JPH049692A - Condenser at isolation - Google Patents

Condenser at isolation

Info

Publication number
JPH049692A
JPH049692A JP2110201A JP11020190A JPH049692A JP H049692 A JPH049692 A JP H049692A JP 2110201 A JP2110201 A JP 2110201A JP 11020190 A JP11020190 A JP 11020190A JP H049692 A JPH049692 A JP H049692A
Authority
JP
Japan
Prior art keywords
steam
condenser
reactor
isolation
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2110201A
Other languages
Japanese (ja)
Inventor
Mitsuaki Ota
光明 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2110201A priority Critical patent/JPH049692A/en
Publication of JPH049692A publication Critical patent/JPH049692A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To remove hydrogen gas in the steam chamber of a condenser at the time of isolation, to improve a heat transmission rate in a transmission pipe, to increase the quantity of steam condensation, and to stop a neuclear reactor by arranging hydrogen occluding alloy for occluding hydrogen in the steam chamber of the condenser. CONSTITUTION:At the time of generating a cooling material lossing accident, steam mixed with inert gas discharged into a neuclear reactor container vessel 1 is allowed to flow into the steam chamber 21 of the condenser 20 through a steam pipe 6 at the time of separation. Since the H2 occluding alloy formed so as to have a property capable of occluding H2 gas at about 2 to 3kgcm<2> pressure similar to the inside condition of the neuclear reactor at the time of generating the cooling material lossing accident is stored in the steam room 21, H2 gas is selectively occluded from the inert gas mixed steam inflowing into the steam room 21. Thereby, the transmission of heat of condensation can be improved and water condensed by increasing the quantity of steam condensation is returned to a neuclear reactor pressure vessel 3 again by its dead weight through a condensed water returning pipe 13.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はたとえば冷却材喪失事故時において原子炉格納
容器内を冷却するのに好適な隔離時復水器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an isolation condenser suitable for cooling the inside of a nuclear reactor containment vessel, for example, in the event of a loss of coolant accident.

(従来の技術) 隔離時復水器は原子炉を隔離し7た場合、原子炉圧力容
器内の過圧防止及び冷却材喪失事故時の原子炉格納、容
器内の過圧防1−の2つの目的で用いられている。第4
図を参照しながら隔離時復水器の構造・動作例を説明す
る。
(Prior art) Isolation condensers isolate the reactor, prevent overpressure inside the reactor pressure vessel, contain the reactor in the event of a loss of coolant accident, and prevent overpressure inside the vessel. It is used for one purpose. Fourth
An example of the structure and operation of an isolation condenser will be explained with reference to the drawings.

第4図は原子炉格納容器内の原子炉圧力容器と隔離時復
水器プール内の復水器との配管接続系路を示した配管系
統図である。
FIG. 4 is a piping system diagram showing a piping connection system between the reactor pressure vessel in the reactor containment vessel and the condenser in the isolation condenser pool.

図中符号1は原子炉格納容器を示しCおり、この原子炉
圧力容器内には炉心2を収容し、た原子炉圧力容器3が
格納されている。原子炉圧力容器3には主蒸気配管4が
接続され、この1蒸気配h・4には主蒸気隔離弁5が設
けらオ]ている。1蒸気配管4には主蒸気隔離弁5の入
Iコ側から分岐]5.C蒸気配管6が接続され、この蒸
気配管6には蒸気導入弁7が接続されている。蒸気配管
6の下流側は隔離時復水器8の蒸気室9に接続さねてい
る。
In the figure, reference numeral 1 indicates a reactor containment vessel, in which a reactor pressure vessel 3 containing a reactor core 2 is housed. A main steam pipe 4 is connected to the reactor pressure vessel 3, and a main steam isolation valve 5 is provided in this steam pipe 4. 1 branch to the steam piping 4 from the inlet side of the main steam isolation valve 5]5. A C steam pipe 6 is connected to the steam pipe 6, and a steam introduction valve 7 is connected to the steam pipe 6. The downstream side of the steam pipe 6 is connected to the steam chamber 9 of the isolation condenser 8.

隔離時復水器8は原子炉格納容器1−の上部に設けられ
た隔離時復水器ブール10のブール水11中に浸漬され
ている。隔離時復水器8の水室12は原子炉圧力容器3
に戻り弁14を有する凝縮水戻り管13を介し、で接続
されている。なお、符号15は復水器8内の伝熱管で、
16はブール11の蒸気排出管である。
The isolation condenser 8 is immersed in boule water 11 of an isolation condenser boule 10 provided at the upper part of the reactor containment vessel 1-. The water chamber 12 of the isolation condenser 8 is connected to the reactor pressure vessel 3
The condensed water return pipe 13 having a return valve 14 is connected to the condensate water return pipe 13 . In addition, the code|symbol 15 is a heat exchanger tube in the condenser 8,
16 is a steam exhaust pipe of the boule 11.

ところで、主蒸気隔離弁5を閉じて原子炉圧力容器3を
隔離した場合、炉心2は崩壊熱を発生]、7続けるため
、放置しておくと原f炉p+−力容器3内の圧力は上昇
してり、まう。ぞこで、隔離時復水器8を用いて原子炉
圧力容器3内の蒸気を凝縮I25、圧力の1−昇を抑え
る事が行われる33すなわち、原子炉圧力容器:3内の
圧力が上ケ1゜たら凝縮水戻り弁14を開け、主蒸気配
管4から蒸気配管6を通して蒸気を隔離時復水器8の蒸
気室9に導く。ただし5、蒸気導入弁7は通常運転時1
.Sおいて開状態にある。蒸気は蒸気室9から隔離時復
水器8の伝熱管15を下降し、その間に隔離時復水器ブ
ー、ル10のプール水11に熱を与えることにより一部
が凝縮し、て水になり、その水は隔離時復水器8の水室
12内に入り、さらに重力により凝縮水戻り管13を通
って再び原r・炉圧力容器3内に戻る。
By the way, if the main steam isolation valve 5 is closed and the reactor pressure vessel 3 is isolated, the reactor core 2 will continue to generate decay heat, so if left as it is, the pressure inside the reactor pressure vessel 3 will be It's rising, okay. At this point, the isolation condenser 8 is used to condense the steam in the reactor pressure vessel 3, suppressing a 1-rise in pressure.33 That is, when the pressure in the reactor pressure vessel 3 increases When the temperature reaches 1°, the condensed water return valve 14 is opened and steam is introduced from the main steam pipe 4 through the steam pipe 6 to the steam chamber 9 of the isolation condenser 8. However, 5, steam introduction valve 7 is 1 during normal operation.
.. It is in an open state at S. The steam descends from the steam room 9 through the heat transfer tube 15 of the isolation condenser 8, and during that time it gives heat to the pool water 11 of the isolation condenser 10, causing a portion to condense and turn into water. The water then enters the water chamber 12 of the isolation condenser 8 and returns to the reactor pressure vessel 3 again through the condensed water return pipe 13 due to gravity.

なお、蒸気の凝縮による潜熱の放出でゾール水11の温
度は徐々に」−屏しやがて沸騰を開始するが、ぞの際発
生ずる蒸気は蒸気排出管16から大気lp g(7゜放
出される。
Furthermore, due to the release of latent heat due to the condensation of steam, the temperature of the sol water 11 gradually decreases and eventually starts to boil, but the steam generated at this time is released from the steam exhaust pipe 16 to the atmosphere lpg (7°). .

以上が原子炉隔離時の動作であるが、冷却材喪失事故時
において、原子炉圧力容器3内の蒸気は原子炉格納容器
1内の不活性ガス雰囲気11月J放出される1、特に主
蒸気配管4が原子炉圧力容器:3と蒸気配管6の間で破
断(、た場合を想定すると、蒸気は−y1、原子炉格納
容器1の不活性ガス雰囲気中に放出され、その後、蒸気
配管6を通−)で隔離時復水器8に流入するこJになる
1、従・iて、隔離時復水器81:流入4る蒸気中1:
は不活性ガスが含まれていることになる3、また、水の
放射線分解により発生するガスも含まれる。このため、
隔離時復水器8の伝熱管15の内側の凝縮熱伝達は劣化
j1、蒸気凝縮はいちじるしく妨げられる。なお、基本
的な動作は原子炉隔離時と同様である。
The above is the operation during reactor isolation. In the event of a loss of coolant accident, the steam in the reactor pressure vessel 3 is released into the inert gas atmosphere in the reactor containment vessel 1, especially the main steam. Assuming that the pipe 4 breaks between the reactor pressure vessel 3 and the steam pipe 6, steam is released into the inert gas atmosphere of the reactor containment vessel 1, and then the steam pipe 6 The steam flowing into the isolation condenser 8 through -) flows into the isolation condenser 8.
This means that inert gases are included3, and gases generated by radiolysis of water are also included. For this reason,
During isolation, condensation heat transfer inside the heat transfer tubes 15 of the condenser 8 deteriorates j1, and steam condensation is significantly hindered. The basic operation is the same as during reactor isolation.

(発明が解決しよ・)とする課題) 隔離時復水器8に流入する混合蒸気中には前述し、たよ
うに水の放射線分解により発生する水素(l(、)と酸
素(02)および燃料被覆管材のジルコニウノ、(Zr
)と水(H2O)との反応により発生ずるH2志O2等
が含まれでいる。とくに、水の放射線分解等で発生する
H7と0.は崩壊熱の積分により発生量が多くなる。例
えばBWR5(1107iKWe)で1時間後のH2の
生成モル数を考えると約1000となる。その他、Z 
r  −i420反応では安全審査で使用する値として
有効発熱部の燃料被覆管中のZr量のうち0473%が
反応すると考えられている。このため、これらN7、H
7、O□によって隔離時復水器8の伝熱管150)内側
の凝縮熱伝達は劣化し、蒸気凝縮量が減少する。
(Problem to be solved by the invention) As mentioned above, the mixed steam flowing into the isolation condenser 8 contains hydrogen (l(,)) and oxygen (02) generated by radiolysis of water. and zirconium for fuel cladding, (Zr
) and water (H2O). In particular, H7 and 0.0 generated by radiolysis of water, etc. The amount generated increases due to the integration of decay heat. For example, considering the number of moles of H2 produced after 1 hour in BWR5 (1107iKWe), it is approximately 1000. Others, Z
In the r-i420 reaction, it is considered that 0473% of the Zr amount in the fuel cladding in the effective exothermic part reacts, as a value used in safety examinations. Therefore, these N7, H
7. Due to O□, the condensation heat transfer inside the heat transfer tube 150) of the condenser 8 during isolation deteriorates, and the amount of steam condensed decreases.

冷却材喪失事故時においては、原子炉格納容器1内へ放
出された蒸気は原子炉格納容器J内の不活性ガスN、と
、水の放射線分解によって生じた1−12、O,と混合
する。その後、これらのガスを含んだ蒸気は蒸気配管6
内を通り隔離時復水器8の蒸気室9へ流入する。−旦、
蒸気室9内へ流入【7た不活性ガスなどを含んだ混合蒸
気は隔離時復水器8の伝熱管15内を下降しブール10
のプール水11に熱を与えるため凝縮して水になる。し
かLながら、この場合、水素ガスが含まれでいるため、
隔離時復水器8の伝熱管15内での凝縮熱伝達が悪くな
り、蒸気凝縮量が減少する。し7たが一部で、原子炉圧
力容器1及び原子炉圧力容器3内の圧力減少が悪化する
ため、水素ガスを取り除いて隔離時復水器8の伝熱管+
5内Cの熱伝達率を良好に17なければならない課題が
ある。
In the event of a loss of coolant accident, the steam released into the reactor containment vessel 1 mixes with the inert gas N in the reactor containment vessel J and 1-12, O, produced by radiolysis of water. . After that, the steam containing these gases is passed through the steam pipe 6.
and flows into the steam chamber 9 of the isolation condenser 8. -dan,
The mixed steam containing inert gas, etc. flowing into the steam chamber 9 descends through the heat transfer tube 15 of the isolation condenser 8 and flows into the boiler 10.
In order to give heat to the pool water 11, it condenses and becomes water. However, in this case, hydrogen gas is included, so
During isolation, condensation heat transfer within the heat transfer tubes 15 of the condenser 8 deteriorates, and the amount of steam condensed decreases. However, in some cases, the pressure reduction inside the reactor pressure vessel 1 and the reactor pressure vessel 3 becomes worse, so hydrogen gas is removed and the heat exchanger tube + of the isolation condenser 8 is removed.
There is a problem that the heat transfer coefficient of 5C must be kept good.

本発明は上記課題を解決するためになされたもので、隔
離時復水器の蒸気室内で水素ガスを取り除いて伝熱管内
での熱伝達率を良好にし2、蒸気凝縮量を増大させ、原
子炉圧力容器および原子炉格納容器内の圧力−1−封を
低減して安全に原子炉を停止さぜることができる隔離時
復水器を提供することにある3、 [発明の構成] (課題を解決するための手段) 本発明は原子炉格納容器のに方に設けられた隔離時復水
器プール内に設置する隔離時復水器において、前記復水
器の蒸気室内に水素(H2)を吸蔵する水素吸蔵合金を
設け−Cなることをと特徴とオる。
The present invention was made to solve the above problems, and it improves the heat transfer coefficient in the heat transfer tubes by removing hydrogen gas in the steam chamber of the isolation condenser, increases the amount of steam condensed, and improves the heat transfer coefficient in the heat transfer tubes. An object of the present invention is to provide an isolation condenser that can safely shut down a nuclear reactor by reducing the pressure inside the reactor pressure vessel and the reactor containment vessel. Means for Solving the Problems) The present invention provides an isolation condenser installed in an isolation condenser pool provided on the side of a reactor containment vessel, in which hydrogen (H2 ) is provided with a hydrogen storage alloy that absorbs -C.

(作 用) たとλば原子炉の冷却材喪失事故時においで、原子炉格
納容器内へ放出された蒸気は原r・炉格納容器内の不活
性ガス(N、)および水の放射線分解等によ、−)で発
生ずる水素ガス(H2) 、酸素ガス(02)の混合蒸
気となる。この混合蒸気は蒸気配管を通り隔離時復水器
の蒸気室内−・、4流れ込む。
(Function) For example, in the event of a loss of coolant accident in a nuclear reactor, steam released into the reactor containment vessel undergoes radiolysis, etc. of inert gas (N) and water in the reactor containment vessel. It becomes a mixed vapor of hydrogen gas (H2) and oxygen gas (02) generated at y, -). This mixed steam flows through the steam pipe into the steam chamber of the isolation condenser.

この際、水素ガス(H7)を吸蔵する合金を冷却材喪失
事故時の雰囲気(圧力約2〜3 kg、、/a]f )
で水素ガス(i(2)を吸蔵Aるように蒸気室内に設け
ることによって、蒸気室に流入した水素ガスは1、記合
金に吸蔵され、混合蒸気の圧力は減少1′る。
At this time, the alloy that stores hydrogen gas (H7) is placed in the atmosphere at the time of the loss of coolant accident (pressure approximately 2 to 3 kg, /a]f).
By arranging hydrogen gas (i(2)) in the steam chamber so as to store it, the hydrogen gas flowing into the steam chamber is stored in the alloy described above, and the pressure of the mixed vapor decreases by 1'.

これにより伝熱管内を流れる蒸気の凝縮熱伝達が良好と
なり、蒸気凝縮量が多くなる。この凝縮した水は自重に
より凝縮水戻り管を通り、再び原r炉圧力容器内へ戻さ
れる。
This improves the condensation heat transfer of the steam flowing inside the heat transfer tube, increasing the amount of steam condensed. This condensed water passes through the condensed water return pipe due to its own weight and is returned to the reactor pressure vessel.

(実施例) 第1図から第3図を参照し、なから本発明に係る隔離時
復水器の−・実施例を説明する。
(Embodiment) With reference to FIGS. 1 to 3, an embodiment of the isolation condenser according to the present invention will be described.

第1−図においで符号20は本発明の実施例における隔
離時復水器を示し、ており、この復水器20は土部に蒸
気室21が、中間部に多数本の伝熱管22が、下部に氷
室23が連結されたものからなっており、とくに蒸気室
21内には水素を吸蔵4る水素吸蔵合金を収容し、たバ
スbット24が吊首さねでいる9、このバリッド24は
第2図に部分的に拡大して示したようにたさえばスラン
レス鋼など6) b、l #hlで網目状容器に形成さ
tlで通気性4二有し、−1一端間11C1取(・]け
フランジ25が接続されている。7取付(す°フランジ
25の上面はカバー26ご密閉さ第1る。Jう(、−な
っている5、このバスゲット24は第:3図15示した
蒸気室21の十部27から吊り丁げられたボルト28に
孔ハを挿し、込んでナツト30で締め何重で蒸気室21
内(。
In Fig. 1, the reference numeral 20 indicates an isolation condenser in an embodiment of the present invention, and this condenser 20 has a steam chamber 21 in the soil part and a large number of heat transfer tubes 22 in the middle part. It consists of an ice chamber 23 connected to the lower part, and in particular, the steam chamber 21 houses a hydrogen storage alloy that stores hydrogen, and a bath 24 hangs thereon. Valid 24 is made of slanless steel or the like, as shown in a partially enlarged view in FIG. 11C1 take (・] flange 25 is connected. 7 Installation (the upper surface of flange 25 is sealed with cover 26). 3. Insert the hole in the bolt 28 hanging from the tenth part 27 of the steam chamber 21 shown in FIG.
Inside (.

着脱自在1、゛吊りFげられる。上蓋27は蒸気室21
のフランジ31にボルト32で気密(、”〜ねじ止めさ
れる1、ここで、バスフット24内に収容4る水素吸蔵
合金はたとえばパラジウA、パラジウム黒、鉄 チタン
合金、ランタン−ニッケル合金5マグネシウム ニッケ
ル合金、鉄−ニッケル チタン合金などの粒子または小
塊状粒子を使用」る5、吉くにパラジウム黒は水素の吸
蔵能力が高いので望まj、い3、しかして、」1実流側
においでは冷却材喪失事故時に原子力格納容器1内に放
出さり、 i;活性ガスなどと混合された蒸気は蒸気配
管6を通り隔離時復水器2Gの蒸気室21内へ流入され
る9、この蒸気室21内には冷却材喪失事故時の原子力
内部条件と同様な圧力(2〜3 kg/aI)程度で(
H2)を吸蔵する性質をも一′)ように・つくられた(
H2)吸蔵合金がバスケット24内に収容されであるた
め、蒸気室21内へ流入し、た不活性ガス混合蒸気中か
ら選択的j、コ水素(i(、)を吸蔵する。し、たが−
)て、伝熱管22内での凝縮熱伝達は良好となり、蒸気
凝縮量が増大する。凝縮され水となったものはその自重
で凝縮水戻り管13を通り再び原子炉圧力容器3内へ戻
される。
Detachable 1. Can be hung. The upper lid 27 is the steam chamber 21
The hydrogen storage alloy housed in the bath foot 24 is, for example, palladium A, palladium black, iron titanium alloy, lanthanum-nickel alloy 5 magnesium. It is desirable to use particles or small lumps of nickel alloy, iron-nickel titanium alloy, etc. 5. It is preferable to use palladium black because it has a high hydrogen storage capacity. 3. However, 1. Cooling on the actual flow side During a material loss accident, steam is released into the nuclear containment vessel 1 and mixed with active gas etc. passes through the steam pipe 6 and flows into the steam chamber 21 of the isolation condenser 2G. The internal pressure (2 to 3 kg/aI) similar to the internal conditions of a nuclear power plant during a loss of coolant accident (
It also has the property of occluding H2).
H2) Since the storage alloy is accommodated in the basket 24, it flows into the steam chamber 21 and selectively stores hydrogen (i(,)) from the inert gas mixture vapor. −
), the condensation heat transfer within the heat transfer tube 22 becomes good, and the amount of steam condensed increases. The condensed water is returned to the reactor pressure vessel 3 through the condensed water return pipe 13 due to its own weight.

この実施例によれば、」−記効果のほかにバスケット取
付はフランジに水素吸蔵合金を収容[7たバスリットが
取りついているため、上部フランジを取り外すことによ
ってバスケットも容易に取り外ずことかできる。このこ
とによりバスケット内に収容した水素吸蔵合金の取り替
え作業を簡単に行うことができる効果もある3、 「発明の効果] 本発明によれば原子炉格納容器内で不活性ガスなどと混
合された蒸気は蒸気室内に設Uられt、−水素吸蔵合金
で水素ガス(H2)が除去されて伝熱管内での凝縮熱の
伝達が良好となり、蒸気凝縮量を増大させる。凝縮され
た水はその自重で凝縮水戻り管を通り原r炉圧力容器内
へ戻される。ぞの結果、原子炉内の冷却効果が高まり、
崩壊熱を防ぎ、圧力土性をおさえることができ、しかも
、冷却材喪失事故時においでも機械的な作動もなく安全
に原子炉を停」1゛できる。
According to this embodiment, in addition to the above effects, the basket is attached with a bath slit that houses the hydrogen storage alloy in the flange, so the basket can be easily removed by removing the upper flange. . This has the effect of making it easier to replace the hydrogen storage alloy housed in the basket3. ``Effects of the Invention'' According to the present invention, hydrogen storage alloys that are mixed with inert gas etc. in the reactor containment vessel can be easily replaced. The steam is installed in the steam chamber, and hydrogen gas (H2) is removed by a hydrogen storage alloy, which improves the transfer of condensation heat within the heat transfer tube and increases the amount of steam condensed.The condensed water is Under its own weight, the condensed water passes through the return pipe and returns to the reactor pressure vessel.As a result, the cooling effect inside the reactor increases,
It is possible to prevent decay heat and suppress pressure-induced soil properties, and even in the event of a loss of coolant accident, the reactor can be safely shut down without any mechanical activation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明(S係る隔離時復水器の〜実施例を線図
的に示す縦断面図、第2図は第1図にお1Jる水素吸蔵
合金の取付は状態を示ず縦断面図、第3図は第15図に
おりるバスケットの取イ」り金具を示す縦断面図、第4
図は従来の隔離時復水器を説明するだめの配管系統図で
ある。 1、・・・原子炉格納容器、2・・・炉心、3・・・原
子炉圧力容器、4・・・主蒸気配管、5・・・主蒸気隔
離弁、(5・・・蒸気配管、7・・・蒸気導入弁、8・
・・隔離時復水器。 9・21・・・蒸気室、10・・・隔離時復水器ブ・−
ル、11・・・ブー・ル水、12・23・・・水室、1
3・・・凝縮水戻り管、 14・・・戻り弁、15・2
2・・・伝熱管、16・・・蒸気排出管、24・・・バ
スケット、25・・・取付はフランジ、26・・・カバ
ー27・・・上蓋、28・32・・・ボルト、29・・
・孔、30・・・ナツト。 31・・・7ランジ (8733)代理人弁理士 猪 股 祥 晃(他1名)
第 図 第 図
Fig. 1 is a vertical cross-sectional view diagrammatically showing an embodiment of the isolation condenser according to the present invention (S), and Fig. 2 is a longitudinal cross-sectional view diagrammatically showing the installation state of the hydrogen storage alloy 1J in Fig. 1. 3 is a vertical cross-sectional view showing the handle of the basket shown in FIG. 15, and 4 is a top view.
The figure is a piping system diagram illustrating a conventional isolation condenser. DESCRIPTION OF SYMBOLS 1...Reactor containment vessel, 2...Reactor core, 3...Reactor pressure vessel, 4...Main steam piping, 5...Main steam isolation valve, (5...Steam piping, 7...Steam introduction valve, 8.
...Isolation condenser. 9/21... Steam room, 10... Isolation condenser block -
Le, 11...Boo Le water, 12.23...Water chamber, 1
3... Condensed water return pipe, 14... Return valve, 15.2
2...Heat transfer tube, 16...Steam discharge pipe, 24...Basket, 25...Flange mounting, 26...Cover 27...Top lid, 28.32...Bolts, 29.・
・Hole, 30...Natsuto. 31...7 Ranji (8733) Representative Patent Attorney Yoshiaki Inomata (1 other person)
Figure Figure

Claims (1)

【特許請求の範囲】[Claims] 原子炉格納容器の上方に設けられた隔離時復水器プール
内に設置する隔離時復水器において、前記復水器の蒸気
室内に水素を吸蔵する水素吸蔵合金を設けてなることを
特徴とする隔離時復水器。
An isolation condenser installed in an isolation condenser pool provided above a reactor containment vessel, characterized in that a hydrogen storage alloy for storing hydrogen is provided in the steam chamber of the condenser. condenser when isolated.
JP2110201A 1990-04-27 1990-04-27 Condenser at isolation Pending JPH049692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2110201A JPH049692A (en) 1990-04-27 1990-04-27 Condenser at isolation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2110201A JPH049692A (en) 1990-04-27 1990-04-27 Condenser at isolation

Publications (1)

Publication Number Publication Date
JPH049692A true JPH049692A (en) 1992-01-14

Family

ID=14529615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2110201A Pending JPH049692A (en) 1990-04-27 1990-04-27 Condenser at isolation

Country Status (1)

Country Link
JP (1) JPH049692A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6129789A (en) * 1995-12-21 2000-10-10 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Surface treatment method of hydrogen absorbing alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6129789A (en) * 1995-12-21 2000-10-10 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Surface treatment method of hydrogen absorbing alloy

Similar Documents

Publication Publication Date Title
CN104299655B (en) A method of cooling a nuclear reactor
US5282230A (en) Passive containment cooling system
CN108028082B (en) Passive cooling of cold shutdown
US3431168A (en) Reactor cooling system
JPH04230893A (en) Passive cooling apparatus for storing space of atomic reactor using isolated condenser
US3941586A (en) Method and apparatus for regenerating cold traps within liquid-metal systems
JP4125869B2 (en) Accumulation tank and pressurized fluid preparation method
JPH049692A (en) Condenser at isolation
US4666661A (en) Means for cooling a heat-generating device
JPH02247598A (en) Cooler for heat generating member
JPH05240990A (en) Two-phase reactor plant having partitioned separation condenser
JP7453062B2 (en) nuclear power plant
JPH04254795A (en) Cooling system of nuclear power station
JPS62182697A (en) Nuclear reactor cooling system
JP3524116B2 (en) Reactor containment cooling system
JPH0476494A (en) Emergency condenser for nuclear reactor
JPH08211181A (en) Reactor containment cooling device
JPH06281779A (en) Reactor container cooling device
JP7348814B2 (en) nuclear power plant
JPH0631808B2 (en) Tritium emission control device
RU2220100C2 (en) Autoclave device and method of uranium hexafluoride evaporation
JPH0252991A (en) Flow passage control mechanism for heat exchanger
JPS5983086A (en) Reactor container
JPH03200097A (en) Control system for concentration of combustible gas in atomic power plant
JPS59131801A (en) Secondary heat transmission circuit for liquid metal nuclearreactor