JPH0498050A - Operation control device of refrigerating plant device - Google Patents

Operation control device of refrigerating plant device

Info

Publication number
JPH0498050A
JPH0498050A JP2214204A JP21420490A JPH0498050A JP H0498050 A JPH0498050 A JP H0498050A JP 2214204 A JP2214204 A JP 2214204A JP 21420490 A JP21420490 A JP 21420490A JP H0498050 A JPH0498050 A JP H0498050A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
detection means
expansion valve
optimum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2214204A
Other languages
Japanese (ja)
Other versions
JPH0833245B2 (en
Inventor
Kenji Miyata
賢治 宮田
Takeo Ueno
武夫 植野
▲辻▼井 英樹
Hideki Tsujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2214204A priority Critical patent/JPH0833245B2/en
Publication of JPH0498050A publication Critical patent/JPH0498050A/en
Publication of JPH0833245B2 publication Critical patent/JPH0833245B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve a comfortable feeling of air conditioning while properly holding a refrigerant state and keeping a superior refrigeration effect by a method wherein the valve travel of an electrically driven expansion valve is controlled in such a way as a discharged refrigerant temperature may be converged into optimum temperature calculated in response to an evaporating temperature of the refrigerant at that time and a condensing temperature of the refrigerant and in turn as the discharged refrigerant temperature is converged into a specified range above and below the optimum temperature, the valve travel of the electrically driven expansion valve is controlled in response to a temperature difference between a sucked air temperature and its set value. CONSTITUTION:By an optimum temperature detection means 51, during operation of an air conditioning plant, optimum temperature Tk of a discharged refrigerant temperature T2 is calculated in response to a refrigerant evaporating temperature Te detected by an evaporating temperature sensing means The and a refrigerant condensing temperature Te detected by a condensing temperature detection means The. Then, the valve travel of an electrically- driven expansion valve 5 is controlled by a normal valve travel control means 52 in such a way as the discharging pipe temperature T2 is converged into the most appropriate temperature Tk. As the discharging pipe temperature T2 is converged into a specified range of the most appropriate temperature Tk, the valve travel of the electrically-driven expansion valve 5 is controlled by a discharging temperature converging valve travel control means 53 in response to a temperature difference between the suction air temperature detected by the suction temperature sensing means The and its set temperature.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷凍装置の運転制御装置に係り、特に冷凍効
率の向上対策に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to an operation control device for a refrigeration system, and particularly to measures for improving refrigeration efficiency.

(従来の技術) 従来より、例えば特開昭59−12942号公報に開示
される如く、圧縮機、凝縮器、電動膨張弁及び蒸発器を
順次接続してなる冷媒回路を備えた冷凍装置において、
冷媒の蒸発温度と凝縮温度とに基づき最適な冷凍効果を
与える吐出管温度の最適温度を算出し、吐出管温度がそ
の最適温度に収束するよう電動膨張弁の開度を制御する
ことにより、圧縮機の運転容量を変えることなく効率の
高い運転を確保しようとするものは公知の技術である。
(Prior Art) Conventionally, as disclosed in Japanese Patent Application Laid-Open No. 59-12942, a refrigeration system equipped with a refrigerant circuit in which a compressor, a condenser, an electric expansion valve, and an evaporator are sequentially connected,
Compression is achieved by calculating the optimal discharge pipe temperature that provides the optimal refrigeration effect based on the evaporation temperature and condensation temperature of the refrigerant, and controlling the opening degree of the electric expansion valve so that the discharge pipe temperature converges to the optimal temperature. There are known techniques that attempt to ensure highly efficient operation without changing the operating capacity of the machine.

(発明が解決しようとする課題) 従来のもののように、吐出冷媒の状態を適正状態に維持
することにより、圧縮機の容量制御を行うことなく冷媒
回路の円滑な作動を行うことができ、定容星形圧縮機を
使用して簡素な制御で済ませることかできる利点がある
。しかるに、反面、吐出冷媒の状態量のみを制御指標と
して電動膨張弁の開度を制御すると、運転条件によって
はその間蒸発器の能力が要求能力とは離れた値に放置さ
れる場合があり、要求能力が十分満足されない虞れが生
じる。
(Problems to be Solved by the Invention) As with conventional systems, by maintaining the discharged refrigerant in an appropriate state, the refrigerant circuit can operate smoothly without having to control the capacity of the compressor. The advantage of using a radial compressor is that it requires simple control. However, on the other hand, if the opening degree of the electric expansion valve is controlled using only the state quantity of the discharged refrigerant as a control index, depending on the operating conditions, the evaporator capacity may be left at a value far from the required capacity. There is a risk that the ability will not be fully satisfied.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、吐出冷媒の状態を適正状態に維持しながら、蒸発
能力を要求能力に対応しうるよう制御することにより、
空調の快適性の向上を図ることにある。
The present invention has been made in view of the above, and its purpose is to control the evaporation capacity so that it corresponds to the required capacity while maintaining the state of the discharged refrigerant in an appropriate state.
The purpose is to improve the comfort of air conditioning.

(課題を解決するための手段) 上記目的を達成するため第1の解決手段は、第1A図に
示すように、圧縮機(1)、凝縮器(3又は6)、電動
膨張弁(5)及び蒸発器(6又は3)を順次接続してな
る冷媒回路(9)を備えた冷凍装置を前提とする。
(Means for solving the problem) To achieve the above object, the first means for solving the problem is as shown in Fig. 1A, a compressor (1), a condenser (3 or 6), an electric expansion valve (5) A refrigeration system is assumed to be provided with a refrigerant circuit (9) formed by sequentially connecting an evaporator (6 or 3) and an evaporator (6 or 3).

そして、冷凍装置の運転制御装置として、上記蒸発器(
6又は3)における冷媒の蒸発温度を検出する蒸発温度
検出手段(T he)と、上記凝縮器(3又は6)にお
ける冷媒の凝M温度を検出する凝縮温度検出手段(T 
he)と、上記蒸発温度検出手段(T he)及び凝縮
温度検出手段(T he)の出力を受け、冷媒の蒸発温
度と凝縮温度とに応じて、最適な冷凍効果を与える吐出
冷媒温度の最適温度を演算する最適温度演算手段(51
)と、吐出冷媒温度を検出する吐出温度検出手段(T 
h2)と、該吐出温度検出手段(T h2)の出力を受
け、吐出冷媒温度が上記最適温度演算手段(51)で演
算される最適温度に収束するよう上記電動膨張弁(5)
の開度を制御する通常域開度制御手段(52)とを設け
るものとする。
The evaporator (
6 or 3), and a condensing temperature detection means (T he) for detecting the condensation temperature of the refrigerant in the condenser (3 or 6).
he) and the outputs of the evaporation temperature detection means (T he) and condensation temperature detection means (T he), and determine the optimum discharge refrigerant temperature that provides the optimum refrigerating effect according to the evaporation temperature and condensation temperature of the refrigerant. Optimal temperature calculation means (51) for calculating temperature
), and a discharge temperature detection means (T
h2) and the output of the discharge temperature detection means (T h2), the electric expansion valve (5) is operated so that the discharge refrigerant temperature converges to the optimum temperature calculated by the optimum temperature calculation means (51).
A normal range opening control means (52) for controlling the opening of the opening is provided.

さらに、上記蒸発器(6又は3)の吸込空気温度を検出
する吸込温度検出手段(T hr)と、該吸込温度検出
手段(T hr)及び上記吐出温度検出手段(T h2
)の出力を受け、吐出冷媒温度が上記最適温度演算手段
(51)で演算される最適温度の上下一定範囲内に収束
すると、上記通常域開度制御手段(52)の制御を強制
的に停止させて、吸込空気温度とその設定値との吸込差
温に応じて上記電動膨張弁(5)の開度を制御する吐出
温収束域開度制御手段(53)とを設ける構成としたも
のである。
Furthermore, the suction temperature detection means (T hr) detects the temperature of the intake air of the evaporator (6 or 3), the suction temperature detection means (T hr) and the discharge temperature detection means (T h2).
), and when the discharge refrigerant temperature converges within a certain range above and below the optimum temperature calculated by the optimum temperature calculation means (51), the control of the normal range opening degree control means (52) is forcibly stopped. and a discharge temperature convergence region opening degree control means (53) for controlling the opening degree of the electric expansion valve (5) according to the suction temperature difference between the suction air temperature and its set value. be.

第2の解決手段は、第1B図に示すように、上記第1の
解決手段と同様の冷凍装置を前提とし、冷凍装置の運転
制御装置として、上記第1の解決手段と同様の蒸発温度
検出手段(The)、凝縮温度検出手段(The) 、
最適温度演算手段(51)、吐出温度検出手段(Th2
)及び通常域開度制御手段(52)とを設ける。
As shown in FIG. 1B, the second solution is based on a refrigeration system similar to the first solution, and uses evaporation temperature detection similar to the first solution as an operation control device for the refrigeration system. means (The), condensing temperature detection means (The),
Optimal temperature calculation means (51), discharge temperature detection means (Th2
) and normal range opening control means (52).

さらに、上記蒸発器(6又は3)の吸込空気温度を検出
する吸込温度検出手段(T hr)と、該吸込温度検出
手段(Thr)の出力を受け、吸込空気温度がその設定
温度の上下所定範囲内に収束すると、上記通常域開度制
御手段(52)の制御を強制的に停止させて、上記吐出
冷媒温度−最適温度の温度差及び吸込空気温度−設定温
度の差温に所定の重み付けをした値に基づいて上記電動
膨張弁(5)の開度を変化させるよう制御する能力収束
域開度制御手段(54)とを設ける構成としたものであ
る。
Further, there is a suction temperature detection means (Thr) for detecting the suction air temperature of the evaporator (6 or 3), and an output of the suction temperature detection means (Thr) is received so that the suction air temperature is set to a predetermined value above or below the set temperature. When it converges within the range, the control of the normal range opening degree control means (52) is forcibly stopped, and a predetermined weight is given to the temperature difference between the discharge refrigerant temperature and the optimum temperature and the temperature difference between the suction air temperature and the set temperature. A capacity convergence range opening degree control means (54) is provided for controlling the opening degree of the electric expansion valve (5) to be changed based on the calculated value.

(作用) 以上の構成により、請求項(1)の発明では、冷凍装置
の運転中、最適温度演算手段(51)により、蒸発温度
検出手段(T he)で検出される冷媒の蒸発温度と凝
縮温度検出手段(T he)で検出される冷媒の凝縮温
度とに応じて最適な冷凍効果を与える吐出管温度の最適
温度が算出される。
(Function) With the above configuration, in the invention of claim (1), during operation of the refrigeration system, the optimum temperature calculation means (51) calculates the evaporation temperature of the refrigerant detected by the evaporation temperature detection means (The he) and the condensation temperature. The optimal temperature of the discharge pipe that provides the optimal refrigeration effect is calculated according to the condensation temperature of the refrigerant detected by the temperature detection means (The he).

そして、通常域開度制御手段(52)により、吐出冷媒
温度がその最適温度に収束するよう電動膨張弁(5)の
開度か制御されるので、圧縮機(1)の運転容量か固定
されていても、冷媒回路(9)における冷媒状態か適正
状態に維持されることになる。
Then, the opening degree of the electric expansion valve (5) is controlled by the normal range opening degree control means (52) so that the discharge refrigerant temperature converges to its optimum temperature, so the operating capacity of the compressor (1) is fixed. The refrigerant state in the refrigerant circuit (9) will be maintained in an appropriate state even if the refrigerant circuit (9) is closed.

その場合、このような冷凍状態たけに基づいて運転を行
うと、空調要求か無視される場合かあり、空調の快適性
か(iなわれる虞れか生しるか、本発明では、吐畠温収
束域間度制御手段(53)により、吐出冷媒温度がその
最適温度の上下一定範囲内に収束すると、吸込空気温度
検出手段(T hr)で検出される吸込空気温度とその
設定温度との差温に応して電動膨張弁(5)の開度が制
御されるので、蒸発器(6又は3)の能力か要求能力に
応した能力に制御され、空調の快適性か向上することに
なる。
In that case, if operation is performed based only on such a frozen state, the air conditioning request may be ignored, and the comfort of the air conditioning (i.e. When the discharge refrigerant temperature converges within a predetermined range above and below its optimum temperature, the temperature convergence range control means (53) detects the difference between the suction air temperature detected by the suction air temperature detection means (Thr) and its set temperature. Since the opening degree of the electric expansion valve (5) is controlled according to the temperature difference, the capacity of the evaporator (6 or 3) is controlled according to the required capacity, and the comfort of the air conditioning is improved. Become.

請求項(2)の発明では、上記請求項(1)の発明と同
様に、通常域開度制御手段(52)により、電動膨張弁
(5)の開度か制御され、冷媒状態か適正状態に維持さ
れる。
In the invention of claim (2), similarly to the invention of claim (1), the opening degree of the electric expansion valve (5) is controlled by the normal range opening degree control means (52), and the refrigerant state or the proper state is controlled. will be maintained.

そのとき、吸込温度検出手段(T hr)で検出される
吸込空気温度かその設定値に収束すると、能力収束域開
度制御手段(54)により、蒸発器(6又は3)の吸込
空気温度の変化と吐出冷媒温度の変化との間の相関関係
に基づき、吐出冷媒温度とその最適温度との温度差と、
吸込空気温度とその設定値との差温とに対し、両者に所
定の重み付けした値に応して電動膨張弁(5)の開度か
制御されるので、冷媒状態か適正状態に維持されるとと
もに、蒸発器(6又は3)の能力が要求能力に対応した
値に維持され、サーモオフ・オンの切換え回数の低減に
より、信頼性か向上することになる。
At that time, when the suction air temperature detected by the suction temperature detection means (Thr) converges to its set value, the capacity convergence region opening control means (54) controls the suction air temperature of the evaporator (6 or 3). Based on the correlation between the change and the change in the discharge refrigerant temperature, the temperature difference between the discharge refrigerant temperature and its optimum temperature;
Since the opening degree of the electric expansion valve (5) is controlled according to a predetermined weighted value for the temperature difference between the intake air temperature and its set value, the refrigerant state or proper state is maintained. At the same time, the capacity of the evaporator (6 or 3) is maintained at a value corresponding to the required capacity, and reliability is improved by reducing the number of times the thermostat is switched on and off.

(実施例) 以下、本発明の実施例について、第2図以下の図面に基
づき説明する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings from FIG. 2 onwards.

第2図は本発明を適用した空気調和装置の冷媒配管系統
を示し、(1)は容量固定形のスクロルタイプ圧縮機、
(2)は冷房運転時には図中実線のごとく、暖房運転時
には図中破線のごとく切換わる四路切換弁、(3は冷房
運転時には凝縮器として、暖房運転時には蒸発器として
機能する熱源側熱交換器である室外熱交換器、(4)は
液冷媒を貯留するためのレシーノ<  (5)は冷媒の
減圧機能と冷媒流量の調節機能とを有する電動膨張弁、
(6)は室内に設置され、冷房運転時には蒸発器として
、暖房運転時には凝縮器として機能する利用側熱交換器
である室内熱交換器、(7)は圧縮機(1)の吸入管に
介設され、吸入冷媒中の液冷媒を除去するためのアキュ
ムレータである。
Figure 2 shows the refrigerant piping system of an air conditioner to which the present invention is applied, in which (1) is a fixed capacity scroll type compressor;
(2) is a four-way switching valve that switches as shown in the solid line in the figure during cooling operation and as shown in the broken line in heating operation; (3) is a heat exchanger on the heat source side that functions as a condenser during cooling operation and as an evaporator during heating operation. (4) is an outdoor heat exchanger for storing liquid refrigerant; (5) is an electric expansion valve that has a refrigerant pressure reduction function and a refrigerant flow rate adjustment function;
(6) is an indoor heat exchanger that is installed indoors and functions as an evaporator during cooling operation and as a condenser during heating operation, and (7) is an indoor heat exchanger that is connected to the suction pipe of compressor (1). This is an accumulator for removing liquid refrigerant from the suction refrigerant.

上記各機器(1)〜(7)は冷媒配管(8)により順次
接続され、冷媒の循環により熱移動を生せしめるように
した冷媒回路(9)か構成されている。
The above-mentioned devices (1) to (7) are sequentially connected by refrigerant piping (8) to form a refrigerant circuit (9) in which heat transfer is caused by circulation of the refrigerant.

ここで、上記冷媒回路(9)の圧縮機(1)吐出側には
、吐出冷媒中の油を回収するための油回収器(10)が
介設されていて、該油回収器(10)から圧縮機(1)
−アキュムレータ(7)間の吸入管まで、油回収器(1
0)の油を圧縮機(1)の吸入側に戻すための油戻し通
路(11)か設けられている。そして、二〇浦戻し通路
(11)には、通路を開閉する開閉弁(12)が介設さ
れていて、該開閉弁(12)は常時は閉しられている一
方、圧縮機(1)の起動時等には所定の制御により開け
られて、圧縮機(1)の吸入側に油回収器(10)の油
及び吐出冷媒の一部を戻すようになされている。
Here, an oil recovery device (10) for recovering oil in the discharged refrigerant is interposed on the discharge side of the compressor (1) of the refrigerant circuit (9), and the oil recovery device (10) Kara compressor (1)
- Oil skimmer (1) up to the suction pipe between the accumulator (7)
An oil return passage (11) is provided for returning the oil from compressor (1) to the suction side of the compressor (1). The Nioura return passage (11) is provided with an on-off valve (12) for opening and closing the passage, and while the on-off valve (12) is normally closed, the compressor (1) When the compressor (1) is started, it is opened under predetermined control to return part of the oil and discharged refrigerant from the oil recovery device (10) to the suction side of the compressor (1).

また、冷媒回路(9)の液管において、上記レシーバ(
4)と電動膨張弁(5)とは、電動膨張弁(5)がレシ
ーバ(4)の下部つまり液部に連通ずるよう共通路(8
a)に直列に配置されており、共通路(8a)のレシー
バ(4)上部側の端部である点(P)と室外熱交換器(
3)との間は、レシーバ(4)側への冷媒の流通のみを
許容する第1逆止弁(21)を介して第1流入路(8b
)により、上記共通路(8a)の点(P)と室内熱交換
器(6)との間はレシーバ(4)側への冷媒の流通のみ
を許容する第2逆止弁(22)を介して第2流入路(8
C)によりそれぞれ接続されている一方、共通路(8a
)の上記電動膨張弁(5)側の端部である点(Q)と上
記第1逆止弁(21)室外熱交換器(3)間の点(S)
とは第1キヤピラリチユーブ(C1)を介して第1流出
路(8d)により、共通路(8a)の上記点(Q)と上
記第2逆止弁(22)−室内熱交換器(6)間の点(R
)とは第2キヤピラリチユーブ(C2)を介して第2流
出路(8e)によりそれぞれ接続されている。
Further, in the liquid pipe of the refrigerant circuit (9), the receiver (
4) and the electric expansion valve (5) are connected to a common path (8) so that the electric expansion valve (5) communicates with the lower part of the receiver (4), that is, the liquid part.
a), and the point (P) which is the upper end of the receiver (4) of the common path (8a) and the outdoor heat exchanger (
3) is connected to the first inflow path (8b
), there is a second check valve (22) between the point (P) of the common path (8a) and the indoor heat exchanger (6) that allows the refrigerant to flow only to the receiver (4) side. and the second inflow path (8
C), while the common path (8a
) between a point (Q) that is the end of the electric expansion valve (5) side of the electric expansion valve (5) and a point (S) between the first check valve (21) and the outdoor heat exchanger (3).
The first outflow path (8d) via the first capillary tube (C1) connects the point (Q) of the common path (8a) and the second check valve (22) to the indoor heat exchanger (6). ) between the points (R
) are connected to each other by a second outflow path (8e) via a second capillary tube (C2).

すなわち、冷房運転時には、室外熱交換器(3)で凝縮
液化された液冷媒か第1逆止弁(21)を経てレシーバ
(4)に貯溜され、電動膨張弁(5)及び第2キヤピラ
リチユーブ(C2)で減圧された後、室内熱交換器(6
)で蒸発して圧縮機(1)に戻る循環となる一方、暖房
運転時には、室内熱交換器(6)で凝縮液化された液冷
媒が第2逆止弁(22)を経てレシーバ(4)に貯溜さ
れ、電動膨張弁(5)及び第1キヤピラリチユーブ(C
1)で減圧された後、室外熱交換器(3)で蒸発して圧
縮機(1)に戻る循環となるように構成されている。
That is, during cooling operation, liquid refrigerant condensed and liquefied in the outdoor heat exchanger (3) passes through the first check valve (21) and is stored in the receiver (4), and then flows through the electric expansion valve (5) and the second capillary. After being depressurized in the tube (C2), the indoor heat exchanger (6
) and return to the compressor (1), while during heating operation, the liquid refrigerant condensed and liquefied in the indoor heat exchanger (6) passes through the second check valve (22) and returns to the receiver (4). is stored in the electric expansion valve (5) and the first capillary tube (C
After being depressurized in step 1), the air is evaporated in an outdoor heat exchanger (3) and then returned to the compressor (1) for circulation.

なお、(8f)は、点(P)−点(S)間の第1流入路
(8b)において第1逆上弁(21)をバイパスして設
けられた液封防止バイパス路であって、該液封防止バイ
パス路(8f)には冷媒減圧用の第3キヤピラリチユー
ブ(C3)か介設されている。
Note that (8f) is a liquid seal prevention bypass path provided in the first inflow path (8b) between point (P) and point (S) by bypassing the first reverse valve (21), A third capillary tube (C3) for reducing the pressure of the refrigerant is interposed in the liquid seal prevention bypass path (8f).

また、空気調和装置には、センサ類が配置されていて、
(T h2)は圧縮機(1)の吐出管に配置され、吐出
管温度Tこを検出する吐出温度検出手段としての吐出管
センサ、(T he)は室外熱交換器(3)の液管に配
置され、冷房運転時に冷媒の蒸発温度を検出する凝縮温
度検出手段としての外熱交センサ、(T ha)は室外
熱交換器(3)の空気吸込口に配置され、外気温度を検
出する外気温センサ、(T he)は室内熱交換器(6
)の液管に配置され、冷房運転時に蒸発温度Teを検出
する蒸発温度検出手段としての内熱交センサ、(Thr
)は室内熱交換器(6)の空気吸込口に配置され、吸込
空気温度T「を検出する吸込温度検出手段としての室内
吸込センサてあって、上記各センサは、空気調和装置の
運転を制御するためのコントロラ(図示せず)に信号の
入力可能に接続されており、該コントローラにより、セ
ンナの信号に応して各機器の運転を制御するようになさ
れている。
In addition, sensors are installed in the air conditioner,
(T h2) is a discharge pipe sensor which is arranged in the discharge pipe of the compressor (1) and serves as a discharge temperature detection means for detecting the discharge pipe temperature T, and (T he) is a liquid pipe of the outdoor heat exchanger (3). The external heat exchange sensor (T ha) is placed at the air suction port of the outdoor heat exchanger (3) and is used as a condensing temperature detection means to detect the evaporation temperature of the refrigerant during cooling operation, and detects the outside air temperature. The outside temperature sensor, (The he) is the indoor heat exchanger (6
), and serves as an evaporation temperature detection means for detecting the evaporation temperature Te during cooling operation.
) is placed at the air suction port of the indoor heat exchanger (6), and is an indoor suction sensor serving as a suction temperature detection means for detecting the suction air temperature T. The above-mentioned sensors control the operation of the air conditioner. The sensor is connected to a controller (not shown) so that signals can be input thereto, and the controller controls the operation of each device in accordance with the signals from the sensor.

次に、上記コントa−ラの制御内容について、第3図及
び第4図に基づき説明する。
Next, the control contents of the above-mentioned controller will be explained based on FIGS. 3 and 4.

第3図は冷房運′転時における冷凍効果EERを最大に
維持するためのEER制御の内容を示し、ステップS1
で、上記内熱交センサ(T he)で検出される蒸発温
度Te、外熱交センサ(T he)で検出される凝縮温
度Tc及び吐出管センサ(Th2)で検出される吐出管
温度T2をそれぞれ入力し、ステップS2で、下記(1
)式 %式%(1) に基づき、最適な冷凍効果EERを与える吐出管温度で
ある最適温度Tkを算出する。
Figure 3 shows the contents of EER control to maintain the maximum refrigeration effect EER during cooling operation, and shows step S1.
Then, the evaporation temperature Te detected by the internal heat exchange sensor (T he), the condensation temperature Tc detected by the external heat exchange sensor (T he), and the discharge pipe temperature T2 detected by the discharge pipe sensor (Th2) are Input each, and in step S2, enter the following (1
) Formula % Formula % (1) Based on the following, the optimum temperature Tk, which is the discharge pipe temperature that provides the optimum refrigeration effect EER, is calculated.

次に、ステップS3で、式 Δr2=T2−Tkに基づ
き吐出管温度T2と最適温度Tkとの温度差ΔT2を算
出した後、ステップS4で、1ΔT21≦5か否か、つ
まり吐出管温度T2が最適温度Tkの上下一定範囲内に
収束したか否かを判別し、収束するまでは、ステップS
5に進んで、ΔT2か正か否か、つまり吐出管温度T2
か最適温度Tkよりも高いか否かを判別し、吐出管温度
T!の方か高ければステップS6で、電動膨張弁(5)
を中程度に開くよう制御する一方、吐出管温度T2の方
が低ければ、ステップS7で、電動膨張弁(5)の開度
を中程度に閉じるように制御する。
Next, in step S3, after calculating the temperature difference ΔT2 between the discharge pipe temperature T2 and the optimum temperature Tk based on the formula Δr2=T2−Tk, in step S4, it is determined whether 1ΔT21≦5, that is, whether the discharge pipe temperature T2 is It is determined whether or not the temperature has converged within a certain range above and below the optimum temperature Tk, and step S is continued until the temperature converges.
Proceed to step 5 and check whether ΔT2 is positive or not, that is, the discharge pipe temperature T2
The discharge pipe temperature T! is higher than the optimum temperature Tk. If it is higher, in step S6, the electric expansion valve (5)
If the discharge pipe temperature T2 is lower, the electric expansion valve (5) is controlled to be opened to a moderate degree in step S7.

一方、上記ステップS4の判別で、1ΔT2≦5となり
、吐出管温度T:!が最適温度Tkの上下一定範囲内に
収束すると、ステップS8に移行して、下記のファジー
制御を実行する。
On the other hand, in the determination in step S4 above, 1ΔT2≦5, and the discharge pipe temperature T:! When Tk converges within a certain range above and below the optimum temperature Tk, the process moves to step S8 and the following fuzzy control is executed.

すなわち、第4図に示すように、ステップR1で、P−
1−Pとして、電動膨張弁(5)の開度駆動パルスPの
更新を行った後(P−1は前回の駆動パルス)、ステッ
プR2で、異常時に「1」となる吐出管センサ異常フラ
グFt2が「1」か否かを判別し、異常でなければ、ス
テップR3に進んで、上記室内吸込センサ(Thr)で
検出される吸込空気温度T「と設定温度Trsとの差温
ΔTr  (但し、冷房運転時にはΔTr −Tr−T
rsである)が25 deg以上か否かを判別して、Δ
T「≧2.5であれば、ステップR4に進んで、下記(
2)式%式%(2) に基づき、電動膨張弁(5)開度の駆動パルスPを演算
する一方、ΔTr≧2.5でなければ、つまり吸込空気
温度T「か設定温度TrSの上下所定範囲内に収束する
と、ステップR5に移行して、下記(3)式 %式%(3) に基づき電動膨張弁(5)開度の駆動パルスPを算出す
る。すなわち、上記(3)式では、吐土管温度下2−最
適温度Tkの温度差ΔT2と、吸込空気温度Tr一般定
温度Trsの差温ΔTrとに1対2の重み付けをした値
に基づいて電動膨張弁(5)の開度を制御するようにな
されている。
That is, as shown in FIG. 4, in step R1, P-
After updating the opening drive pulse P of the electric expansion valve (5) as 1-P (P-1 is the previous drive pulse), in step R2, the discharge pipe sensor abnormality flag is set to "1" in the event of an abnormality. It is determined whether Ft2 is "1" or not, and if there is no abnormality, the process proceeds to step R3, where the temperature difference ΔTr between the intake air temperature T" detected by the indoor intake sensor (Thr) and the set temperature Trs is determined. , ΔTr −Tr−T during cooling operation
rs) is 25 deg or more, and Δ
If T"≧2.5, proceed to step R4 and perform the following (
2) Formula % Based on formula % (2), the drive pulse P for the opening of the electric expansion valve (5) is calculated. When it converges within the predetermined range, the process moves to step R5, and the drive pulse P for the electric expansion valve (5) opening degree is calculated based on the following equation (3). Now, the electric expansion valve (5) is opened based on the value obtained by weighting the temperature difference ΔT2 between the discharge pipe temperature lower 2 and the optimum temperature Tk and the temperature difference ΔTr between the suction air temperature Tr and the general constant temperature Trs in a ratio of 1:2. It is designed to control the degree of

次に、上記ステップR4又はR5の制御を終了すると、
ステップR6に進んで、IP+≦5か否かを判別し、指
令される駆動パルスPか小さいときには、制御状態を変
更する必要性に乏しいと判断して、上記メインフローに
戻る一方、IPI≦5でなければ、ステップR7に進ん
て、P>Oか否かを判別する。そして、P>0て電動膨
張弁(5)の開度を増大させる指令であれば、ステップ
RIOで、P−1≦Pか否かつまり今回の駆動パルスP
が前回の駆動パルスP−1よりも大きいか否かを判別し
、今回の方か大きければ、ステップR11で、駆動指令
値Pの通りに電動膨張弁(5)の開度を開き、今回の駆
動指令1iI!Pが前回の駆動指令値P−1以下であれ
ば、そのままメインフローに戻る。
Next, when the control in step R4 or R5 is finished,
Proceeding to step R6, it is determined whether or not IP+≦5, and if the commanded drive pulse P is small, it is determined that there is little need to change the control state, and the process returns to the main flow, while IPI≦5. If not, the process proceeds to step R7, and it is determined whether P>O. If P>0 and the command is to increase the opening degree of the electric expansion valve (5), in step RIO, it is determined whether P-1≦P, that is, the current drive pulse P
It is determined whether or not the current drive pulse is larger than the previous drive pulse P-1. If the current drive pulse is larger, in step R11, the opening degree of the electric expansion valve (5) is opened according to the drive command value P, and the current drive pulse is Drive command 1iI! If P is less than or equal to the previous drive command value P-1, the process returns to the main flow.

また上記ステップR6の判別て、P>0てないときには
、ステップR8に移行して、前回の駆動指令P−1より
今回の駆動指令Pが小さければつまり電動膨張弁(5)
の開度変更量が今回の方か大きいときには、ステップR
9て、その駆動指令Pに応して電動膨張弁(5)の開度
を閉しるよう制御する一方、今回の駆動指令Pによる変
更量のほうか小さいときには、電動膨張弁(5)の開度
変更を行うことなく、メインフローに戻る。
In addition, if P>0 is not determined in step R6, the process moves to step R8, and if the current drive command P is smaller than the previous drive command P-1, that is, the electric expansion valve (5)
If the opening degree change amount is larger this time, step R
9, the opening of the electric expansion valve (5) is controlled to close in accordance with the drive command P, while if the amount of change caused by the current drive command P is smaller, the opening of the electric expansion valve (5) is controlled to close. Return to the main flow without changing the opening.

上記フローにおいて、ステップS2の制御により、冷媒
の蒸発温度Teと凝縮温度Tcとに応じて、最適な冷凍
効果を与える吐出管温度の最適温度Tkを演算する最適
温度演算手段(51)が構成され、ステップ85〜S7
の制御により、吐■冷媒温度T2か上記最適温度演算手
段(51)で演算される最適温度Tkに収束するよう上
記電動膨張弁(5)の開度を制御する通常域開度制御手
段(52)が構成されている。
In the above flow, by the control in step S2, an optimum temperature calculation means (51) is configured to calculate the optimum temperature Tk of the discharge pipe temperature that provides the optimum refrigeration effect according to the evaporation temperature Te and the condensation temperature Tc of the refrigerant. , steps 85-S7
normal range opening control means (52) for controlling the opening degree of the electric expansion valve (5) so that the discharge refrigerant temperature T2 converges to the optimum temperature Tk calculated by the optimum temperature calculation means (51); ) is configured.

また、ステップR3からR4に進んだ後ステップR6〜
R1+を実行する制御により、吐出冷媒温度T2か上記
最適温度演算手段で演算される最適温度Tkの上下一定
範囲内に収束すると、上記通常域開度制御手段(52)
の制御を強制的に停止させて、吸込空気温度Trとその
設定値Trsとの吸込差温ΔT「に応して上記電動膨張
弁(5)の開度を制御する吐出温収束域間度制御手段(
53)が構成されている。
Also, after proceeding from step R3 to R4, step R6~
When the discharge refrigerant temperature T2 converges within a predetermined range above and below the optimum temperature Tk calculated by the optimum temperature calculation means by the control that executes R1+, the normal range opening degree control means (52)
discharge temperature convergence range control that forcibly stops the control of the electric expansion valve (5) and controls the opening degree of the electric expansion valve (5) according to the suction temperature difference ΔT between the suction air temperature Tr and its set value Trs. means(
53) is configured.

一方、請求項(2)の発明では、ステップR3からR5
に移行した後ステップR6〜R1+を実行する制御によ
り、吸込空気温度Trがその設定温度の上下所定範囲内
に収束すると、上記通常域開度制御手段(52)の制御
を強制的に停止させて、上記吐出冷媒温度−最適温度の
温度差及び吸込空気温度−設定温度の差温に所定の重み
付けをした値に基づいて上記電動膨張弁の開度を変化さ
せるよう制御する能力収束域開度制御手段(54)が構
成されている。
On the other hand, in the invention of claim (2), steps R3 to R5
When the suction air temperature Tr converges within a predetermined range above and below the set temperature, the control of the normal range opening control means (52) is forcibly stopped by executing steps R6 to R1+. , capacity convergence range opening control that controls the opening of the electric expansion valve to be changed based on a value obtained by weighting the temperature difference between the discharge refrigerant temperature and the optimum temperature and the temperature difference between the suction air temperature and the set temperature with a predetermined weight; Means (54) are configured.

したがって、上記実施例では、空気調和装置の運転中、
最適温度演算手段(51)により、内熱交センサ(蒸発
温度検出手段)  (The)で検出される冷媒の蒸発
温度Teと外熱交センサ(凝縮温度検出手段)  (T
he)で検出される冷媒の凝縮温度Tcとに応じて、上
記(1)式に基づき最適な冷凍効果EERを与える吐出
冷媒温度T2か算出される。
Therefore, in the above embodiment, during operation of the air conditioner,
The optimum temperature calculation means (51) calculates the evaporation temperature Te of the refrigerant detected by the internal heat exchanger sensor (evaporation temperature detection means) (The) and the external heat exchanger sensor (condensation temperature detection means) (T
According to the refrigerant condensation temperature Tc detected in he), the discharge refrigerant temperature T2 that provides the optimum refrigeration effect EER is calculated based on the above equation (1).

すなわち、第5図のモリエル線図に示すように、高圧側
圧力をHp、低圧側圧力をLpとし、圧縮機(1)にお
けるガス冷媒の入口温度をTI、出口温度をT、−(つ
まり、吐出管温度TIとすると、ポリトロープ圧縮にお
いて、下記(4)式%式%[4) (但し、nはポリトロープ指数であって、圧縮機(1)
の形式、容積等で定まる)が成立するか、高圧側圧力値
Hpは凝縮温度Tc、低圧側圧力値Lpは蒸発温度Te
でそれぞれ置き換えることかでき、また、過熱度shは
例えば2℃程度か最適と決定する(第5図2照)ことに
より、T2とT1との関係からT1は決定され、結局、
下記(5)式%式%(5) の形で表されることになる。そして、本実施例では、実
験により、最適な冷凍効果EERを与える吐出管温度T
この最適温度Tkは上記(1)式で表されるものとなる
That is, as shown in the Mollier diagram of FIG. 5, the high pressure side pressure is Hp, the low pressure side pressure is Lp, the inlet temperature of the gas refrigerant in the compressor (1) is TI, and the outlet temperature is T, - (that is, When the discharge pipe temperature is TI, in polytropic compression, the following formula (4)% formula % [4] (where n is the polytropic index and the compressor (1)
(determined by the format, volume, etc.) holds true, the high pressure side pressure value Hp is the condensation temperature Tc, and the low pressure side pressure value Lp is the evaporation temperature Te.
By determining the optimum superheating degree sh to be, for example, about 2°C (see Figure 5, 2), T1 is determined from the relationship between T2 and T1, and as a result,
It will be expressed in the form of the following formula (5). In this embodiment, the discharge pipe temperature T that provides the optimum refrigeration effect EER was determined through experiments.
This optimum temperature Tk is expressed by the above equation (1).

したかって、通常域開度制御手段(52)により、吐出
管温度T2かその最適温度Tkに収束するよう電動膨張
弁(5)の開度が制御されるので、圧縮機(1)の運転
容量が固定されていても、冷媒回路(9)における冷媒
状態か適度な範囲に制御され、円滑な運転が維持される
ことになる。
Therefore, since the opening degree of the electric expansion valve (5) is controlled by the normal range opening degree control means (52) so as to converge to the discharge pipe temperature T2 or its optimum temperature Tk, the operating capacity of the compressor (1) can be reduced. Even if the refrigerant circuit (9) is fixed, the refrigerant state in the refrigerant circuit (9) is controlled within an appropriate range, and smooth operation is maintained.

その場合、このような冷凍状態だけに基づいて運転を行
うと、空調要求が無視される場合かあり、空調の快適性
が損なわれる虞れが生しるが、請求項(1)の発明では
、吐出温収束域間度制御手段(53)により、吐出管温
度T2がその最適温度Tkの上下一定範囲(上記実施例
では、±5deg  (第5図参照))内に収束すると
、室内吸込センサ(吸込温度検出手段)  (Thr)
で検出される吸込空気温度Trとその設定温度Trsと
の差温ΔT「に応して電動膨張弁(5)の開度か制御さ
れるので、室内熱交換器(6)における熱交換量か要求
能力に応した能力に制御され、空調の快適性か向上する
ことになる。
In that case, if the operation is performed based only on such a frozen state, the air conditioning request may be ignored, and there is a risk that the comfort of the air conditioning will be impaired. However, the invention of claim (1) When the discharge pipe temperature T2 converges within a certain range above and below the optimum temperature Tk (in the above embodiment, ±5 deg (see Fig. 5)) by the discharge temperature convergence range control means (53), the indoor suction sensor (Suction temperature detection means) (Thr)
Since the opening degree of the electric expansion valve (5) is controlled according to the temperature difference ΔT between the intake air temperature Tr detected at Tr and its set temperature Trs, the amount of heat exchanged in the indoor heat exchanger (6) The capacity is controlled to match the required capacity, improving the comfort of air conditioning.

請求項(2)の発明では、上J己請求項(1)の発明と
同様に、通常域開度制御手段(52)により、上記(1
)式に基づき、電動膨張弁(5)の開度か制御され、冷
媒状態か適切な状態に維持される。
In the invention of claim (2), similarly to the invention of claim (1) above, the normal range opening degree control means (52)
), the opening degree of the electric expansion valve (5) is controlled and the refrigerant state is maintained in an appropriate state.

そのとき、吸込センサ(Thr)で検出される吸込空気
温度Trかその設定値Trsに収束した状態では、一般
的に微細な電動膨張弁(5)開度の調節が必要となるか
、基本的には、要求能力と冷媒状態の適性さとの両者を
満足する必要かある。
At that time, when the suction air temperature Tr detected by the suction sensor (Thr) has converged to its set value Trs, it is generally necessary to finely adjust the opening degree of the electric expansion valve (5), or It is necessary to satisfy both the required capacity and the suitability of the refrigerant condition.

ところで、一般に、室内熱交換器(6)の吸込空気温度
Trの変化と吐出管温度T2の変化との間には相関があ
る。例えば、本実施例の場合、実験データから、吸込空
気温度Trが1 deg上昇すると、吐出管温度T2が
2deg上昇する。
By the way, there is generally a correlation between a change in the intake air temperature Tr of the indoor heat exchanger (6) and a change in the discharge pipe temperature T2. For example, in the case of this embodiment, experimental data shows that when the suction air temperature Tr increases by 1 degree, the discharge pipe temperature T2 increases by 2 degrees.

ここで、請求項(2)の発明では、能力収束域開度制御
手段(54)により、吐出管温度T2とその最適温度T
kとの温度差ΔT2と、吸込空気温度Trとその設定値
Trsとの差温ΔTrとに対し、両者に所定の重み付け
した値に基づいて電動膨張弁(5)の開度が制御される
。すなわち、上記実施例の(3)式のように、ΔTrと
ΔT2との重み付けを2対1として、ファジー制御のプ
ロダクションルールに基づいた制御を行うことにより、
冷媒状態の適正さか維持されるとともに、室内熱交換器
(6)の能力が要求能力に対応した値に確保される。そ
して、そのことにより、空調の快適性を維持しながら、
サーモオフ・オンの切換え回数の低減による信頼性の向
上を図ることができるのである。
Here, in the invention of claim (2), the capacity convergence region opening control means (54) controls the discharge pipe temperature T2 and its optimum temperature T.
The opening degree of the electric expansion valve (5) is controlled based on the temperature difference ΔT2 between the intake air temperature Tr and the set value Trs, and the temperature difference ΔTr between the intake air temperature Tr and the set value Trs. That is, by performing control based on the fuzzy control production rule with the weighting of ΔTr and ΔT2 set to 2:1, as in equation (3) of the above embodiment,
The appropriate state of the refrigerant is maintained, and the capacity of the indoor heat exchanger (6) is ensured at a value corresponding to the required capacity. By doing so, while maintaining the comfort of air conditioning,
Reliability can be improved by reducing the number of times the thermostat is switched on and off.

なお、上記実施例では、空気調和装置の冷房運転時につ
いて説明したか、本発明は暖房運転時についても適用し
うろことはいうまでもなく、また、空気調和装置たけて
なく、コンテナ冷凍装置等の冷凍機についても適用しう
るちのである。
In the above embodiments, the explanation has been given for the cooling operation of the air conditioner, but it goes without saying that the present invention can also be applied to the heating operation. This also applies to refrigerators.

次に、請求項(3)発明に係る第2実施例について説明
する。
Next, a second embodiment according to claim (3) of the invention will be described.

第6図は、測定側−の内容を示し、ステップQ1で、室
内吸込センサ(Thr)及び室外吸込セン(Tha)の
信号から、室内吸込空気温度T「−設定温度の差温ΔT
r、室内吸込空気温度Tr及び室外吸込空気温度Taの
データを入力し、ステップQ2で、異常判定フラグをセ
ットし、ステップQ3で、上記差温ΔTrが異常のとき
に「1」となる差温異常判定フラグFΔTrが「0」か
否かを判別し、差温ΔTrが正常であればそのまま制御
を終了するが、正常でなければ、ステップQ4に移行し
て、室内吸込センサ異常フラグFtrか「0」か否かを
判別し、正常でなければ、ステップQ5に移行し、ΔT
r−0として、強制的にサーモオン状態に維持する。
FIG. 6 shows the contents on the measurement side. In step Q1, from the signals of the indoor suction sensor (Thr) and the outdoor suction sensor (Tha), the indoor suction air temperature T "- the difference temperature ΔT of the set temperature.
r, the data of the indoor suction air temperature Tr and the outdoor suction air temperature Ta are input, and in step Q2, an abnormality determination flag is set, and in step Q3, the temperature difference that becomes "1" when the above temperature difference ΔTr is abnormal is set. It is determined whether the abnormality determination flag FΔTr is "0" or not, and if the temperature difference ΔTr is normal, the control is directly terminated, but if it is not normal, the process moves to step Q4 and the indoor suction sensor abnormality flag Ftr or "0", and if not normal, proceed to step Q5, and ΔT
As r-0, the thermostat is forcibly maintained in the thermo-on state.

一方、上記ステップQ4の判別で、室内吸込センサ(T
 hr)が正常であるときには、ステップQ6に進み、
室外吸込センサ(Tha)が異常のときこ「1」となる
室外吸込センサ異常フラグFtaが「0」か否かを判別
し、室外吸込センサ(T ha)か正常であれば、ステ
ップQ7て、(Ta −8)≧20(’C)としていわ
ゆる(Ta−8)の足切りを行った後、ステップQ8て
、下記式5式%) とし、室外吸込空気温度Taを利用した再代替運転を行
う。すなわち、差温ΔTrか異常のときには、マイコン
内部の異常と室内吸込センサ(Thr)自体の異常とが
あるが、マイコン内部の異常であって室内吸込センサ(
T hr)が正常であれば、室外吸込空気温度Taを利
用して差温ΔTrを算出する。つまり、通常、冷房運転
時には、室温か外気温度よりも所定値だけ低いときか快
適であることに鑑ろたものである。
On the other hand, in the determination in step Q4 above, the indoor suction sensor (T
hr) is normal, proceed to step Q6,
It is determined whether the outdoor suction sensor abnormality flag Fta, which becomes "1" when the outdoor suction sensor (Tha) is abnormal, is "0" or not, and if the outdoor suction sensor (Tha) is normal, step Q7, After cutting off the so-called (Ta-8) as (Ta-8)≧20('C), in step Q8, the following formula 5 (%) is used, and a re-alternative operation using the outdoor intake air temperature Ta is performed. conduct. In other words, when the temperature difference ΔTr is abnormal, there is an abnormality inside the microcomputer and an abnormality in the indoor suction sensor (Thr) itself.
If T hr) is normal, the temperature difference ΔTr is calculated using the outdoor intake air temperature Ta. In other words, this is based on the fact that normally, during cooling operation, it is comfortable when the room temperature is lower than the outside temperature by a predetermined value.

一方、上記ステップQ6の判別で、室外吸込センサ(T
 ha)が異常のときには、ステップR9で、ΔTr 
−Tr −27 として、イニシャルセットの27(℃)を利用して、差
温ΔTrを算出するようになされている。
On the other hand, in the determination in step Q6 above, the outdoor suction sensor (T
ha) is abnormal, in step R9, ΔTr
The temperature difference ΔTr is calculated using the initial set 27 (° C.) as −Tr −27 .

(発明の効果) 以上説明したように、請求項(1)の発明によれば、圧
縮機、蒸発器、電動膨張弁及び蒸発器を順次接続してな
る冷媒回路を備えた冷凍装置において、吐出冷媒温度が
そのときの冷媒の蒸発温度と凝縮温度に基づいて算出さ
れる最適温度に収束するよう電動膨張弁の開度を制御す
る一方、吐出冷媒温度が最適温度の上下一定範囲内に収
束すると、吸込空気温度とその設定値との差温に応じて
電動膨張弁の開度を制御するようにしたので、冷媒状態
を適正に保持して良好な冷凍効果を確保しながら、空調
の快適性の向上を図ることかできる。
(Effect of the invention) As explained above, according to the invention of claim (1), in a refrigeration system equipped with a refrigerant circuit formed by sequentially connecting a compressor, an evaporator, an electric expansion valve, and an evaporator, the discharge The opening degree of the electric expansion valve is controlled so that the refrigerant temperature converges to the optimal temperature calculated based on the evaporation temperature and condensation temperature of the refrigerant at that time, and when the discharge refrigerant temperature converges within a certain range above and below the optimal temperature. The opening degree of the electric expansion valve is controlled according to the temperature difference between the intake air temperature and its set value, so the refrigerant condition is maintained appropriately and a good refrigeration effect is ensured, while the comfort of the air conditioning is improved. It is possible to improve this.

請求項(2の発明によれば、圧縮機、蒸発器、電動膨張
弁及び蒸発器を順次接続してなる冷媒回路を備えた冷凍
装置において、吐出管温度かそのときの冷媒の蒸発温度
と凝縮温度に基づいて算出される最適温度に収束するよ
う電動膨張弁の開度を制御する一方、吸込空気温度がそ
の設定値の上下一定範囲内に収束すると、吐出管温度−
最適温変量の温度差と吸込空気温度−設定値間の差温と
に応じて所定の重み付けをした値で電動膨張弁の開度を
制御するようにしたので、冷媒状態と蒸発器の能力とか
適正値になるよう微細に制御しながら、サーモオン・オ
フ回数の低減による信頼性の向上を図ることができる。
According to the invention of claim 2, in a refrigeration system equipped with a refrigerant circuit in which a compressor, an evaporator, an electric expansion valve, and an evaporator are sequentially connected, While controlling the opening degree of the electric expansion valve so that it converges to the optimum temperature calculated based on the temperature, when the intake air temperature converges within a certain range above and below the set value, the discharge pipe temperature -
Since the opening degree of the electric expansion valve is controlled by a value that is weighted in a predetermined manner according to the temperature difference of the optimum temperature variable and the temperature difference between the suction air temperature and the set value, it is possible to It is possible to improve reliability by reducing the number of times the thermostat is turned on and off while finely controlling the temperature to an appropriate value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロック図である。 第2図以下は本発明の実施例を示し、第2図は空気調和
装置の構成を示す冷媒配管系統図、第3図及び第4図は
コントローラの冷房運転時における制御内容を示し、第
3図はその電動膨張弁開度の制御のメインフロー、第4
図は該メインフローのうちファジー制御部分に係るサブ
フローをそれぞれ示すフローチャート図、第5図は吐出
管温度の最適制御の原理を説明するためのモリエル線図
である。 1  圧縮機 3  室外熱交換器 (凝縮器又は蒸発器) 5  電動膨張弁 6  室内熱交換器 (蒸発器又は凝縮器) 9  冷媒回路 51 最適温度演算手段 52 通常域開度制御手段 53 吐出温収束域間度制御手段 54 能力収束域開度制御手段 The  外熱交センサ (凝縮温度検出手段) The  内熱交センサ (蒸発温度検出手段) Th2  吐出管センサ (吐出温度検出手段) Thr  室内吸込センサ (吸込温度検出手段)
FIG. 1 is a block diagram showing the configuration of the present invention. Figure 2 and subsequent figures show embodiments of the present invention, Figure 2 is a refrigerant piping system diagram showing the configuration of an air conditioner, Figures 3 and 4 show the control content of the controller during cooling operation, and Figure 3 The figure shows the main flow of controlling the electric expansion valve opening degree.
The figures are flowcharts showing subflows related to the fuzzy control part of the main flow, and FIG. 5 is a Mollier diagram for explaining the principle of optimal control of the discharge pipe temperature. 1 Compressor 3 Outdoor heat exchanger (condenser or evaporator) 5 Electric expansion valve 6 Indoor heat exchanger (evaporator or condenser) 9 Refrigerant circuit 51 Optimal temperature calculation means 52 Normal range opening control means 53 Discharge temperature convergence Inter-region degree control means 54 Capacity convergence region opening degree control means The External heat exchange sensor (condensing temperature detection means) The Internal heat exchange sensor (evaporation temperature detection means) Th2 Discharge pipe sensor (discharge temperature detection means) Thr Indoor suction sensor ( suction temperature detection means)

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮機(1)、凝縮器(3又は6)、電動膨張弁
(5)及び蒸発器(6又は3)を順次接続してなる冷媒
回路(9)を備えた冷凍装置において、 上記蒸発器(6又は3)における冷媒の蒸発温度を検出
する蒸発温度検出手段(The)と、上記凝縮器(3又
は6)における冷媒の凝縮温度を検出する凝縮温度検出
手段(Thc)と、上記蒸発温度検出手段(The)及
び凝縮温度検出手段(Thc)の出力を受け、冷媒の蒸
発温度と凝縮温度とに応じて、最適な冷凍効果を与える
吐出冷媒温度の最適温度を演算する最適温度演算手段(
51)と、吐出冷媒温度を検出する吐出温度検出手段(
Th2)と、該吐出温度検出手段(Th2)の出力を受
け、吐出冷媒温度が上記最適温度演算手段(51)で演
算される最適温度に収束するよう上記電動膨張弁(5)
の開度を制御する通常域開度制御手段(52)とを備え
るとともに、 上記蒸発器(6又は3)の吸込空気温度を検出する吸込
温度検出手段(Thr)と、該吸込温度検出手段(Th
r)及び上記吐出温度検出手段(Th2)の出力を受け
、吐出冷媒温度が上記最適温度演算手段(51)で演算
される最適温度の上下一定範囲内に収束すると、上記通
常域開度制御手段(52)の制御を強制的に停止させて
、吸込空気温度とその設定値との吸込差温に応じて上記
電動膨張弁(5)の開度を制御する収束域開度制御手段
(53)とを備えたことを特徴とする冷凍装置の運転制
御装置。
(1) In a refrigeration system equipped with a refrigerant circuit (9) formed by sequentially connecting a compressor (1), a condenser (3 or 6), an electric expansion valve (5), and an evaporator (6 or 3), the above-mentioned evaporation temperature detection means (The) for detecting the evaporation temperature of the refrigerant in the evaporator (6 or 3); condensation temperature detection means (Thc) for detecting the condensation temperature of the refrigerant in the condenser (3 or 6); Optimal temperature calculation that receives the outputs of the evaporation temperature detection means (The) and the condensation temperature detection means (Thc) and calculates the optimal temperature of the discharge refrigerant temperature that provides the optimal refrigeration effect according to the evaporation temperature and condensation temperature of the refrigerant. means(
51), and a discharge temperature detection means (
Th2) and the electric expansion valve (5) so that the discharge refrigerant temperature converges to the optimum temperature calculated by the optimum temperature calculation means (51) in response to the output of the discharge temperature detection means (Th2).
normal range opening degree control means (52) for controlling the degree of opening of the evaporator (6 or 3); Th
r) and the output of the discharge temperature detection means (Th2), and when the discharge refrigerant temperature converges within a certain range above and below the optimum temperature calculated by the optimum temperature calculation means (51), the normal range opening degree control means Convergence region opening control means (53) for forcibly stopping the control of (52) and controlling the opening of the electric expansion valve (5) according to the suction temperature difference between the suction air temperature and its set value. An operation control device for a refrigeration system, characterized by comprising:
(2)圧縮機(1)、凝縮器(3又は6)、電動膨張弁
(5)及び蒸発器(6又は3)を順次接続してなる冷媒
回路(9)を備えた冷凍装置において、 上記蒸発器(6又は3)における冷媒の蒸発温度を検出
する蒸発温度検出手段(The)と、上記凝縮器(3又
は6)における冷媒の凝縮温度を検出する凝縮温度検出
手段(Thc)と、上記蒸発温度検出手段(The)及
び凝縮温度検出手段(Thc)の出力を受け、冷媒の蒸
発温度と凝縮温度とに応じて、最適な冷凍効果を与える
最適温度を演算する最適温度演算手段(51)と、吐出
冷媒温度を検出する吐出温度検出手段(Th2)と、該
吐出温度検出手段(Th2)の出力を受け、吐出冷媒温
度が上記最適温度演算手段(51)で演算される最適温
度に収束するよう上記電動膨張弁(5)の開度を制御す
る通常域開度制御手段(52)とを備えるとともに、上
記蒸発器(6又は3)の吸込空気温度を検出する吸込温
度検出手段(Thr)と、該吸込温度検出手段(Thr
)及び上記吐出温度検出手段(Th2)の出力を受け、
吸込空気温度がその設定温度の上下所定範囲内に収束す
ると、上記通常域開度制御手段(52)の制御を強制的
に停止させて、上記吐出冷媒温度−最適温度の温度差及
び吸込空気温度−設定温度の差温に所定の重み付けをし
た値に基づいて上記電動膨張弁(5)の開度を変化させ
るよう制御する能力収束域開度制御手段(54)とを備
えたことを特徴とする冷凍装置の運転制御装置。
(2) In a refrigeration system equipped with a refrigerant circuit (9) formed by sequentially connecting a compressor (1), a condenser (3 or 6), an electric expansion valve (5), and an evaporator (6 or 3), the above-mentioned evaporation temperature detection means (The) for detecting the evaporation temperature of the refrigerant in the evaporator (6 or 3); condensation temperature detection means (Thc) for detecting the condensation temperature of the refrigerant in the condenser (3 or 6); Optimal temperature calculation means (51) receives the outputs of the evaporation temperature detection means (The) and the condensation temperature detection means (Thc) and calculates the optimum temperature that provides the optimum refrigeration effect according to the evaporation temperature and condensation temperature of the refrigerant. and a discharge temperature detection means (Th2) for detecting the discharge refrigerant temperature, and upon receiving the output of the discharge temperature detection means (Th2), the discharge refrigerant temperature converges to the optimum temperature calculated by the optimum temperature calculation means (51). normal range opening control means (52) for controlling the opening degree of the electric expansion valve (5), and suction temperature detection means (Thr) for detecting the suction air temperature of the evaporator (6 or 3). ), and the suction temperature detection means (Thr
) and the output of the discharge temperature detection means (Th2),
When the suction air temperature converges within a predetermined range above and below the set temperature, the control of the normal range opening degree control means (52) is forcibly stopped, and the temperature difference between the discharge refrigerant temperature and the optimal temperature and the suction air temperature are - A capacity convergence range opening degree control means (54) that controls the opening degree of the electric expansion valve (5) to be changed based on a value obtained by weighting a temperature difference between the set temperatures with a predetermined value. Operation control device for refrigeration equipment.
JP2214204A 1990-08-10 1990-08-10 Refrigeration system operation controller Expired - Fee Related JPH0833245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2214204A JPH0833245B2 (en) 1990-08-10 1990-08-10 Refrigeration system operation controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2214204A JPH0833245B2 (en) 1990-08-10 1990-08-10 Refrigeration system operation controller

Publications (2)

Publication Number Publication Date
JPH0498050A true JPH0498050A (en) 1992-03-30
JPH0833245B2 JPH0833245B2 (en) 1996-03-29

Family

ID=16651958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2214204A Expired - Fee Related JPH0833245B2 (en) 1990-08-10 1990-08-10 Refrigeration system operation controller

Country Status (1)

Country Link
JP (1) JPH0833245B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165267A (en) * 1990-10-29 1992-06-11 Matsushita Electric Ind Co Ltd Controller for heat pump
JP2004085088A (en) * 2002-08-27 2004-03-18 Daikin Ind Ltd Failure diagnostic device and failure diagnostic method
JP2009281648A (en) * 2008-05-21 2009-12-03 Daikin Ind Ltd Heating system
WO2014196662A1 (en) * 2013-06-04 2014-12-11 Smc株式会社 Constant-temperature liquid circulation device and method for adjusting temperature of constant-temperature liquid
WO2016110974A1 (en) * 2015-01-08 2016-07-14 三菱電機株式会社 Air conditioner
CN110594981A (en) * 2019-09-11 2019-12-20 南京晶华智能科技有限公司 Method, device and system for indirectly acquiring evaporation temperature of air conditioner and storage medium
CN113494761A (en) * 2020-03-19 2021-10-12 佛山市云米电器科技有限公司 Air blowing control method, air blowing device, air blowing system, and storage medium

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165267A (en) * 1990-10-29 1992-06-11 Matsushita Electric Ind Co Ltd Controller for heat pump
JP2004085088A (en) * 2002-08-27 2004-03-18 Daikin Ind Ltd Failure diagnostic device and failure diagnostic method
JP2009281648A (en) * 2008-05-21 2009-12-03 Daikin Ind Ltd Heating system
WO2014196662A1 (en) * 2013-06-04 2014-12-11 Smc株式会社 Constant-temperature liquid circulation device and method for adjusting temperature of constant-temperature liquid
US10401070B2 (en) 2013-06-04 2019-09-03 Smc Corporation Constant temperature liquid circulation apparatus and temperature adjustment method for constant temperature liquid
WO2016110974A1 (en) * 2015-01-08 2016-07-14 三菱電機株式会社 Air conditioner
JPWO2016110974A1 (en) * 2015-01-08 2017-06-01 三菱電機株式会社 Air conditioner
CN110594981A (en) * 2019-09-11 2019-12-20 南京晶华智能科技有限公司 Method, device and system for indirectly acquiring evaporation temperature of air conditioner and storage medium
CN113494761A (en) * 2020-03-19 2021-10-12 佛山市云米电器科技有限公司 Air blowing control method, air blowing device, air blowing system, and storage medium

Also Published As

Publication number Publication date
JPH0833245B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
EP2075519B1 (en) Air Conditoning system
AU2016234910B2 (en) Air conditioner
US20080197206A1 (en) Refrigerant System With Water Heating
JPH0226155B2 (en)
JP4036288B2 (en) Air conditioner
JP2002081767A (en) Air conditioner
JPH0599525A (en) Multi-chamber type air conditioner
JPH0498050A (en) Operation control device of refrigerating plant device
JPH04324069A (en) Refrigerating plant
JPH1114165A (en) Air-conditioner
JP2893844B2 (en) Air conditioner
JP2757685B2 (en) Operation control device for air conditioner
JPH10185343A (en) Refrigerating equipment
JP2000097481A (en) Air conditioner
JP2800362B2 (en) Multi-room air conditioner
JPH04198672A (en) Electric expansion valve controller for multi-chamber type air-conditioning machine
JPH03251661A (en) Heat pump system
JPH03122460A (en) Operating controller for refrigerating machine
JPH08128747A (en) Controller for air conditioner
JPH0498049A (en) Operation control device for air conditioning plant
JPH03186156A (en) Pressure equalizer of air conditioner
JPH0225103Y2 (en)
KR100581566B1 (en) The method and device for sensing the surface of fluid in container for heatpump airconditioner with cooling and heating
JPH085184A (en) Multi-room type air conditioner
JPS5825233Y2 (en) air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080329

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees