cycle during heating.

また、このような暖房運転を継続して行なっていると、
たとえば室外空気温度が低い場合、室外側熱交換器3に
着霜が生じてくる。このような着霜が多くなると熱交換
効率が悪くなり、室外空気からの採熱量が減少するため
、空気調和装置の暖房能力が著しく低下する。したがっ
て、このような場合には、デフロストく除霜)を行なう
ことが必要とされる。
Also, if you continue to use this type of heating operation,
For example, when the outdoor air temperature is low, frost forms on the outdoor heat exchanger 3. When such frost formation increases, the heat exchange efficiency deteriorates, and the amount of heat extracted from the outdoor air decreases, resulting in a significant decrease in the heating capacity of the air conditioner. Therefore, in such cases, it is necessary to perform defrosting.

このようなデフロスト運転は、前述した文献「ヒートポ
ンプ−実■計とその6附−」においてP L21などに
も説明されるようにして行われる。すなわち、このよう
なデフロスト運転時(冷媒の流れを図中破線による矢印
で示す)には、圧縮機1から吐出された高温高圧のガス
冷媒は、暖房側から冷房側へと切換えられた四方切換弁
2を通り、室外側熱交換器3に入る。ここで、室外側送
風機9は停止している。そして、この室外側熱交換器3
の表面に着霜していた霜を高温ガス冷媒で溶解し、この
冷媒が凝縮液化して第1の絞り装W4をバイパスする第
1の逆止弁4bを通り、第2の絞り装置5を構成する第
2の減圧装置5aによって減圧されて低温低圧の液冷媒
となり、室内側熱交換器6に入り、次で四方切換弁2お
よびアキュムレータ7を通って圧縮機1に戻るという冷
凍サイクル運転を行なうものであった。
Such a defrost operation is performed as described in PL21 in the above-mentioned document "Heat Pump - Actual Meter and Volume 6". That is, during such a defrost operation (the flow of refrigerant is indicated by the dashed arrow in the figure), the high temperature and high pressure gas refrigerant discharged from the compressor 1 is switched from the heating side to the cooling side. It passes through valve 2 and enters outdoor heat exchanger 3. Here, the outdoor side blower 9 is stopped. And this outdoor heat exchanger 3
The frost formed on the surface of the refrigerant is melted by a high-temperature gas refrigerant, and this refrigerant is condensed and liquefied, passes through the first check valve 4b that bypasses the first throttling device W4, and passes through the second throttling device 5. The refrigerating cycle operation is performed in which the pressure is reduced by the second pressure reducing device 5a, and the liquid refrigerant enters the indoor heat exchanger 6, then returns to the compressor 1 through the four-way switching valve 2 and the accumulator 7. It was something to do.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上述した暖房運転中のデフロスト運転時にお
いて、低温低圧の液冷媒が室内側熱交換器6に導入され
た場合に若干の問題を生じている。すなわち、この室内
側熱交換器6に対向して配置される室内側送風機8は、
このデフロスト運転時に通常は微風運転を行なっている
か、あるいは停止されている。そして、たとえば微風運
転を行なっている場合には、低温低圧の液冷媒と室内空
気とが熱交換され、室内空気を冷却するとともに液冷媒
が蒸発ガス化し、四方切換弁2およびアキュムレータ7
を通り圧縮機1に戻る。したがって、このような場合に
は、室内側に冷風が吹出されることとなり、空気調和効
果を著しく低下させてしまうという問題を生じている。
By the way, some problems occur when a low temperature, low pressure liquid refrigerant is introduced into the indoor heat exchanger 6 during the defrost operation during the above-mentioned heating operation. That is, the indoor blower 8 disposed opposite to the indoor heat exchanger 6 is
During this defrost operation, the defrost operation is normally performed or is stopped. For example, when operating in a breeze, the low-temperature, low-pressure liquid refrigerant and the indoor air exchange heat, cool the indoor air, and the liquid refrigerant evaporates and gases, causing the four-way switching valve 2 and the accumulator 7
and returns to compressor 1. Therefore, in such a case, cold air is blown toward the indoor side, resulting in a problem that the air conditioning effect is significantly reduced.

また、室内側送風機8を停止させた場合には、低温低圧
の液冷媒は採熱できず、冷媒は液のままアキュムレータ
7に入り圧縮機1に戻るため、圧縮機1が液圧縮し、圧
縮機トラブルを生じることがあった。
Furthermore, when the indoor blower 8 is stopped, heat cannot be collected from the low-temperature, low-pressure liquid refrigerant, and the refrigerant enters the accumulator 7 as a liquid and returns to the compressor 1, so the compressor 1 compresses the liquid and compresses it. Machine troubles sometimes occurred.

さらに、上述した従来装置によれば、特にデフロスト時
における高圧圧力が低いため、低圧圧力も低下し、圧縮
機1の能力が充分に発揮できず、デフロスト時間も長く
かかる等といった欠点があった。また、暖房運転時に四
方切換弁2を冷房側に切換え、デフロスト運転を行なう
ため、切換え時に熱のロスが生じるという問題もあった
Further, according to the above-mentioned conventional apparatus, since the high pressure is low especially during defrosting, the low pressure also decreases, making it impossible for the compressor 1 to fully utilize its capacity, and the defrosting time also takes a long time. Furthermore, since the four-way switching valve 2 is switched to the cooling side during the heating operation to perform the defrost operation, there is also a problem in that heat loss occurs during the switching.

本発明は上述した事情に鑑みてなされたちので、暖房運
転中のデフロスト運転時において冷風の室内への吹出し
を防止するとともに、四方切換弁を暖房側としたままで
のデフロスト運転を行ない、低圧圧力を上げて圧縮機能
力を高め、しかも圧縮機からの高温、高圧ガス冷媒と吸
入側配管とを熱交換させるように構成することで、圧縮
機への液戻りをも防止し得る空気調和装置を得ることを
目的としている。
The present invention was made in view of the above-mentioned circumstances, and therefore, it prevents cold air from being blown into the room during defrost operation during heating operation, and performs defrost operation with the four-way switching valve set to the heating side, thereby reducing the pressure. The air conditioner is configured to increase the compression function by increasing the air flow rate, and also prevents liquid from returning to the compressor by exchanging heat between the high-temperature, high-pressure gas refrigerant from the compressor and the suction side piping. The purpose is to obtain.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る空気調和装置は、圧縮機からの高温高圧ガ
ス冷媒を吸入側配管と熱交換し第1の絞り装置と第2の
絞り装置との間の配管側にバイパスする第1のバイパス
回路を設けるとともに、第1の減圧装置および第2の減
圧装置をバイパスする逆止弁を有する第2、第3のバイ
パス回路および前記圧縮機の吐出側配管から三方切換弁
を介して前記第1および第2の絞り装置間の配管側にバ
イパスして接続される該吐出側配管よりも細い内径を有
する配管による第4のバイパス回路を設けるようにし、
さらに前記圧縮機の吐出側配管と三方切換弁との間から
圧力調整弁を介して前記第1および第2の絞り装置間の
配管側にバイパスして接続される第5のバイパス回路を
設けるようにしたものである。
The air conditioner according to the present invention has a first bypass circuit that exchanges heat with the suction side piping and bypasses the high temperature, high pressure gas refrigerant from the compressor to the piping side between the first expansion device and the second expansion device. and a second and third bypass circuit having a check valve that bypasses the first pressure reducing device and the second pressure reducing device, and a three-way switching valve from the discharge side piping of the compressor to the first and third bypass circuits having check valves that bypass the first and second pressure reducing devices. A fourth bypass circuit is provided on the piping side between the second throttling device and is connected by bypass and has an inner diameter smaller than the discharge side piping,
Furthermore, a fifth bypass circuit is provided which is connected from between the discharge side piping of the compressor and the three-way switching valve to the piping side between the first and second throttle devices via a pressure regulating valve. This is what I did.

また、本発明によれば、デフロスト運転中において室内
温度が所定値以下である場合には、一定時間間隔で三方
切換弁を暖房運転モードに戻すようにしたものである。
Further, according to the present invention, if the indoor temperature is below a predetermined value during the defrost operation, the three-way switching valve is returned to the heating operation mode at regular time intervals.

さらに、本発明によれば、室内l!l熱交換器と第2の
絞り装置との間の配管から、電磁弁を介してアキュムレ
ータにバイパスする第6のバイパス回路を設け、かつデ
フロスト運転中に室内温度が所定値以下である場合に、
一定時間間隔で電磁弁により第6のバイパス回路を開路
するようにしたものである。
Furthermore, according to the invention, indoor l! A sixth bypass circuit is provided that bypasses the piping between the heat exchanger and the second throttling device to the accumulator via a solenoid valve, and when the indoor temperature is below a predetermined value during defrost operation,
The sixth bypass circuit is opened by a solenoid valve at regular time intervals.

また、本発明によれば、圧縮機の吸入側配管との間で熱
交換可能に構成されて第1および第2の絞り装置間の配
管側にバイパス接続される第1のバイパス回路を、圧縮
機の吐出側配管上で第4のバイパス回路への回路切換え
を行なう三方切換弁とその下流側に配置される四方切換
弁との間から分岐して設けるようにしたものである。
Further, according to the present invention, the first bypass circuit configured to be able to exchange heat with the suction side piping of the compressor and bypass-connected to the piping side between the first and second expansion devices is connected to the compressor. The valve is installed on the discharge side piping of the machine between a three-way switching valve that switches the circuit to the fourth bypass circuit and a four-way switching valve located downstream of the three-way switching valve.

〔作用〕[Effect]

本発明によれば、暖房運転中のデフロスト運転時に四方
切換弁を暖房運転の状態としたままで室内側および室外
側熱交換器への送風機を停止し、かつ三方切換弁を切換
え、第4のバイパス回路を開路してデフロスト運転を行
なうことで、従来のような四方切換弁の切換え時におけ
る熱ロスを防止し、かつ室内側への冷風吹出しを防止す
るとともに、圧縮機の能力を高め、さらに該圧縮機から
の高温高圧のガス冷媒と吸入側配管との熱交換で圧縮機
への液戻り現象をも防止し得るものである。
According to the present invention, during defrost operation during heating operation, the blowers to the indoor and outdoor heat exchangers are stopped while the four-way switching valve remains in the heating operation state, the three-way switching valve is switched, and the fourth By opening the bypass circuit and performing defrost operation, it prevents heat loss when switching the conventional four-way switching valve, prevents cold air from blowing into the room, and increases compressor capacity. Heat exchange between the high-temperature, high-pressure gas refrigerant from the compressor and the suction side piping can also prevent liquid from returning to the compressor.

また、本発明によれば、デフロスト運転中において、室
内温度が所定値以下となった場合に、その温度を検出す
ることにより、一定時間開隔をおいて暖房運転を行ない
、室内側熱交換器での冷媒の溜り込みを防止し得るもの
である。
Further, according to the present invention, when the indoor temperature falls below a predetermined value during the defrost operation, by detecting the temperature, the heating operation is performed after a certain period of time, and the indoor heat exchanger This prevents refrigerant from accumulating in the air.

さらに、本発明によれば、デフロスト運転中において室
内温度が所定値以下となった場合に、その温度を検出す
ることで、電磁弁を開閉制御し、第6のバイパス回路を
開路することにより、室内側熱交換器内に溜り込んだ冷
媒を、アキュムレータ側に戻すようにしたものである。
Furthermore, according to the present invention, when the indoor temperature falls below a predetermined value during defrost operation, by detecting the temperature, the solenoid valve is controlled to open and close, and the sixth bypass circuit is opened. The refrigerant accumulated in the indoor heat exchanger is returned to the accumulator side.

また、本発明によれば、デフロスト運転時には、三方切
換弁により第4のバイパス回路計開路することにより、
圧縮機からの高温高圧のガス冷媒を室外側熱交換器に送
り、デフロストを効率よく短時間で行なえる一方、冷房
および暖房運転中において圧縮機からの高温高圧の吐出
ガスの一部でサクション熱交換器を介して圧縮機への吸
入側配管中の冷媒を加熱することで圧縮機への液戻り現
象を防ぎ、さらにデフロスト運転中はサクション熱交換
器による熱交換が行なわれないために、デフロスト運転
終了近辺での過熱運転気味になることを抑え、圧縮機ト
ラブルを防止し得るものである。
Further, according to the present invention, during defrost operation, by opening the fourth bypass circuit by the three-way switching valve,
The high-temperature, high-pressure gas refrigerant from the compressor is sent to the outdoor heat exchanger, and defrosting can be performed efficiently and in a short time.However, during cooling and heating operations, a portion of the high-temperature, high-pressure discharged gas from the compressor generates suction heat. By heating the refrigerant in the suction side piping to the compressor via the exchanger, the liquid returns to the compressor. This suppresses overheating near the end of operation and prevents compressor trouble.

〔実施例〕〔Example〕

第1図は本発明に係る空気調和装置の一実施例を示すも
のであり、同図において前述した第5図と同一または相
当する部分には同一番号を付してその説明は省略する。
FIG. 1 shows an embodiment of an air conditioner according to the present invention, and in this figure, the same or corresponding parts as in FIG. 5 described above are given the same numbers and the explanation thereof will be omitted.

さて、本発明によれば、圧縮機1、四方切換弁2、室外
側熱交換器3、第1の絞り装置4、第2の絞り装置5、
室内側熱交換器6およびアキュムレータ7を冷媒配管で
順次接続してなる冷媒回路を備えてなる空気調和装置に
おいて、圧縮機1の吐出側配管から分岐され前記アキュ
ムレータ7と圧縮機1との閏を接続する吸入側配管1a
と熱交換可能に構成されたサクション熱交換器11を通
りかつ補助キャピラリチューブ12を通って第1および
第2の絞り装置4.5間の配管側にバイパスして接続さ
れた第1のバイパス配管10を備え、かつ第1の減圧装
置f4aをバイパスする逆止弁4bを設けた第2のバイ
パス回路4cと第2の減圧装置5aをバイパスする逆止
弁5bを設けた第3のバイパス回路5Cとを設けるとと
もに、圧縮機1の吐出側配管1bから三方切換弁13を
介して前記第1および第2の絞り装W4,5間の配管側
にバイパスして接続される吐出側配管1bの内径よりも
細い内径をもつ細管15を少なくとも一部に有する第4
のバイパス路14を設け、さらに圧縮I!1の吐出側配
管1bと前記三方切換弁13との間から圧力調整弁16
を介して前記第1および第2の絞り装置4,5間の配管
側にバイパスして接続される第5のバイパス回路17を
設けてなる構成としたところに特徴を有している。
Now, according to the present invention, the compressor 1, the four-way switching valve 2, the outdoor heat exchanger 3, the first expansion device 4, the second expansion device 5,
In an air conditioner including a refrigerant circuit in which an indoor heat exchanger 6 and an accumulator 7 are sequentially connected by refrigerant piping, a refrigerant circuit is branched from the discharge side piping of the compressor 1 and connects the accumulator 7 and the compressor 1. Suction side piping 1a to be connected
A first bypass pipe that passes through a suction heat exchanger 11 configured to be able to exchange heat with the auxiliary capillary tube 12 and is connected to the pipe side between the first and second throttle devices 4.5 in a bypass manner. 10 and provided with a check valve 4b that bypasses the first pressure reducing device f4a, and a third bypass circuit 5C provided with a check valve 5b that bypasses the second pressure reducing device 5a. and the inner diameter of the discharge side piping 1b which is connected from the discharge side piping 1b of the compressor 1 via the three-way switching valve 13 to the piping side between the first and second throttle devices W4 and 5 in a bypass manner. A fourth tube having at least a portion thereof a thin tube 15 having an inner diameter smaller than that of the fourth tube.
A bypass path 14 is provided for the compression I! A pressure regulating valve 16 is inserted between the discharge side pipe 1b of No. 1 and the three-way switching valve 13.
The present invention is characterized in that a fifth bypass circuit 17 is provided, which is connected to the piping between the first and second throttle devices 4 and 5 in a bypass manner.

そして、このような構成において、デフロスト運転時に
四方切換弁2を暖房運転状態としたままで室内側および
室外側熱交換器6.3に送風する送風機8.9を停止さ
せるとともに、三方切換弁13を切換えて第4のバイパ
ス回路14を開路してデフロスト運転を行なえるように
している。
In such a configuration, during the defrost operation, the blower 8.9 that blows air to the indoor and outdoor heat exchangers 6.3 is stopped while the four-way switching valve 2 remains in the heating operation state, and the three-way switching valve 13 is stopped. is switched to open the fourth bypass circuit 14 to enable defrost operation.

以上の構成による空気調和装置において、冷房運転時く
冷媒の流れは図中太い実線による矢印方向)には、圧縮
機1から吐出された高温高圧のガス冷媒は、四方切換弁
2を通り室外側熱交換器3で室外側送風機9によって送
風される室外空気と熱交換するとともに、これによりガ
ス冷媒が凝縮液化する。そして、第1の絞り装W4にお
ける第1の減圧装置4aによって減圧され、低温低圧の
液冷媒となる。一方、圧縮機1から吐出された高温高圧
のガス冷媒の一部は、第1のバイパス回路10を通りサ
クション熱交換器11で圧縮機1へ吸入される低圧冷媒
と熱交換し、吸入冷媒を加熱して完全に気化させ、自ら
は凝縮液化し、補助キャピラリチューブ12によって減
圧されて低温低圧の液冷媒となり、第1および第2の絞
り装置4.5間の配管に合流し、第2の絞り装置5にお
ける第3のバイパス回路5Cを通り、室内側熱交換器6
に入り室内側送風機8から送風される室内空気と熱交換
して室内空気を冷却するとともに、これにより液冷媒は
蒸発ガス化し、四方切換弁2およびアキュムレータ7を
通り圧縮機1に戻るという冷凍サイクル回路が構成され
る。
In the air conditioner configured as described above, during cooling operation, the refrigerant flows in the direction of the arrow indicated by the thick solid line in the figure. The heat exchanger 3 exchanges heat with the outdoor air blown by the outdoor blower 9, and thereby the gas refrigerant is condensed and liquefied. Then, the pressure is reduced by the first pressure reducing device 4a in the first throttle device W4, and the refrigerant becomes a low-temperature, low-pressure liquid refrigerant. On the other hand, a part of the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 passes through the first bypass circuit 10 and exchanges heat with the low-pressure refrigerant sucked into the compressor 1 in the suction heat exchanger 11, thereby converting the suction refrigerant into It is heated to completely vaporize it, condenses and liquefies itself, is depressurized by the auxiliary capillary tube 12, becomes a low-temperature, low-pressure liquid refrigerant, joins the piping between the first and second throttle devices 4.5, and flows into the second Passing through the third bypass circuit 5C in the expansion device 5, the indoor heat exchanger 6
In this refrigeration cycle, the liquid refrigerant enters the room and exchanges heat with the indoor air blown from the indoor blower 8 to cool the indoor air, and the liquid refrigerant evaporates into gas and returns to the compressor 1 through the four-way switching valve 2 and the accumulator 7. The circuit is configured.

また、暖房運転時(冷媒の流れは図中細い実線による矢
印方向)には、圧縮機1から吐出された高温高圧のガス
冷媒は、暖房側に切換えられた四方切換弁2を通って室
内側熱交換器6に入り、室内側送風機8から送風される
室内空気と熱交換して室内空気を加熱するとともに、こ
れによりガス冷媒は凝縮液化する。そして、第2の絞り
装置5における第2の減圧装置5aによって減圧され、
低温低圧の液冷媒となる。一方、圧縮機1から吐出され
た高温高圧のガス冷媒の一部は、第1のバイパス回路1
0を通り、サクション熱交換器11で圧縮機1に吸入さ
れる低圧冷媒と熱交換し吸入冷媒を加熱して完全に気化
させ、自らは凝縮液化し補助キャピラリチューブ12に
よって減圧され、低温低圧の液冷媒となって前記配管側
に合流し、第1の絞り装置4における第2のバイパス回
路4cを通り、室外側熱交換器3に入り室外側送風機9
から送風される室外空気と熱交換し、室外空気から採熱
して室外空気を冷却するとともに、これにより液冷媒は
蒸発ガス化し、四方切換弁2、アキュムレータ7を通り
、圧縮機1に戻るという冷凍サイクル回路が構成される
In addition, during heating operation (the flow of refrigerant is in the direction of the arrow indicated by the thin solid line in the figure), the high temperature and high pressure gas refrigerant discharged from the compressor 1 passes through the four-way switching valve 2, which is switched to the heating side, to the indoor side. The gas refrigerant enters the heat exchanger 6 and exchanges heat with the indoor air blown from the indoor blower 8 to heat the indoor air, and thereby condenses and liquefies the gas refrigerant. Then, the pressure is reduced by the second pressure reducing device 5a in the second expansion device 5,
It becomes a low temperature, low pressure liquid refrigerant. On the other hand, a part of the high temperature and high pressure gas refrigerant discharged from the compressor 1 is transferred to the first bypass circuit 1.
0, the suction heat exchanger 11 exchanges heat with the low-pressure refrigerant sucked into the compressor 1, heats the suction refrigerant, and completely vaporizes the refrigerant, which condenses and liquefies itself and is depressurized by the auxiliary capillary tube 12 to become a low-temperature, low-pressure refrigerant. It becomes a liquid refrigerant, joins the piping side, passes through the second bypass circuit 4c in the first throttle device 4, enters the outdoor heat exchanger 3, and flows into the outdoor blower 9.
In this refrigeration system, the liquid refrigerant evaporates into gas, passes through the four-way switching valve 2, the accumulator 7, and returns to the compressor 1. A cycle circuit is constructed.

また、このような暖房運転時において、たとえば室外空
気温度が低く、室外側熱交換器3に着霜が生じた場合に
必要とされるデフロスト運転時(冷媒の流れは図中破線
による矢印方向)には、圧縮11!1から吐出された高
温高圧のガス冷媒は、デフロスト側に切換えられている
三方切換弁13を通り第1および第2の絞り装置4.5
間の配管側に接続されている第4のバイパス回路14を
通って該配管側に流入される。
In addition, during such a heating operation, for example, during a defrost operation that is required when the outdoor air temperature is low and frost forms on the outdoor heat exchanger 3 (refrigerant flow is in the direction of the arrow indicated by the broken line in the figure). In this case, the high-temperature, high-pressure gas refrigerant discharged from the compressor 11!1 passes through the three-way switching valve 13, which is switched to the defrost side, and passes through the first and second throttle devices 4.5.
It flows into the piping side through the fourth bypass circuit 14 connected to the piping side between them.

一方、ここで圧縮機1から吐出された高温高圧のガス冷
媒の一部は、第1のバイパス回路10を通り、サクショ
ン熱交換器11で圧縮l!11に吸入される低圧冷媒と
熱交換され、吸入冷媒を加熱して完全に気化させるとと
もに、自らは凝縮液化し補助キャピラリチューブ12に
よって減圧されて低温低圧の液冷媒となり、前記第4の
バイパス回路14の細管15部分を通った高温高圧のガ
ス冷媒と混合される。そして、これら合流されたガス冷
媒は、第1の絞り装W4における第2のバイパス回路4
Cを通り室外側熱交換器3に入る。このとき、室外側送
風機9は停止されている。そして、高温ガス冷媒は、室
外側熱交換器3の表面に着霜した霜を高温ガス冷媒で融
解し、この冷媒が凝縮液化して四方切換弁2を通りアキ
ュムレータ7に入り圧縮機lに戻されることになる。
On the other hand, a part of the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 passes through the first bypass circuit 10 and is compressed by the suction heat exchanger 11! 11, the suction refrigerant is heated and completely vaporized, and it condenses and liquefies itself and is depressurized by the auxiliary capillary tube 12 to become a low-temperature, low-pressure liquid refrigerant, which is then transferred to the fourth bypass circuit. It is mixed with the high-temperature, high-pressure gas refrigerant that has passed through the 15 portions of the thin tubes 14 and 15. These combined gas refrigerants are then transferred to the second bypass circuit 4 in the first restrictor W4.
C and enters the outdoor heat exchanger 3. At this time, the outdoor fan 9 is stopped. Then, the high-temperature gas refrigerant melts the frost that has formed on the surface of the outdoor heat exchanger 3, and this refrigerant is condensed and liquefied, passes through the four-way switching valve 2, enters the accumulator 7, and returns to the compressor 1. It will be.

したがって、このようなデフロスト時においては、四方
切換弁2を暖房側から冷房側に切換えることなく、デフ
ロスト運転に入ることができ、これにより切換えのため
の熱ロスがない。また、低温液冷媒が室内側熱交換器6
内を通過しないために、従来のような室内側に冷風が吹
出されるといった問題も解消される。
Therefore, during such defrosting, the defrost operation can be started without switching the four-way switching valve 2 from the heating side to the cooling side, and thereby there is no heat loss due to switching. In addition, the low temperature liquid refrigerant is transferred to the indoor heat exchanger 6.
Since the air does not pass through the interior, the problem of conventional cold air being blown into the interior of the room is also resolved.

さらに、第4のバイパス回路14の一部を構成する配管
15の内径を吐出側配管1bより細くするようにしたも
ので、圧力損失が生じ、圧縮機1の高圧側圧力が上昇し
、入力が増加するので、圧縮機1の能力が増大し、デフ
ロスト時間を短くすることが可能となる。
Furthermore, the inner diameter of the piping 15 constituting a part of the fourth bypass circuit 14 is made smaller than that of the discharge side piping 1b, which causes pressure loss, increases the pressure on the high pressure side of the compressor 1, and reduces the input. This increases the capacity of the compressor 1, making it possible to shorten the defrost time.

また、デフロスト終了信号は、デフロスト運転中の室外
側熱交換器3の出口側温度をサーミスタ等の検出装置で
検出しているが、高圧側圧力を上昇させているために、
デフロスト終了直前の急激な高圧側圧力の上昇により、
室外側熱交換器3の出口側温度が終了温度に達する前に
、高圧カットにて異常停止される場合があるが、これは
前記第5のバイパス回路17の存在によって解消し得る
ものである。すなわち、この第5のバイパス回路17に
おける圧力調整弁16が、上述した高圧側圧力の急激な
上昇によって開くことにより、高圧側圧力を一定に維持
することが可能となり、これにより高圧カットによる異
常停止を防止することができるやここで、この第5のバ
イパス回路17の圧力調整弁16は、たとえば冷房ある
いは暖房運転中、何らかの原因で高圧側圧力が異常に高
くなった場合でも、この圧力調整弁16が開き、高圧側
圧力を一定に維持することにより、高圧カットによる異
常停止を防止し得るものである。
In addition, the defrost end signal detects the outlet side temperature of the outdoor heat exchanger 3 during defrost operation using a detection device such as a thermistor, but since the high pressure side pressure is increased,
Due to the sudden rise in pressure on the high pressure side just before the end of defrost,
There are cases where the outdoor heat exchanger 3 is abnormally stopped due to high pressure cut before the temperature on the outlet side reaches the end temperature, but this can be resolved by the presence of the fifth bypass circuit 17. That is, by opening the pressure regulating valve 16 in this fifth bypass circuit 17 due to the above-mentioned sudden increase in the high pressure side pressure, it becomes possible to maintain the high pressure side pressure constant, thereby preventing abnormal stoppage due to high pressure cut. Here, the pressure regulating valve 16 of this fifth bypass circuit 17 can prevent this pressure regulating valve 16 even if the high pressure side pressure becomes abnormally high for some reason during cooling or heating operation, for example. 16 is opened and the pressure on the high pressure side is maintained constant, thereby preventing abnormal stoppage due to high pressure cutting.

また、サクション熱交換器11によって圧縮機1に対す
る吸入側配管1aを、圧縮機1から吐出された高温高圧
のガス冷媒で熱交換するように構成したので、圧縮機1
への液戻り現象を防止でき、圧縮機トラブルを防止する
ことが可能となる。
In addition, since the suction heat exchanger 11 is configured to exchange heat between the suction side piping 1a to the compressor 1 and the high temperature and high pressure gas refrigerant discharged from the compressor 1, the compressor 1
It is possible to prevent the phenomenon of liquid returning to the compressor, and it is possible to prevent problems with the compressor.

なお、図中20で示したように室内側熱交換器6に対面
して電熱器を設置するようにすると、デフロスト運転中
において冷媒がこの室内側熱交換器6を通らないため、
室内側送風機8を運転することができ、デフロスト運転
中も暖房運転を継続できるといった利点を奏するもので
ある。
Note that if the electric heater is installed facing the indoor heat exchanger 6 as indicated by 20 in the figure, the refrigerant will not pass through the indoor heat exchanger 6 during the defrost operation.
This has the advantage that the indoor blower 8 can be operated and the heating operation can be continued even during the defrosting operation.

第2図は本発明の別の実施例を示すものであり、この実
施例では、室内側熱交換器6が配設される室内温度を検
出するための室内温度検出器30を設け、デフロスト運
転中において室内温度が所定値以下である場合に、一定
時間間隔で三方切換弁13を暖房運転モードに戻すよう
にしたところを特徴としている。
FIG. 2 shows another embodiment of the present invention. In this embodiment, an indoor temperature detector 30 is provided to detect the indoor temperature in which the indoor heat exchanger 6 is installed, and the defrost operation is performed. It is characterized in that the three-way switching valve 13 is returned to the heating operation mode at fixed time intervals when the indoor temperature is below a predetermined value.

すなわち、デフロスト運転中、室内温度が所定値以下(
たとえば5℃以下)である場合、室内側熱交換器6内の
圧力は略5 kg/cniG程度となり、第1および第
2の絞り装W4.5間の配管内圧力(通常中間圧となり
、略10〜15kg/cnG程度)より低くなるために
、デフロスト運転中に室内側熱交換器6に冷媒が溜り込
むことになる。したがって、冷媒回路を循環する冷媒量
の不足現象が生じたり、また冷媒が溜り過ぎることによ
り、暖房運転に戻ったときに、凝縮器として作用するた
め、凝縮器内に冷媒が満杯となり、高圧カットを生じる
こともある。
In other words, during defrost operation, the indoor temperature is below the predetermined value (
For example, if the temperature is below 5°C), the pressure inside the indoor heat exchanger 6 will be about 5 kg/cniG, and the pressure inside the pipe between the first and second restrictors W4.5 (normally intermediate pressure, approximately (approximately 10 to 15 kg/cnG), refrigerant accumulates in the indoor heat exchanger 6 during the defrost operation. Therefore, if there is a shortage of refrigerant circulating in the refrigerant circuit, or if too much refrigerant accumulates, it will act as a condenser when heating operation returns, so the refrigerant will be full in the condenser and the high pressure will be cut off. may occur.

このため、この実施例装置では、デフロスト運転中に室
内温度を室内温度検出器30にて検出し、所定値以下(
たとえば5℃以下)の場合に、一定時間間隔をおいて暖
房運転に戻しくたとえばデフロスト運転を5分間実施し
た後、1分間暖房運転に戻し、再びデフロスト運転に入
るといった運転制御を行なうことで)、室内側熱交換器
6での冷媒の溜り込みを防止し得るものである。
Therefore, in this example device, the indoor temperature is detected by the indoor temperature detector 30 during the defrost operation, and the indoor temperature is detected to be below a predetermined value (
For example, if the temperature is below 5 degrees Celsius), return to heating operation after a certain time interval. For example, after performing defrost operation for 5 minutes, return to heating operation for 1 minute, and then re-entering defrost operation) , it is possible to prevent the refrigerant from accumulating in the indoor heat exchanger 6.

第3図は本発明のさらに別の実施例を示すものであり、
この実施例では、上述した実施例と同様に、デフロスト
運転中に室内温度が所定値以下となった場合において問
題となる室内側熱交換器6内での冷媒の溜り込みを防ぐ
ために、室内側熱交換器6と第2の絞り装W5との間の
配管から、電磁弁19を介してアキュムレータ7側にバ
イパスする第6のバイパス回路18を設け、かつデフロ
スト運転中に室内温度が所定値以下である場合に、これ
を室内温度検出器30で検出することにより、一定時間
間隔で電磁弁19によって第6のバイパス回路18を開
路するようにしたところを特徴としている。
FIG. 3 shows yet another embodiment of the present invention,
In this embodiment, similarly to the embodiments described above, in order to prevent refrigerant from accumulating in the indoor heat exchanger 6, which would be a problem if the indoor temperature falls below a predetermined value during defrost operation, A sixth bypass circuit 18 is provided that bypasses the piping between the heat exchanger 6 and the second throttle device W5 to the accumulator 7 side via a solenoid valve 19, and the indoor temperature is below a predetermined value during defrost operation. , the sixth bypass circuit 18 is opened by the solenoid valve 19 at fixed time intervals by detecting this with the indoor temperature detector 30.

すなわち、デフロスト運転中において室内温度が所定値
以下(たとえば5℃以下)となった場合に、その温度を
検出することで、電磁弁19を一定時間間隔をおいて開
閉制御し、第6のバイパス回路18を開路することによ
り、室内側熱交換器6内に溜り込んだ冷媒を、アキュム
レータ7fiに戻すようにしたものである(たとえば5
分間デフロスト運転を実施した後、1分間第6のバイパ
ス回路18を開路し、溜り込み冷媒をアキュムレータ7
に戻すような運転制御を行なう)。そして、このような
構成を採用すると、デフロスト運転中での室内側熱交換
器6への冷媒の溜り込みによる不具合を解決し得るもの
である。
That is, when the indoor temperature falls below a predetermined value (for example, below 5 degrees Celsius) during defrost operation, by detecting that temperature, the solenoid valve 19 is controlled to open and close at regular intervals, and the sixth bypass is activated. By opening the circuit 18, the refrigerant accumulated in the indoor heat exchanger 6 is returned to the accumulator 7fi (for example, 5
After performing the defrost operation for one minute, the sixth bypass circuit 18 is opened for one minute, and the accumulated refrigerant is transferred to the accumulator 7.
(control the operation to return it to If such a configuration is adopted, it is possible to solve problems caused by accumulation of refrigerant in the indoor heat exchanger 6 during the defrost operation.

第4図は本発明の他の実施例を示し、この実施例では、
圧縮機1から吐出される高温高圧なガス冷媒の一部にて
吸入側配管1aとの間でサクション熱交換器11により
熱交換可能に構成されて第1および第2の絞り装置4.
5間の配管側にバイパス接続される第1のバイパス回路
10を、圧縮機1の吐出側配管lb上で第4のバイパス
回路14への回路切換えを行なう三方切換弁13とその
下流側に配置される四方切換弁2との間から分岐部10
aにて分岐するように構成したところに特徴を有してい
る。
FIG. 4 shows another embodiment of the invention, in which:
A suction heat exchanger 11 is configured to exchange heat between a portion of the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 and the suction side pipe 1a, and the first and second expansion devices 4.
A first bypass circuit 10 that is bypass-connected to the piping side between the compressor 1 and the three-way switching valve 13 that switches the circuit to the fourth bypass circuit 14 on the discharge side piping lb of the compressor 1 is arranged downstream of the three-way switching valve 13 that switches the circuit to the fourth bypass circuit 14. The branch part 10 is connected to the four-way switching valve 2.
The feature is that it is configured to branch at point a.

このような構成によれば、デフロスト運転時には、三方
切換弁13により第4のバイパス回路14を開路するこ
とにより、圧縮機1からの高温高圧のガス冷媒を室外側
熱交換器3に送り、デフロスト運転を効率よく短時間で
行なえるばかりでなく、冷房、暖房運転中においては、
第1のバイパス回路10により圧縮機1からの高温高圧
の吐出ガスの一部でサクション熱交換器11を介して圧
縮機1への吸入側配管1a中の冷媒を加熱し、圧縮機1
への液戻り現象等を防ぎ、圧縮機1を効率よく運転制御
し得るものである。さらに、デフロスト運転中はサクシ
ョン熱交換器11による熱交換が行なわれないなめに、
デフロスト運転終了近辺で圧縮機1における高圧、低圧
弁上がり、過熱運転気味になることを抑制することが可
能で、圧縮機トラブルを防止し得るものである。
According to such a configuration, during defrost operation, by opening the fourth bypass circuit 14 using the three-way switching valve 13, the high temperature and high pressure gas refrigerant from the compressor 1 is sent to the outdoor heat exchanger 3, and the defrost operation is performed. Not only can you operate efficiently and in a short time, but during cooling and heating operation,
The first bypass circuit 10 heats the refrigerant in the suction side piping 1a to the compressor 1 via the suction heat exchanger 11 with a part of the high-temperature, high-pressure discharge gas from the compressor 1.
This prevents the phenomenon of liquid returning to the compressor 1 and enables efficient operation control of the compressor 1. Furthermore, since heat exchange by the suction heat exchanger 11 is not performed during the defrost operation,
It is possible to suppress the rise of the high pressure and low pressure valves in the compressor 1 and the tendency towards overheating in the compressor 1 near the end of the defrost operation, thereby making it possible to prevent compressor troubles.

なお、本発明は上述した実施例構造に限定されず、空気
調和装置各部の形状、構造等を、必要に応じて適宜変形
、変更することは自由である。たとえば第2図ないし第
4図において図中破線で示したように、第4のバイパス
回路14の途中に逆止弁等を付設し、必要とする冷媒の
流れ方向のみを確保し得るように構成する等を始めとし
て種々の変形例が考えられよう。
Note that the present invention is not limited to the structure of the embodiment described above, and the shape, structure, etc. of each part of the air conditioner may be modified and changed as necessary. For example, as shown by the broken line in FIGS. 2 to 4, a check valve or the like is installed in the middle of the fourth bypass circuit 14 to ensure only the required flow direction of the refrigerant. Various modifications may be considered, including the following.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に係る空気調和装置によれば
、圧縮機からの高温高圧のガス冷媒の一部を、サクショ
ン熱交換器を介して吸入側配管と熱交換するように構成
したので、圧縮機への液戻り現象を防止できるとともに
、四方切換弁を暖房運転のままで三方切換弁を切換えて
デフロスト運転を行なうことが可能で、従来のような四
方切換弁の切換えによる熱ロス等を防止でき、しかも従
来のような室内側への冷風の吹出し等といった問題を一
掃することが可能となる等といった種々優れた効果があ
る。さらに、デフロスト運転時に吐出側配管よりも細い
内径による配管を有するバイパス回路を、圧縮機からの
吐出側ガス冷媒が通るので、高圧圧力が増大し、これに
より圧縮機能力を向上させることができ、デフロスト時
間を短くすることができる等の利点がある。
As explained above, according to the air conditioner according to the present invention, a part of the high temperature and high pressure gas refrigerant from the compressor is configured to exchange heat with the suction side piping via the suction heat exchanger. In addition to preventing the phenomenon of liquid returning to the compressor, it is also possible to perform defrost operation by switching the three-way switching valve while the four-way switching valve remains in heating mode, eliminating heat loss, etc. caused by switching the four-way switching valve as in the past. It has various excellent effects such as being able to prevent the problem and also eliminating the conventional problems such as blowing of cold air toward the indoor side. Furthermore, during defrost operation, the discharge side gas refrigerant from the compressor passes through a bypass circuit having a pipe with an inner diameter smaller than that of the discharge side pipe, so the high pressure increases, thereby improving the compression function. There are advantages such as being able to shorten the defrost time.

また、冷房運転中、暖房運転中、デフロスト運転中に高
圧圧力が上昇し過ぎた場合は、圧力調整弁により高圧圧
力を一定に維持することかにより、高圧カットによる異
常停止という問題を適切かつ確実に防止できるという利
点もある。
In addition, if high pressure rises too much during cooling, heating, or defrosting operation, the problem of abnormal stoppage due to high pressure cut can be appropriately and reliably prevented by maintaining the high pressure constant with a pressure regulating valve. Another advantage is that it can be prevented.

さらに、室内温度が低い場合においても、室内側熱交換
器内に冷媒が溜ることなく、冷媒不足現象や暖房運転切
換え時の高圧カット等を未然に防止できるという効果を
奏する。
Further, even when the indoor temperature is low, the refrigerant does not accumulate in the indoor heat exchanger, and it is possible to prevent a refrigerant shortage phenomenon and a high pressure cut when switching heating operation, etc.

また、本発明において、圧縮機から吐出される高温高圧
なガス冷媒の一部にて吸入側配管との間でサクション熱
交換器により熱交換可能に構成されて第1および第2の
絞り装置間の配管側にバイパス接続される第1のバイパ
ス回路を、圧縮機1の吐出側配管上で第4のバイパス回
路への回路切換えを行なう三方切換弁とその下流側に配
置される四方切換弁との間から分岐して設けることによ
り、デフロスト運転時には三方切換弁により第4のバイ
パス回路を開路し、圧縮機からの高温高圧のガス冷媒を
室外側熱交換器に送り、デフロストを効率よく短時間で
行なえる一方、冷房および暖房運転中において圧縮機か
らの高温高圧の吐出ガスの一部でサクション熱交換器を
介して圧縮機への吸入側配管中の冷媒を加熱することで
圧縮機への液戻り現象を防ぎ、さらにデフロスト運転中
はサクション熱交換器による熱交換が行なわれないため
に、デフロスト運転終了近辺での過熱運転気味になるこ
とを抑え、圧縮機トラブルを防止し得るという利点もあ
る。
In addition, in the present invention, the suction heat exchanger is configured to enable heat exchange between a part of the high temperature and high pressure gas refrigerant discharged from the compressor and the suction side piping, and between the first and second throttle devices. A three-way switching valve that switches the first bypass circuit bypass-connected to the piping side of the compressor 1 to a fourth bypass circuit on the discharge side piping of the compressor 1, and a four-way switching valve disposed downstream thereof. During defrost operation, the fourth bypass circuit is opened by the three-way switching valve, and the high-temperature, high-pressure gas refrigerant from the compressor is sent to the outdoor heat exchanger, allowing defrost to be performed efficiently and in a short time. On the other hand, during cooling and heating operations, part of the high-temperature, high-pressure discharge gas from the compressor is used to heat the refrigerant in the suction side piping to the compressor via a suction heat exchanger. It also has the advantage of preventing liquid return, and since no heat exchange is performed by the suction heat exchanger during defrost operation, it suppresses overheating near the end of defrost operation and prevents compressor trouble. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る空気調和装置の一実施例を示す冷
凍サイクル回路の概略構成図、第2図ないし第4図は本
発明の他の実施例をそれぞれ示す冷凍サイクル回路の概
略構成図、第5図は従来例を示す概略構成図である。 1・・・・圧縮機、1a・・・・吸入側配管、1b・・
・・吐出側配管、2・・・・四方切換弁、3−・・−室
外側熱交換器、4,5・・・・第1および第2の絞り装
置、4a、5a−・・・第1および第2の減圧装置(キ
ャピラリチューブ)、4b、5b・・・・逆止弁、4c
、5c・・・・第2および第3のバイパス回路、6・・
・・室内側熱交換器、7・・・−アキュムレータ、8.
9・・・・室内側および室外側送風機、10・・・・第
1のバイパス回路、11・・・・サクション熱交換器、
12・・・・補助キャピラリチューブ、13・・・・三
方切換弁、14・・・・第4のバイパス回路、15・−
・・細管、16・・・・圧力調整弁、17・・・・第5
のバイパス回路、18・・・−第6のバイパス回路、1
9・・・・電磁弁、20・・・・電熱器、30・・−・
室内温度検出器。
FIG. 1 is a schematic diagram of a refrigeration cycle circuit showing one embodiment of an air conditioner according to the present invention, and FIGS. 2 to 4 are schematic diagrams of a refrigeration cycle circuit showing other embodiments of the present invention. , FIG. 5 is a schematic configuration diagram showing a conventional example. 1... Compressor, 1a... Suction side piping, 1b...
...Discharge side piping, 2...Four-way switching valve, 3-...Outdoor heat exchanger, 4, 5...First and second throttling devices, 4a, 5a-...No. 1 and 2nd pressure reducing device (capillary tube), 4b, 5b... check valve, 4c
, 5c... second and third bypass circuits, 6...
...Indoor heat exchanger, 7...-accumulator, 8.
9... Indoor side and outdoor side blower, 10... First bypass circuit, 11... Suction heat exchanger,
12... Auxiliary capillary tube, 13... Three-way switching valve, 14... Fourth bypass circuit, 15... -
...Thin tube, 16...Pressure regulating valve, 17...5th
Bypass circuit, 18...-Sixth bypass circuit, 1
9... Solenoid valve, 20... Electric heater, 30...
Indoor temperature detector.

Claims (4)

【特許請求の範囲】[Claims] (1)圧縮機、四方切換弁、室外側熱交換器、第1の絞
り装置、第2の絞り装置、室内側熱交換器およびアキュ
ムレータを冷媒配管で順次接続してなる冷媒回路と、前
記圧縮機の吐出側配管から分岐され前記アキュムレータ
と圧縮機との間を接続する吸入側配管との間で熱交換可
能に構成されるとともに前記第1および第2の絞り装置
間の配管側にバイパスして接続される第1のバイパス回
路とを備え、かつ前記第1の絞り装置を構成する第1の
減圧装置をバイパスする逆止弁を有する第2のバイパス
回路と前記第2の絞り装置を構成する第2の減圧装置を
バイパスする逆止弁を有する第3のバイパス回路とを設
けるとともに、前記圧縮機の吐出側配管から三方切換弁
を介して前記第1および第2の絞り装置間の配管側にバ
イパスして接続される前記吐出側配管の内径よりも細い
配管内径部分を有する第4のバイパス回路と、前記圧縮
機の吐出側配管と三方切換弁との間から圧力調整弁を介
して前記第1および第2の絞り装置間の配管側にバイパ
スして接続される第5のバイパス回路とを設けてなり、
前記三方切換弁を切換えて第4のバイパス回路を開路し
てデフロスト運転を行なうように構成したことを特徴と
する空気調和装置。
(1) A refrigerant circuit formed by sequentially connecting a compressor, a four-way switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, an indoor heat exchanger, and an accumulator through refrigerant piping; It is configured to be able to exchange heat with a suction side pipe that is branched from the discharge side pipe of the compressor and connects between the accumulator and the compressor, and is bypassed to the pipe side between the first and second throttle devices. a first bypass circuit connected to the first bypass circuit, and a second bypass circuit having a check valve that bypasses a first pressure reducing device constituting the first throttle device; and a third bypass circuit having a check valve that bypasses the second pressure reducing device, and piping between the first and second throttle devices from the discharge side piping of the compressor via a three-way switching valve. A fourth bypass circuit having a pipe inner diameter portion smaller than the inner diameter of the discharge side pipe connected to the side by bypass, and a pressure regulating valve from between the discharge side pipe of the compressor and the three-way switching valve. and a fifth bypass circuit connected to the piping side between the first and second throttle devices in a bypass manner,
An air conditioner characterized in that the three-way switching valve is switched to open the fourth bypass circuit to perform defrost operation.
(2)請求項1において、デフロスト運転中に室内温度
が所定値以下である場合に、一定時間間隔で三方切換弁
を暖房運転モードに戻すように制御したことを特徴とす
る空気調和装置。
(2) The air conditioner according to claim 1, wherein the three-way switching valve is controlled to return to the heating operation mode at regular time intervals when the indoor temperature is below a predetermined value during the defrost operation.
(3)請求項1または請求項2において、室内側熱交換
器と第2の絞り装置との間の配管から、電磁弁を介して
アキュムレータにバイパスする第6のバイパス回路を設
け、かつデフロスト運転中に室内温度が所定値以下であ
る場合に、一定時間間隔で電磁弁により第6のバイパス
回路を開路するようにしたことを特徴とする空気調和装
置。
(3) In claim 1 or 2, a sixth bypass circuit is provided that bypasses the accumulator from the piping between the indoor heat exchanger and the second throttling device via the solenoid valve, and the defrost operation is performed. 1. An air conditioner characterized in that the sixth bypass circuit is opened by a solenoid valve at fixed time intervals when the indoor temperature is below a predetermined value.
(4)請求項1において、アキュムレータと圧縮機との
間を接続する吸入側配管との間で熱交換可能に構成され
て第1および第2の絞り装置間の配管側にバイパス接続
される第1のバイパス回路を、圧縮機の吐出側配管上で
第4のバイパス回路への回路切換えを行なう三方切換弁
とその下流側に配置される四方切換弁との間から分岐し
て設けたことを特徴とする空気調和装置。
(4) In claim 1, the first valve is configured to be able to exchange heat between the suction side piping connecting the accumulator and the compressor, and is bypass-connected to the piping side between the first and second throttle devices. The first bypass circuit is branched from between the three-way switching valve that switches the circuit to the fourth bypass circuit on the discharge side piping of the compressor and the four-way switching valve located downstream thereof. Characteristic air conditioner.
JP2217869A 1990-08-17 1990-08-17 Air conditioner Expired - Fee Related JP2550762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2217869A JP2550762B2 (en) 1990-08-17 1990-08-17 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2217869A JP2550762B2 (en) 1990-08-17 1990-08-17 Air conditioner

Publications (2)

Publication Number Publication Date
JPH0498053A true JPH0498053A (en) 1992-03-30
JP2550762B2 JP2550762B2 (en) 1996-11-06

Family

ID=16711046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2217869A Expired - Fee Related JP2550762B2 (en) 1990-08-17 1990-08-17 Air conditioner

Country Status (1)

Country Link
JP (1) JP2550762B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195677A (en) * 2000-10-20 2002-07-10 Denso Corp Heat pump cycle
KR100762513B1 (en) * 2006-05-26 2007-10-02 주식회사 대우일렉트로닉스 Defrost apparatus of heat pump air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104422060B (en) * 2013-08-20 2016-12-28 广东美的制冷设备有限公司 The control method of air-conditioner and device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57169567A (en) * 1981-04-09 1982-10-19 Sharp Kk Heat pump type air conditionor
JPH02110266A (en) * 1988-10-19 1990-04-23 Mitsubishi Electric Corp Air-conditioning device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57169567A (en) * 1981-04-09 1982-10-19 Sharp Kk Heat pump type air conditionor
JPH02110266A (en) * 1988-10-19 1990-04-23 Mitsubishi Electric Corp Air-conditioning device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195677A (en) * 2000-10-20 2002-07-10 Denso Corp Heat pump cycle
KR100762513B1 (en) * 2006-05-26 2007-10-02 주식회사 대우일렉트로닉스 Defrost apparatus of heat pump air conditioner

Also Published As

Publication number Publication date
JP2550762B2 (en) 1996-11-06

Similar Documents

Publication Publication Date Title
EP1659348B1 (en) Freezing apparatus
JP6895901B2 (en) Air conditioner
JP3635665B2 (en) Air conditioner
JP6661843B1 (en) Air conditioner
JP2019184207A (en) Air conditioner
JP4407012B2 (en) Refrigeration equipment
KR102082881B1 (en) Multi-air conditioner for heating and cooling operations at the same time
WO2014038059A1 (en) Air conditioning apparatus
JP2875507B2 (en) Air conditioner
JP2010002112A (en) Refrigerating device
JP2944507B2 (en) Air conditioner
JP2877552B2 (en) Air conditioner
JP2010014343A (en) Refrigerating device
JPH0498053A (en) Air conditioning plant
JP4023386B2 (en) Refrigeration equipment
JP7258129B2 (en) air conditioner
JPH07117323B2 (en) Air conditioner
JP2646709B2 (en) Air conditioner
JP2524382B2 (en) Air conditioner
JP2765970B2 (en) Air conditioner
JP4372247B2 (en) Air conditioner
JPH04324067A (en) Air conditioner
JP2014070829A (en) Refrigerator
WO2024134852A1 (en) Air conditioning device
JPH02110266A (en) Air-conditioning device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees