JPH0497939A - Oxide superconductor - Google Patents

Oxide superconductor

Info

Publication number
JPH0497939A
JPH0497939A JP2216102A JP21610290A JPH0497939A JP H0497939 A JPH0497939 A JP H0497939A JP 2216102 A JP2216102 A JP 2216102A JP 21610290 A JP21610290 A JP 21610290A JP H0497939 A JPH0497939 A JP H0497939A
Authority
JP
Japan
Prior art keywords
silver
oxide superconductor
sintered
bulk body
sintered bulk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2216102A
Other languages
Japanese (ja)
Inventor
Kazuyuki Miyake
和幸 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2216102A priority Critical patent/JPH0497939A/en
Publication of JPH0497939A publication Critical patent/JPH0497939A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain an oxide superconductor excellent in superconductivity by filling silver in the void of the sintered bulky body of an oxide superconductor. CONSTITUTION:The void in the sintered bulky body of this oxide superconductor is filled with silver. The superconductivity of the superconductor is improved due to the presence of silver between the crystal grains and proximity effect, and the stability of the bulky body and consequently the stability in superconductivity are improved. When the void is narrowed and difficult to fill, the density of the sintered bulky body is lowered to enlarge the void, and the lowering of the superconductivity or stability due to the lowered density is sufficiently compensated by the improvement of superconductivity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、焼結バルク体中の空隙に銀を充填してなり超
電導特性に優れる酸化物超電導体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an oxide superconductor having excellent superconducting properties, which is obtained by filling voids in a sintered bulk body with silver.

従来の技術及び課題 従来、酸化物超電導体からなる焼結バルク体、例えば線
材やシート体等の外周に銀の被覆層を設けたものが知ら
れていた。
BACKGROUND ART Conventionally, a sintered bulk body made of an oxide superconductor, such as a wire or a sheet body, with a silver coating layer provided on the outer periphery has been known.

しかしながら、臨界温度や臨界N流密度などの超電導特
性に乏しく、またその安定性に乏しい問題点があった。
However, there are problems in that superconducting properties such as critical temperature and critical N flow density are poor, and the stability is poor.

課題を解決するための手段 本発明は、酸化物超電導体の焼結バルク体中における空
隙に銀を充填することにより前記の課題を克服したもの
である。
Means for Solving the Problems The present invention overcomes the above problems by filling voids in a sintered bulk body of an oxide superconductor with silver.

すなわち本発明は、酸化物超電導体からなる焼結バルク
体の内部における空隙に銀が充填されていることを特徴
とする酸化物超電導体を提供するものである。
That is, the present invention provides an oxide superconductor characterized in that voids inside a sintered bulk body made of an oxide superconductor are filled with silver.

作用 酸化物超電導体からなる焼結バルク体の内部における空
隙に銀を充填することにより、結晶粒間に銀が介在する
ことによる近接効果のためか、超電導特性が向上し、焼
結バルク体の安定性、ひいては超電導特性の安定性が向
上する。
By filling the voids inside the sintered bulk body made of a functional oxide superconductor with silver, the superconducting properties improve, possibly due to the proximity effect caused by the presence of silver between crystal grains, and the sintered bulk body improves. The stability, and thus the stability of the superconducting properties, is improved.

前記において、空隙が狭いなどの理由1:より銀の充填
が困難な場合、焼結バルク体の密度を低下させて空隙を
大きくし、これにより銀を充填できるようにして前記の
構成を達成するほうが、密度低下による超電導特性の低
下分ないしその安定性の低下分以上に超電導特性を向上
させることができる。
In the above, reason 1 such as narrow voids: If filling with silver is more difficult, the density of the sintered bulk body is lowered to enlarge the voids, thereby making it possible to fill with silver to achieve the above configuration. In this case, the superconducting properties can be improved by more than the decrease in the superconducting properties or the decrease in the stability due to the decrease in density.

発明の構成要素の例示 本発明において焼結バルク体を形成する酸化物超電導体
については特に限定はない。例えば、YBa2Cu30
aやYt b Bab Cu0cの如きY系酸化物超電
導体、Bat−d Kd BiO3の如きBa系酸化物
超電導体、Nd2−e Cee Cu0n−tの如きN
d系酸化物超電導体、Bi25r Pbz 5r2Ca
2Cu30hやBi25r2Cal−t CLII O
Jの如きBi系酸化物超電導体、その化La系酸化物超
電導体、TI系酸化物超電導体、Pb系酸化物超電導体
など、また前記のY等の成分を他の希土類元素で置換し
たもの、ないしBa等の成分を他のアルカリ土類金属で
置換したもの、あるいはO成分をFなどで置換したもの
などのいずれも用いうる。
Examples of Constituent Elements of the Invention In the present invention, there are no particular limitations on the oxide superconductor forming the sintered bulk body. For example, YBa2Cu30
Y-based oxide superconductors such as a and Yt b Bab Cu0c, Bat-d Kd Ba-based oxide superconductors such as BiO3, Nd2-e Cee Cu0n-t
d-based oxide superconductor, Bi25r Pbz 5r2Ca
2Cu30h or Bi25r2Cal-t CLII O
Bi-based oxide superconductors such as J, La-based oxide superconductors, TI-based oxide superconductors, Pb-based oxide superconductors, etc., and those in which the above-mentioned components such as Y are replaced with other rare earth elements. , or those in which components such as Ba are replaced with other alkaline earth metals, or those in which O components are replaced with F or the like can be used.

酸化物超電導体は例えば、所定の組成となる配合割合で
原料を共沈法やゾルゲル法等の湿式混合法、あるいはそ
の他の適宜な混合法で混合し、その混合物を仮焼処理、
ないし焼結処理して超電導体とすることにより得ること
ができる。
For example, oxide superconductors are produced by mixing raw materials at a predetermined composition ratio using a wet mixing method such as a coprecipitation method or a sol-gel method, or any other suitable mixing method, and then calcining the mixture.
It can be obtained by subjecting it to a sintering treatment to form a superconductor.

本発明の酸化物超電導体は、焼結バルク体の内部におけ
る空隙に銀が充填されたものである。その製造は例えば
、銀の充填が可能な空隙を有する焼結バルク体を銀の溶
融液中に浸漬する方式、あるいは当該焼結バルク体を必
要に応じ真空容器中で脱気処理したのち、その容器中に
銀の溶融液を注入する方式などにより行うことができる
。前記の方法によれば、焼結バルク体内における空隙へ
の銀の充填と、焼結バルク体の外周に必要に応じて設け
られる銀の被覆層を同じ工程で達成することができる利
点がある。
In the oxide superconductor of the present invention, voids inside a sintered bulk body are filled with silver. For example, it can be manufactured by immersing a sintered bulk body with voids that can be filled with silver into a molten silver solution, or by degassing the sintered bulk body in a vacuum container if necessary. This can be done by pouring molten silver into a container. According to the above method, there is an advantage that filling voids in the sintered bulk body with silver and forming a coating layer of silver on the outer periphery of the sintered bulk body as necessary can be accomplished in the same process.

第1図〜第3図に前記の真空容器を用いる方法の工程例
を示した。この方法では、先ず銀の充填が可能な空隙を
有する焼結バルク体1を真空容器2に入れる(第1図)
。ついで、真空容器2の内部のガスを真空ポンプ等を介
して除去し、減圧する(第2図)。これにより、焼結バ
ルク体1の内部の空隙に銀の溶融液をスムーズに浸入さ
せることができる。次に、真空容器2内に銀の溶融液3
を注入し、焼結バルク体1の内部空隙に銀の溶融液を浸
入させると共に、焼結バルク体1の外周に銀の溶融液を
付与し、銀の溶融液を冷却固化させる(第3図)。前記
の焼結バルク体1の内部空隙に銀の溶融液を浸入させる
に際しては、必要に応じ加熱するなどして銀の溶融液の
流動性を維持するなり、高めてもよい。
FIGS. 1 to 3 show an example of the process using the vacuum container described above. In this method, first, a sintered bulk body 1 having a void that can be filled with silver is placed in a vacuum container 2 (Fig. 1).
. Next, the gas inside the vacuum container 2 is removed via a vacuum pump or the like to reduce the pressure (FIG. 2). Thereby, the molten silver can smoothly penetrate into the voids inside the sintered bulk body 1. Next, the silver melt 3 is placed in the vacuum container 2.
The molten silver is injected into the internal voids of the sintered bulk body 1, and the molten silver is applied to the outer periphery of the sintered bulk body 1, and the molten silver is cooled and solidified (Fig. 3). ). When the silver melt enters the internal voids of the sintered bulk body 1, the fluidity of the silver melt may be maintained or increased by heating as necessary.

前記の製造方法において、銀の充填が可能な空隙を有す
る焼結バルク体の形成は例えば、酸化物超電導体の粉末
等からなる成形体、ないし圧粉体などの密度を制御する
方式等により行うことができる。なお、焼結バルク体の
形成は、例えば上記した酸化物超電導体の原料混合物、
ないしその焼結処理体の粉砕粉末を圧粉成形し、その圧
粉体を焼結処理する方式、あるいは酸化物超電導体の粉
末をポリマ等からなる有機バインダを介して押出成形す
るなどし、その成形体を焼結処理する方式などの適宜な
方式で行ってよい。
In the above manufacturing method, the sintered bulk body having voids that can be filled with silver is formed, for example, by a method of controlling the density of a molded body or a green compact made of oxide superconductor powder, etc. be able to. The sintered bulk body is formed by using, for example, the above-mentioned raw material mixture of the oxide superconductor,
Alternatively, the pulverized powder of the sintered body is compacted and the compacted body is sintered, or the oxide superconductor powder is extruded through an organic binder made of polymer or the like. This may be carried out by any suitable method such as a method in which a molded body is sintered.

ちなみに、粒径が0.1−10μ−の酸化物超電導体の
粉末の場合、それを所定の容器に最密充填して形成した
成形体における密度の1/2程度以下の密度からなる粉
末バルクとし、これを焼結処理する方式などにより銀の
充填が可能な空隙を有する焼結バルク体を通例の場合、
得ることができる。
Incidentally, in the case of oxide superconductor powder with a particle size of 0.1-10 μ-, the powder bulk has a density that is about 1/2 or less of the density of the compact formed by packing it in a predetermined container closest to each other. In the usual case, a sintered bulk body with voids that can be filled with silver is produced by sintering it.
Obtainable.

焼結バルク体の密度に基づいた場合には、3.5g/e
l+程度以下とすることにより通例の場合、銀の充填が
可能な空隙を有するものが形成されるが、酸化物超電導
体の種類による密度差が大きいので前記に限定されない
Based on the density of the sintered bulk body, 3.5 g/e
By setting the density to about 1+ or less, voids that can be filled with silver are usually formed, but the density is not limited to this because there is a large density difference depending on the type of oxide superconductor.

形成する焼結バルク体の外形は、例えば線状体やシート
体、またコイル等の二次成形形態など、任意である。
The external shape of the sintered bulk body to be formed is arbitrary, such as a linear body, a sheet body, or a secondary molded form such as a coil.

なお、銀の充填が可能な空隙を有する焼結バルク体を形
成する点よりは、酸化物超電導体の粉末を焼結する際に
熱分解等により消失するポリマ等からなるバインダと、
酸化物超電導体の粉末との混合物を所定の形態に成形し
、酸化物超電導体の粉末がバインダで保形されてなる成
形体を焼結処理する方式が好ましい。
In addition, from the point of forming a sintered bulk body having voids that can be filled with silver, a binder made of a polymer or the like that disappears by thermal decomposition etc. when sintering the oxide superconductor powder is used.
A preferred method is to mold a mixture with oxide superconductor powder into a predetermined shape, and then sinter the molded body in which the oxide superconductor powder is held in shape with a binder.

前記の場合には、バインダの使用量に基づいて焼結バル
ク体内に形成される空隙の大きさを制御することができ
る。また、バインダと酸化物超電導体の粉末との溶媒等
を用いた均質混合に基づいて、焼結バルク体内に空隙を
均等性よく形成することができる。さらに、押出成形方
式や射出成形方式、溶媒の使用等による流動性の付与に
よる塗布方式やキャスティング方式など、種々の成形方
式で粉末バルク体を形成することができる。
In the above case, the size of the voids formed within the sintered bulk body can be controlled based on the amount of binder used. Further, based on homogeneous mixing of the binder and the oxide superconductor powder using a solvent or the like, voids can be uniformly formed in the sintered bulk body. Furthermore, the powder bulk body can be formed by various molding methods such as extrusion molding, injection molding, coating by imparting fluidity by using a solvent, and casting.

なお前記の場合には、脱脂処理で成形体中の有機成分を
除去したのち、焼結処理して目的の焼結バルク体とされ
る。
In the above case, after the organic components in the molded body are removed by degreasing treatment, the molded body is subjected to sintering treatment to obtain the desired sintered bulk body.

発明の効果 本発明によれば、焼結バルク体内部の空隙に銀を充填し
たので、臨界温度や臨界電流密度等の超電導特性に優れ
、焼結バルク体の安定性、ひいては超電導特性の安定性
に優れる酸化物超電導体とすることができる。
Effects of the Invention According to the present invention, since the voids inside the sintered bulk body are filled with silver, the superconducting properties such as critical temperature and critical current density are excellent, and the stability of the sintered bulk body and, by extension, the stability of the superconducting properties are improved. It can be made into an oxide superconductor with excellent properties.

実施例 Y 203 、B a CO3及びCuOの粉末の所定
量を混合し、750〜850℃で12時間仮焼したのち
粉砕し、その粉体を直径20m+、厚さ1鴫のバルク体
にプレス成形し、これを900〜1000℃で12時間
焼結し、500℃で酸素アニールしてYBa2 CU3
0aからなる酸化物超電導体を得、これを粉砕して粒径
が0.1〜lOμ■の粉末とし、その100重量部をポ
リビニルアルコール50重量部、ジブチルフタレート5
重量部、トルエン20重量部と共に加圧ニーダで混合し
、成形材を得た。
Example Y 203, Ba CO3, and CuO powders were mixed in a predetermined amount, calcined at 750 to 850°C for 12 hours, and then ground, and the powder was press-molded into a bulk body with a diameter of 20 m+ and a thickness of 1 mm. This was then sintered at 900-1000°C for 12 hours and annealed in oxygen at 500°C to form YBa2 CU3.
Obtain an oxide superconductor consisting of 0a, crush it to powder with a particle size of 0.1 to 1Oμ, and add 100 parts by weight of the powder to 50 parts by weight of polyvinyl alcohol, 5 parts by weight of dibutyl phthalate,
parts by weight and 20 parts by weight of toluene were mixed in a pressure kneader to obtain a molded material.

次に、前記の成形材を押出成形して外形が1.0Mの紐
体を得、その紐体を窒素カス雰囲気中で脱脂処理した。
Next, the above molded material was extruded to obtain a string having an outer diameter of 1.0M, and the string was degreased in a nitrogen gas atmosphere.

脱脂処理は、200℃/時間の昇温速度で200℃とし
たのち5℃/時間の昇温速度で750℃としその後20
0℃/時間の速度で冷却した。
The degreasing treatment was performed at a heating rate of 200°C/hour to 200°C, then at a heating rate of 5°C/hour to 750°C, and then to 20°C.
Cooling was performed at a rate of 0°C/hour.

ついで、得られた脱脂処理体を200℃/時間の速度で
昇温し、900〜1000℃で12時間焼結処理したの
ち、500℃で酸素アニールして一連の棒体からなる酸
化物超電導体の焼結バルク体を得た。
The resulting degreased body was then heated at a rate of 200°C/hour, sintered at 900-1000°C for 12 hours, and then annealed with oxygen at 500°C to form an oxide superconductor consisting of a series of rods. A sintered bulk body was obtained.

ちなみに、前記の焼結バルク体の臨界温度は92にであ
り、臨界電流密度は600 A / c++i(77、
3K 。
By the way, the critical temperature of said sintered bulk body is 92, and the critical current density is 600 A/c++i (77,
3K.

以下同じ)であった。The same applies hereafter).

また、常温で30日間放置したのちにおける臨界温度は
82にであり、臨界電流密度は20 OA / cdで
あった。
Further, after being left at room temperature for 30 days, the critical temperature was 82, and the critical current density was 20 OA/cd.

なお、見掛は密度は3.0g/cilであった。Note that the apparent density was 3.0 g/cil.

次に、前記の焼結バルク体を真空容器に入れて500℃
、0.1Torrの減圧下に20分間放置したのち、銀
の溶融液を注入し500℃で30分間放置後、徐冷した
Next, the sintered bulk body was placed in a vacuum container and heated to 500°C.
After being left under a reduced pressure of 0.1 Torr for 20 minutes, molten silver was injected, left at 500° C. for 30 minutes, and then gradually cooled.

得られた酸化物超電導体は、焼結バルク体の内部空隙に
銀が充満し、かつ外周に厚さ0.5mの銀層を有するも
のであった。
The obtained oxide superconductor had the internal voids of the sintered bulk body filled with silver and had a 0.5 m thick silver layer around the outer periphery.

その見掛は密度は8.0g/c+7であった。Its apparent density was 8.0 g/c+7.

また、臨界温度は92にであり、臨界電流密度は100
0 A / cJであった。
Also, the critical temperature is 92 and the critical current density is 100
It was 0 A/cJ.

さらに、常温で30日間放置したのちにおける臨界温度
は89にであり、臨界電流密度は800 A / cj
であった。
Furthermore, after being left at room temperature for 30 days, the critical temperature is 89, and the critical current density is 800 A/cj.
Met.

なお、前記の臨界温度は0 、1 A / c+Jの電
流密度下、液体ヘリウムで冷却しなから4端子法により
電気抵抗の温度による変化を測定し、電圧端子間の発生
電圧がOとなったときの温度である。
The above critical temperature was determined by measuring the change in electrical resistance due to temperature using the four-terminal method under a current density of 0.1 A/c+J without cooling with liquid helium, and the generated voltage between the voltage terminals was O. This is the temperature at that time.

また臨界電流密度は、パワーリードと共に液体窒素で冷
却しながら徐々に電流値をあげて4端子法により電圧端
子間の電圧の印加電流による変化を測定し、x−yレコ
ーダーにおいて1μV、/(Jの電圧が出現した古きの
電流イ直を超電導体の断面積で除した値である。
The critical current density was determined by gradually increasing the current value while cooling the power lead with liquid nitrogen and measuring the change in voltage between the voltage terminals due to the applied current using the four-terminal method. It is the value obtained by dividing the old current I, at which the voltage appeared, by the cross-sectional area of the superconductor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は、本発明の酸化物超電導体の
製造方法を例示した各T程の説明図である。 1、酸化物超電導体の焼結バルク体 2・真空容器 3;銀の溶融液 特許出順人  三菱電線工業株式会社 代  理  人   藤     本      勉第 ガス 第2
FIG. 1, FIG. 2, and FIG. 3 are explanatory diagrams of each T degree illustrating the method for manufacturing an oxide superconductor of the present invention. 1. Sintered bulk body of oxide superconductor 2/Vacuum container 3; Silver melt patented person Mitsubishi Cable Industries Co., Ltd. Agent Tsutomu Fujimoto Gas No. 2

Claims (1)

【特許請求の範囲】[Claims] 1、酸化物超電導体からなる焼結バルク体の内部におけ
る空隙に銀が充填されていることを特徴とする酸化物超
電導体。
1. An oxide superconductor characterized in that voids inside a sintered bulk body made of the oxide superconductor are filled with silver.
JP2216102A 1990-08-15 1990-08-15 Oxide superconductor Pending JPH0497939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2216102A JPH0497939A (en) 1990-08-15 1990-08-15 Oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2216102A JPH0497939A (en) 1990-08-15 1990-08-15 Oxide superconductor

Publications (1)

Publication Number Publication Date
JPH0497939A true JPH0497939A (en) 1992-03-30

Family

ID=16683280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2216102A Pending JPH0497939A (en) 1990-08-15 1990-08-15 Oxide superconductor

Country Status (1)

Country Link
JP (1) JPH0497939A (en)

Similar Documents

Publication Publication Date Title
Shi et al. Sintering of YBa2Cu3O7− x compacts
JPH06500426A (en) Method for forming high temperature oxide superconductor tape
JPH0497939A (en) Oxide superconductor
Lusk et al. The fabrication of a ceramic superconducting wire
JP3526893B2 (en) Method for manufacturing rotationally symmetric molded part of high-temperature superconductor
JP2519742B2 (en) Manufacturing method of superconducting material
JPH01276516A (en) Manufacture of superconductive wire rod having high critical current density
JP2727565B2 (en) Superconductor manufacturing method
JP3338461B2 (en) Oxide superconductor and manufacturing method thereof
KR0181678B1 (en) High critical temperature superconductor current lead and its manufacture
US5455225A (en) Method of producing a metal superconductive ceramic connection
JP2828631B2 (en) Manufacturing method of superconducting material
JP3590567B2 (en) Manufacturing method of oxide superconducting wire and oxide superconducting wire
JPH0551216A (en) Production of bi-containing oxide superconductor plate
JP2855127B2 (en) Oxide superconductor
JPH0518778B2 (en)
JP2855128B2 (en) Oxide superconductor
JPH0196017A (en) Superconductive material
JP2914799B2 (en) Manufacturing method of oxide superconducting bulk material
JP2699077B2 (en) Manufacturing method of ceramic superconductor coil
JP2855126B2 (en) Oxide superconductor
JPS63295471A (en) Production of oxide superconducting material
JP2002080221A (en) Hollow oxide superconductor and method of producing the same
JPH0375103A (en) Production of superconductive layer
JPH01131075A (en) Production of superconducting substance