JPH08211181A - Reactor containment cooling device - Google Patents

Reactor containment cooling device

Info

Publication number
JPH08211181A
JPH08211181A JP7017571A JP1757195A JPH08211181A JP H08211181 A JPH08211181 A JP H08211181A JP 7017571 A JP7017571 A JP 7017571A JP 1757195 A JP1757195 A JP 1757195A JP H08211181 A JPH08211181 A JP H08211181A
Authority
JP
Japan
Prior art keywords
pressure
condensable gas
reactor containment
vent pipe
containment vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7017571A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Akiba
美幸 秋葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7017571A priority Critical patent/JPH08211181A/en
Publication of JPH08211181A publication Critical patent/JPH08211181A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE: To provide a reactor containment cooling device preventing the lowering of condensation heat transfer function in a heat exchanger and suppressing pressurization in the reactor containment by increasing the storage capacity of non-condensible gas in a non-condensible gas vent pipe with a low pressure vessel. CONSTITUTION: A reactor containment cooling device sucks steam and non- condensible gas contained in a reactor containment 2 and cools and condenses the steam with a gravity feed type core cooling system pool 6 and also exhaust the non-condensible gas through a non-condensible gas vent pipe 18 to a suppression pool 17. To the non-condensible gas vent pipe 18, a low pressure vessel 23 is connected by way of a switch valve 22.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子炉の冷却材喪失事
故に際する原子炉格納容器の冷却に係り、特に重力落下
式炉心冷却系で原子炉の崩壊熱を原子炉格納容器外へ除
熱冷却する原子炉格納容器の冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to cooling of a nuclear reactor containment vessel in the event of loss of coolant in a nuclear reactor, and more particularly, to the decay heat of the nuclear reactor to the outside of the nuclear reactor containment vessel in a gravity drop type core cooling system. The present invention relates to a cooling device for a containment vessel that cools by removing heat.

【0002】[0002]

【従来の技術】原子力発電所においては、万一の冷却材
喪失事故の発生を想定して、速やかに炉心を冷却する非
常用炉心冷却系が工学的安全設備として設けられ、原子
炉は多重の容器により覆われている。
2. Description of the Related Art In a nuclear power plant, an emergency core cooling system that cools the core promptly is provided as an engineering safety facility in anticipation of a coolant loss accident, and multiple nuclear reactors are installed. Covered by container.

【0003】また、この中の原子炉格納容器には、事故
発生後も長期にわたって炉心から発生する崩壊熱を原子
炉格納容器外へ除去するための原子炉格納容器の冷却装
置が設けられている。
Further, the reactor containment vessel is provided with a cooling device for the reactor containment vessel for removing decay heat generated from the core for a long period of time after the accident occurs to the outside of the reactor containment vessel. .

【0004】従来の原子炉格納容器の冷却装置として
は、事故発生時にポンプを起動して冷却用水を送り込む
ものであっったが、最近は、これらのポンプ等の回転機
器を用いずに自然現象の利用により、さらに安全性と信
頼性の向上を目指した冷却装置の開発が進められてい
る。
A conventional reactor containment vessel cooling device has been to start a pump to send cooling water when an accident occurs, but recently, a natural phenomenon without using a rotating device such as a pump or the like. Is being used to develop a cooling device aiming to further improve safety and reliability.

【0005】これを静的格納容器冷却系と呼んでいる
が、図4の縦断面図に主に熱交換器における配管経路を
表した、原子炉格納容器の冷却装置を示す。原子炉建屋
1に構築された原子炉格納容器2内には、炉心3を収容
した原子炉圧力容器4が格納されており、この原子炉圧
力容器4には主蒸気配管5が接続されて、主蒸気を図示
しないタービンに送っている。
This is called a static containment vessel cooling system, and the longitudinal sectional view of FIG. 4 shows a cooling system for a reactor containment vessel, which mainly shows piping paths in a heat exchanger. A reactor pressure vessel 4 accommodating a core 3 is stored in a reactor containment vessel 2 constructed in a reactor building 1, and a main steam pipe 5 is connected to the reactor pressure vessel 4. The main steam is sent to a turbine (not shown).

【0006】原子炉格納容器2の上部には、減圧後の原
子炉圧力容器4に重力水頭差で冷却水を送り込むための
重力落下式炉心冷却系プール6が設けられている。な
お、この重力落下式炉心冷却系プール6の液面は、原子
炉格納容器2と等圧になっていて、この重力落下式炉心
冷却系プール6は冷却水配管7により前記原子炉圧力容
器4と接続されている。
At the upper part of the reactor containment vessel 2, there is provided a gravity drop type core cooling system pool 6 for feeding cooling water to the reactor pressure vessel 4 after depressurization by a gravity head difference. The liquid level of the gravity-falling type core cooling system pool 6 is at the same pressure as the reactor containment vessel 2, and the gravity-falling type core cooling system pool 6 is cooled by a cooling water pipe 7 to form the reactor pressure vessel 4. Connected with.

【0007】また、重力落下式炉心冷却系プール6より
さらに高い位置で、原子炉格納容器2の外に冷却水プー
ル8が設けられ、この冷却水プール8のプール水中に熱
交換器9が設置されている。
A cooling water pool 8 is provided outside the reactor containment vessel 2 at a position higher than the gravity drop core cooling system pool 6, and a heat exchanger 9 is installed in the pool water of the cooling water pool 8. Has been done.

【0008】この熱交換器9は、水中に浸漬する縦型の
伝熱管10群から構成されていて、この伝熱管10群の上部
には蒸気室11が、下部には水室12が設けられていて、蒸
気室11は原子炉格納容器2内の上部におけるドライウェ
ル13に開口する蒸気供給管14と接続されている。
This heat exchanger 9 is composed of a group of vertical heat transfer tubes 10 immersed in water. A steam chamber 11 is provided above the heat transfer tubes 10 and a water chamber 12 is provided below the heat transfer tubes 10. In addition, the steam chamber 11 is connected to a steam supply pipe 14 that opens to the dry well 13 in the upper part of the reactor containment vessel 2.

【0009】また、熱交換器9の下側の水室12には、前
記重力落下式炉心冷却系プール6内に開口する凝縮水戻
り配管15と、その下の圧力抑制室16内のサプレッション
プール17に接続する不凝縮性ガスベント管18とが設けら
れている。
In the water chamber 12 below the heat exchanger 9, a condensed water return pipe 15 opening into the gravity-falling core cooling system pool 6 and a suppression pool in the pressure suppression chamber 16 therebelow. A non-condensable gas vent pipe 18 connected to 17 is provided.

【0010】なお、凝縮水戻り配管15は水室12の底部か
ら、また不凝縮性ガスベント管18は底部より若干上方に
引き込み口が設けられている。この静的格納容器冷却系
の動作としては、例えば蒸気が原子炉格納容器2内に流
出したり、原子炉圧力容器4内の圧力が異常に上昇し、
これにより図示しない減圧弁が開いたり、主蒸気配管5
が破断すると原子炉圧力容器4内の冷却材が喪失する。
The condensed water return pipe 15 is provided with an inlet from the bottom of the water chamber 12, and the noncondensable gas vent pipe 18 is provided with an inlet slightly above the bottom. The operation of this static containment cooling system includes, for example, steam flowing out into the reactor containment vessel 2 and the pressure inside the reactor pressure vessel 4 rising abnormally.
As a result, a pressure reducing valve (not shown) opens or the main steam pipe 5
When is broken, the coolant in the reactor pressure vessel 4 is lost.

【0011】この場合は、原子炉圧力容器4の圧力が下
がって、重力落下式炉心冷却系プール6に貯められてい
た冷却水6aが冷却水配管7を通って原子炉圧力容器4
へ供給される。
In this case, the pressure of the reactor pressure vessel 4 is lowered, and the cooling water 6a stored in the gravity drop type core cooling system pool 6 passes through the cooling water pipe 7 and the reactor pressure vessel 4
Supplied to

【0012】これにより、炉心3は冷却水6aによる冠
水が維持されるが、原子炉圧力容器4内の圧力上昇は続
く。さらに長期の冷却に関しては、原子炉圧力容器4内
の炉心3は崩壊熱を発生し続けるため、これ以上の冷却
手段をもたずに放置しておくと、原子炉格納容器2内の
圧力は上昇して設計圧力を超えるようになる。
As a result, the core 3 is kept submerged by the cooling water 6a, but the pressure in the reactor pressure vessel 4 continues to rise. For further long-term cooling, the core 3 in the reactor pressure vessel 4 continues to generate decay heat, so if left without further cooling means, the pressure in the reactor containment vessel 2 will be reduced. It rises and exceeds the design pressure.

【0013】そこで、上記冷却水プール8内の熱交換器
9を用いて、原子炉格納容器2内の蒸気を蒸気供給管14
を介して熱交換器9の伝熱管10群内に導き、周囲のプー
ル水で冷却凝縮して圧力の上昇を抑制する。
Therefore, by using the heat exchanger 9 in the cooling water pool 8, the steam in the reactor containment vessel 2 is supplied to the steam supply pipe 14
Through the heat transfer tube 10 of the heat exchanger 9 and is cooled and condensed by the surrounding pool water to suppress an increase in pressure.

【0014】これが原子炉格納容器の冷却システムであ
る。この静的格納容器冷却系は、冷却現象を凝縮という
自然現象を利用して行うのであるが、この冷却システム
では、原子炉格納容器2内に火災防止などの理由で封入
されている不凝縮性ガスも、同時に蒸気と共に伝熱管10
内に吸い込まれる。
This is the cooling system for the reactor containment vessel. This static containment cooling system performs the cooling phenomenon by utilizing a natural phenomenon called condensation. In this cooling system, the non-condensable property which is enclosed in the reactor containment vessel 2 for the purpose of fire prevention and the like. Heat transfer tube with gas and steam at the same time 10
Is sucked in.

【0015】この不凝縮性ガスが熱交換器9の伝熱管10
群内に流入して、伝熱面の近傍に不凝縮性ガスの濃度境
界層ができると、これが熱抵抗となって熱交換器9の凝
縮性能を低下させる。
This non-condensable gas is the heat transfer tube 10 of the heat exchanger 9.
When a non-condensable gas concentration boundary layer is formed in the vicinity of the heat transfer surface by flowing into the group, this becomes thermal resistance and reduces the condensing performance of the heat exchanger 9.

【0016】すなわち、原子格納容器2内におけるドラ
イウェル13の圧力が上昇した場合に、蒸気と不凝縮性ガ
スの混合体は、蒸気供給管14を通して自然に熱交換器9
の上部の蒸気室11に吸われていく。
That is, when the pressure of the dry well 13 in the atomic storage container 2 rises, the mixture of vapor and non-condensable gas naturally flows through the vapor supply pipe 14 to the heat exchanger 9
Is sucked into the steam chamber 11 above.

【0017】蒸気は蒸気室11から熱交換器9の伝熱管10
を下降し、その間に冷却水プール8のプール水により冷
却されることで大半が凝縮して水になり、その凝縮水は
熱交換器9の水室12内に入り、さらに重力により凝縮水
戻り配管15を通って重力落下式炉心冷却系プール6内に
流下する。
Steam flows from the steam chamber 11 to the heat transfer tube 10 of the heat exchanger 9.
And is cooled by the pool water of the cooling water pool 8 during that time, most of it condenses into water, and the condensed water enters the water chamber 12 of the heat exchanger 9 and returns to the condensed water by gravity. It flows down through the pipe 15 into the gravity-falling core cooling system pool 6.

【0018】重力落下式炉心冷却系プール6内に流下し
た凝縮水は、初めに貯溜されていた冷却水6aと共に、
これも水頭差圧により冷却水配管7を流れて原子炉圧力
容器4に供給される。
Condensed water that has flowed down into the gravity drop type core cooling system pool 6 together with the cooling water 6a that was initially stored is
This also flows through the cooling water pipe 7 due to the head differential pressure and is supplied to the reactor pressure vessel 4.

【0019】一方、熱交換器9内で凝縮しない不凝縮性
ガスは、不凝縮性ガスベント管18を通ってサプレッショ
ンプール17に排出されるが、この際に不凝縮性ガスは、
圧力抑制ベント管19と不凝縮性ガスベント管18との、サ
プレッショクプール17における水没深さによる圧力差に
よって排出される。
On the other hand, the non-condensable gas that does not condense in the heat exchanger 9 is discharged to the suppression pool 17 through the non-condensable gas vent pipe 18. At this time, the non-condensable gas is
The pressure suppression vent pipe 19 and the non-condensable gas vent pipe 18 are discharged due to the pressure difference due to the depth of submersion in the suppression pool 17.

【0020】また、冷却水プール8における冷却プール
水は、熱交換器9からの潜熱の放出で温度は徐々に上昇
し、やがて沸騰を開始するが、その際に発生する蒸気
は、大気中に放出されて水位が減少してゆく。
The temperature of the cooling pool water in the cooling water pool 8 gradually rises due to the release of latent heat from the heat exchanger 9 and eventually starts to boil, but the steam generated at that time is released into the atmosphere. It is released and the water level decreases.

【0021】従来の静的格納容器冷却系においては、原
子炉圧力容器4への冷却水供給により重力落下式炉心冷
却系プール6内の冷却水6aは徐々に減少し、ついにそ
の液面は冷却水配管7のノズル高さに達することから、
重力落下式炉心冷却系プール6から原子炉圧力容器4に
流入する冷却水流量は急減する。
In the conventional static containment cooling system, the cooling water 6a in the gravity drop type core cooling system pool 6 is gradually reduced by supplying the cooling water to the reactor pressure vessel 4, and finally the liquid level is cooled. Since it reaches the nozzle height of the water pipe 7,
The flow rate of the cooling water flowing into the reactor pressure vessel 4 from the gravity drop type core cooling system pool 6 sharply decreases.

【0022】この冷却水はサブクール水であるため、こ
の冷却水が原子炉圧力容器4に流入している間は、炉心
3が発生する崩壊熱の一部はサブクール水を飽和水にす
る熱量に消費されているが、冷却水の供給が停止する
と、原子炉圧力容器4で発生する蒸気流量は急増し、原
子炉圧力容器4及び原子炉格納容器2内の圧力は急激に
上昇する。
Since this cooling water is subcooled water, while this cooling water is flowing into the reactor pressure vessel 4, a part of the decay heat generated in the reactor core 3 has a heat quantity that makes the subcooled water saturated water. Although consumed, when the supply of cooling water is stopped, the flow rate of steam generated in the reactor pressure vessel 4 increases rapidly, and the pressures in the reactor pressure vessel 4 and the reactor containment vessel 2 rise rapidly.

【0023】したがって、これに伴い原子炉格納容器2
から熱交換器9の蒸気室11に流入する蒸気流量も急増
し、伝熱管10に流入した蒸気の全量が凝縮できずに、多
量の未凝縮蒸気の一部が不凝縮性ガスベント管18を通っ
てサプレッションプール17に排出される。
Therefore, along with this, the reactor containment vessel 2
The flow rate of steam flowing into the steam chamber 11 of the heat exchanger 9 also rapidly increases, and the whole amount of the steam flowing into the heat transfer tube 10 cannot be condensed, and a large amount of uncondensed steam partially passes through the noncondensable gas vent tube 18. Is discharged to the suppression pool 17.

【0024】その後に、伝熱管10における凝縮量が流入
蒸気量を上回るように回復すると、原子炉格納容器2内
圧力は減圧に転じ、熱交換器9の水室12の圧力は徐々に
低下する。
After that, when the amount of condensation in the heat transfer tube 10 recovers so as to exceed the amount of inflow steam, the pressure in the reactor containment vessel 2 turns to a reduced pressure, and the pressure in the water chamber 12 of the heat exchanger 9 gradually decreases. .

【0025】熱交換器9下部の水室12の圧力が、不凝縮
性ガスベント管18がサプレッションプール17に水没され
ている深さ(サブマージェンスと呼ぶ)相当の圧力より
低くなると、不凝縮性ガスベント管18を通してサプレッ
ションプール17内へ排出される不凝縮性ガスの流れは停
止する。
When the pressure in the water chamber 12 below the heat exchanger 9 becomes lower than the pressure corresponding to the depth (called sub-magence) in which the non-condensable gas vent pipe 18 is submerged in the suppression pool 17, the non-condensable gas vent is provided. The flow of the non-condensable gas discharged through the pipe 18 into the suppression pool 17 is stopped.

【0026】[0026]

【発明が解決しようとする課題】サプレッションプール
17内への不凝縮性ガスの排出が停止すると、不凝縮性ガ
スベント管18内には多量の不凝縮性ガスと共に、未凝縮
蒸気が蒸気の状態で滞留することになる。
[Problems to be Solved by the Invention] Suppression pool
When the discharge of the non-condensable gas into the interior of the non-condensable gas 17 is stopped, the non-condensable vapor is accumulated in the non-condensable gas vent pipe 18 in the vapor state together with a large amount of the non-condensable gas.

【0027】また、わずかではあるが、原子炉格納容器
2から熱交換器9への不凝縮性ガスの流入は継続してい
ることから、熱交換器9の伝熱管10内に不凝縮性ガスが
再び蓄積されて伝熱管10での凝縮熱伝達が悪くなり、こ
のために、蒸気凝縮量が減少して原子炉格納容器2内圧
力が再上昇する支障がある。
Further, although the flow rate of the non-condensable gas from the reactor containment vessel 2 to the heat exchanger 9 is still small, the non-condensable gas is stored in the heat transfer pipe 10 of the heat exchanger 9. Are accumulated again and the condensation heat transfer in the heat transfer tube 10 is deteriorated, which reduces the amount of vapor condensation and causes the pressure inside the reactor containment vessel 2 to rise again.

【0028】図5の特性図は、主蒸気配管破断事故時の
原子炉格納容器2におけるドライウェル圧力と圧力抑制
室16の圧力を、それぞれ曲線20及び曲線21で示す。いず
れの圧力も事故発生後は冷却系プール6からのプール水
により、一旦低下するが、その後は徐々に上昇して行
く。
In the characteristic diagram of FIG. 5, the dry well pressure in the reactor containment vessel 2 and the pressure in the pressure suppression chamber 16 at the time of the main steam pipe breakage accident are shown by curves 20 and 21, respectively. Both pressures are temporarily reduced by the pool water from the cooling system pool 6 after the occurrence of the accident, but then gradually rise.

【0029】本発明の目的とするところは、低圧容器に
より不凝縮性ガスベント管における不凝縮性ガスの貯溜
容量を増加することにより、熱交換器における凝縮熱伝
達機能の低下を防止して原子炉格納容器の温度と圧力上
昇を抑制させる原子炉格納容器の冷却装置を提供するこ
とにある。
The object of the present invention is to increase the storage capacity of the non-condensable gas in the non-condensable gas vent pipe by means of the low-pressure container, thereby preventing the condensation heat transfer function of the heat exchanger from deteriorating. An object of the present invention is to provide a reactor containment vessel cooling device that suppresses an increase in temperature and pressure of the containment vessel.

【0030】[0030]

【課題を解決するための手段】上記目的を達成するため
請求項1記載の発明に係る原子炉格納容器の冷却装置
は、重力落下式炉心冷却系プールを備えて原子炉格納容
器内に含まれた蒸気及び不凝縮性ガスを熱交換器に吸引
して蒸気を冷却凝縮させると共に不凝縮性ガスを不凝縮
性ガスベント管を介してサプレッションプールに排出さ
せる冷却装置において、前記不凝縮性ガスベント管に開
閉弁を介した低圧容器を接続したことを特徴とする。
In order to achieve the above object, a cooling device for a reactor containment vessel according to the invention of claim 1 is provided with a gravity drop type core cooling system pool and is included in the reactor containment vessel. In the cooling device that sucks the vapor and the non-condensable gas into the heat exchanger to cool and condense the vapor and discharge the non-condensable gas to the suppression pool through the non-condensable gas vent pipe, It is characterized in that a low-pressure container is connected via an on-off valve.

【0031】請求項2記載の発明に係る原子炉格納容器
の冷却装置は、不凝縮性ガスベント管に接続した低圧容
器を、原子炉格納容器のドライウェル内に設置したこと
を特徴とする。
A cooling device for a reactor containment vessel according to a second aspect of the present invention is characterized in that a low-pressure vessel connected to a non-condensable gas vent pipe is installed in a dry well of the reactor containment vessel.

【0032】請求項3記載の発明に係る原子炉格納容器
の冷却装置は、不凝縮性ガスベント管に接続した低圧容
器を、原子炉格納容器の圧力抑制室内に設置したことを
特徴とする。
A cooling device for a reactor containment vessel according to a third aspect of the present invention is characterized in that a low pressure vessel connected to a non-condensable gas vent pipe is installed in a pressure suppression chamber of the reactor containment vessel.

【0033】請求項4記載の発明に係る原子炉格納容器
の冷却装置は、低圧容器を不凝縮性ガスベント管に接続
した開閉弁を冷却材喪失事故発生後で圧力抑制室内圧力
が所定時間一定となったときに、開くことを特徴とす
る。
According to a fourth aspect of the present invention, there is provided an apparatus for cooling a reactor containment vessel, wherein an on-off valve in which a low pressure vessel is connected to a non-condensable gas vent pipe is provided with a pressure suppression chamber pressure which is constant for a predetermined time after a loss of coolant accident occurs. It is characterized by opening when it becomes.

【0034】請求項5記載の発明に係る原子炉格納容器
の冷却装置は、前記低圧容器を不凝縮性ガスベント管に
接続した開閉弁を冷却材喪失事故後に予め設定した時間
で開くことを特徴とする。
According to a fifth aspect of the present invention, there is provided a cooling device for a reactor containment vessel, wherein an opening / closing valve connecting the low pressure vessel to a noncondensable gas vent pipe is opened at a preset time after a loss of coolant accident. To do.

【0035】請求項6記載の発明に係る原子炉格納容器
の冷却装置は、低圧容器を不凝縮性ガスベント管に接続
した開閉弁を、前記重力落下式炉心冷却系プールの冷却
水が空になったときに開くことを特徴とする。
According to a sixth aspect of the present invention, there is provided an apparatus for cooling a reactor containment vessel, wherein an on-off valve connecting a low pressure vessel to a non-condensable gas vent pipe is used, and the cooling water in the gravity drop core cooling system pool is emptied. It is characterized by opening when you open it.

【0036】請求項7記載の発明に係る原子炉格納容器
の冷却装置は、不凝縮性ガスベント管に接続した低圧容
器の容積を、前記熱交換器における伝熱管の容積相当と
したことを特徴とする。請求項8記載の発明に係る原子
炉格納容器の冷却装置は、不凝縮性ガスベント管に接続
した低圧容器を予め負圧としておくことを特徴とする。
According to a seventh aspect of the present invention, there is provided a cooling device for a reactor containment vessel, wherein the volume of the low pressure vessel connected to the non-condensable gas vent pipe corresponds to the volume of the heat transfer pipe in the heat exchanger. To do. A cooling device for a reactor containment vessel according to an eighth aspect of the present invention is characterized in that a low pressure vessel connected to a non-condensable gas vent pipe is previously set to a negative pressure.

【0037】[0037]

【作用】請求項1記載の発明は、冷却材喪失事故時に原
子炉格納容器内に含まれた蒸気と不凝縮性ガスのうち
で、蒸気は熱交換器において冷却し凝縮される。しか
し、不凝縮性ガスは当初は熱交換器から不凝縮性ガスベ
ント管を介してサプレッションプールに排出されるが、
不凝縮性ガスベント管及び熱交換器に貯溜して、熱交換
器における熱交換と蒸気の冷却凝縮機能を阻害して、原
子炉格納容器の温度と圧力が上昇する。
According to the first aspect of the present invention, of the steam and the noncondensable gas contained in the reactor containment vessel at the time of the loss of coolant, the steam is cooled and condensed in the heat exchanger. However, although the non-condensable gas is initially discharged from the heat exchanger through the non-condensable gas vent pipe to the suppression pool,
It is stored in the non-condensable gas vent pipe and the heat exchanger to hinder the heat exchange in the heat exchanger and the cooling and condensing function of steam, and the temperature and pressure of the reactor containment vessel rise.

【0038】しかし、不凝縮性ガスベント管に不凝縮性
ガスが貯溜された時に、開閉弁を開くと不凝縮性ガスが
低圧容器に吸引されて、熱交換器に貯溜された不凝縮性
ガスを排出するので、熱交換器の熱交換機能が良好に維
持され、原子炉格納容器内の温度及び圧力上昇が抑制で
きる。
However, when the non-condensable gas is stored in the non-condensable gas vent pipe, if the opening / closing valve is opened, the non-condensable gas is sucked into the low-pressure container, and the non-condensable gas stored in the heat exchanger is removed. Since the heat is discharged, the heat exchange function of the heat exchanger is favorably maintained, and the temperature and pressure increase in the reactor containment vessel can be suppressed.

【0039】請求項2記載の発明は、不凝縮性ガスを吸
引する低圧容器を原子炉格納容器のドライウェル内に設
置したことにより保守が容易となる。なお、低圧容器を
断熱材で覆うことで、冷却材喪失事故発生時にも周囲の
温度上昇の影響を受けずに低圧容器の有効容量を確保す
ることができる。
According to the second aspect of the present invention, maintenance is facilitated by installing the low-pressure vessel for sucking the non-condensable gas in the dry well of the reactor containment vessel. By covering the low-pressure container with a heat insulating material, it is possible to secure an effective capacity of the low-pressure container without being affected by an increase in ambient temperature even when a coolant loss accident occurs.

【0040】請求項3記載の発明は、不凝縮性ガスを吸
引する低圧容器を、原子炉格納容器の圧力抑制室内に設
置いることから、冷却材喪失事故発生時にも周囲温度が
上昇せず、低圧容器の有効容量を容易に確保することが
できる。
According to the third aspect of the present invention, since the low-pressure vessel for sucking the non-condensable gas is installed in the pressure suppression chamber of the reactor containment vessel, the ambient temperature does not rise even when a loss of coolant accident occurs, The effective capacity of the low-pressure container can be easily ensured.

【0041】請求項4記載の発明は、冷却材喪失事故発
生に際し、不凝縮性ガスベント管内に不凝縮性ガスが貯
溜されたことを、圧力抑制室圧力が所定時間一定となっ
たことで検出して、開閉弁を開くことにより不凝縮性ガ
スを低圧容器に吸引する。
According to the fourth aspect of the present invention, when the coolant loss accident occurs, the fact that the non-condensable gas is stored in the non-condensable gas vent pipe is detected by the pressure suppression chamber pressure being kept constant for a predetermined time. Then, the on-off valve is opened to suck the non-condensable gas into the low pressure container.

【0042】請求項5記載の発明は、冷却材喪失事故発
生に際し、不凝縮性ガスベント管内に不凝縮性ガスが貯
溜されたことを、予め事故発生からの経過時間により設
定しておくことにより、設定時間後に開閉弁を開いて不
凝縮性ガスを低圧容器に吸引する。
According to the fifth aspect of the present invention, when a loss-of-coolant accident occurs, the fact that the non-condensable gas is stored in the non-condensable gas vent pipe is set in advance according to the elapsed time from the occurrence of the accident. After the set time, the on-off valve is opened to suck the non-condensable gas into the low pressure container.

【0043】請求項6記載の発明は、冷却材喪失事故発
生に際し、不凝縮性ガスベント管内に不凝縮性ガスが貯
溜されたときが、重力落下式炉心冷却系プールにおける
冷却水が空になったときとほぼ一致することから、重力
落下式炉心冷却系プールの冷却水が空になったときを検
出して開閉弁を開き、低圧容器に不凝縮性ガスを吸引さ
せる。
In the sixth aspect of the present invention, when the non-condensable gas is stored in the non-condensable gas vent pipe in the occurrence of the loss of coolant accident, the cooling water in the gravity-falling core cooling system pool becomes empty. Since it almost coincides with the time, the time when the cooling water in the gravity drop type core cooling system pool is emptied is detected, the on-off valve is opened, and the non-condensable gas is sucked into the low pressure vessel.

【0044】請求項7記載の発明は、不凝縮性ガスベン
ト管に接続した低圧容器の容積を、熱交換器における伝
熱管の容積相当に形成することにより、伝熱管における
不凝縮性ガスの貯溜を抑制する。
According to a seventh aspect of the present invention, the volume of the low-pressure container connected to the noncondensable gas vent pipe is formed to correspond to the volume of the heat transfer pipe in the heat exchanger, so that the noncondensable gas is stored in the heat transfer pipe. Suppress.

【0045】請求項8記載の発明は、不凝縮性ガスを吸
引する低圧容器を予め負圧としておくことにより、その
利用可能な有効容量が増加するので、効果的な不凝縮性
ガスの吸引が行え、また、容量を同一とすれば低圧容器
の小形化ができる。
In the eighth aspect of the present invention, since the low-pressure container for sucking the non-condensable gas is set to a negative pressure in advance, the available effective capacity thereof increases, so that the non-condensable gas can be sucked effectively. If the volumes are the same, the low-pressure container can be downsized.

【0046】[0046]

【実施例】本発明の一実施例について図面を参照して説
明する。なお、上記した従来技術と同じ構成部分には同
一符号を付して、詳細な説明を省略する。第1実施例
は、図1の原子炉圧力容器を省略した要部構成断面図に
示すように、原子炉建屋1内に構築された図示しない原
子炉格納容器2の上部には、減圧後の原子炉圧力容器4
に重力水頭差で冷却水6aを送り込むための重力落下式
炉心冷却系プール6が設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. It should be noted that the same components as those of the above-described conventional technique are denoted by the same reference numerals and detailed description thereof will be omitted. In the first embodiment, as shown in the cross-sectional view of the main part of the reactor pressure vessel of FIG. 1 omitted, after decompression, the upper part of the reactor containment vessel 2 (not shown) built in the reactor building 1 Reactor pressure vessel 4
A gravity-falling-type core cooling system pool 6 for feeding the cooling water 6a by a gravity head difference is provided in the.

【0047】なお、この重力落下式炉心冷却系プール6
の液面は、原子炉格納容器2と等圧にしていて、この重
力落下式炉心冷却系プール6は冷却水配管7により前記
原子炉圧力容器4と接続されている。
The gravity drop type core cooling system pool 6
The liquid surface of the reactor is made to have the same pressure as the reactor containment vessel 2, and the gravity drop type core cooling system pool 6 is connected to the reactor pressure vessel 4 by a cooling water pipe 7.

【0048】また、重力落下式炉心冷却系プール6より
さらに高い位置で、原子炉格納容器2の外に冷却水プー
ル8が設けられ、この冷却水プール8のプール水中に熱
交換器9が設置されている。
Further, a cooling water pool 8 is provided outside the reactor containment vessel 2 at a position higher than the gravity drop core cooling system pool 6, and a heat exchanger 9 is installed in the pool water of the cooling water pool 8. Has been done.

【0049】この熱交換器9は、水中に浸漬する縦型の
伝熱管10群から構成されていて、この伝熱管10群の上部
には蒸気室11が、下部には水室12が設けられていて、蒸
気室11は原子炉格納容器2内の上部におけるドライウェ
ル13に開口する蒸気供給管14と接続されている。
This heat exchanger 9 is composed of a group of vertical heat transfer tubes 10 immersed in water. A steam chamber 11 is provided above the heat transfer tubes 10 and a water chamber 12 is provided below the heat transfer tubes 10. In addition, the steam chamber 11 is connected to a steam supply pipe 14 that opens to the dry well 13 in the upper part of the reactor containment vessel 2.

【0050】また、熱交換器9の下側の水室12には、前
記重力落下式炉心冷却系プール6内に開口する凝縮水戻
り配管15と、その下の圧力抑制室16内のサプレッション
プール17に接続する不凝縮性ガスベント管18とが接続さ
れている。
In the water chamber 12 below the heat exchanger 9, a condensed water return pipe 15 that opens into the gravity-falling core cooling system pool 6 and a suppression pool inside the pressure suppression chamber 16 are provided. A non-condensable gas vent pipe 18 connected to 17 is connected.

【0051】なお、凝縮水戻り配管15は水室12の底部か
ら、また不凝縮性ガスベント管18は底部より若干上方に
引き込み口が設けられていて、さらに、不凝縮性ガスベ
ント管18には、ドライウェル13内に設置された開閉弁22
を介して通常運転時の原子炉格納容器内圧力と等しい低
圧容器23を接続して構成されている。
The condensed water return pipe 15 is provided with a lead-in port from the bottom of the water chamber 12, the non-condensable gas vent pipe 18 is provided slightly above the bottom, and the non-condensable gas vent pipe 18 is further provided with: Open / close valve 22 installed in drywell 13
A low-pressure vessel 23 having the same pressure as the reactor containment vessel during normal operation is connected via the.

【0052】次に上記構成による作用について説明す
る。原子炉冷却材喪失事故が発生して、原子炉格納容器
2のドライウェル13における圧力が上昇し、蒸気供給管
14から熱交換器9への蒸気及び不凝縮性ガスの流入量が
増加して、不凝縮性ガスベント管18内と共に熱交換器9
の伝熱管10内に不凝縮性ガスが蓄積されると、伝熱管10
における凝縮熱伝達が悪くなり、このために、蒸気凝縮
量が減少して原子炉格納容器2内の温度が上昇すること
から圧力も更に上昇する。
Next, the operation of the above configuration will be described. A reactor coolant loss accident occurred, the pressure in the drywell 13 of the reactor containment vessel 2 increased, and the steam supply pipe
The inflow amount of steam and noncondensable gas from 14 to the heat exchanger 9 increases, and the heat exchanger 9 and the inside of the noncondensable gas vent pipe 18 increase.
When non-condensable gas accumulates in the heat transfer tube 10 of
The condensing heat transfer at the point becomes worse, and as a result, the amount of vapor condensing decreases and the temperature in the reactor containment vessel 2 rises, so that the pressure further rises.

【0053】このときに図示しない圧力検出器により、
不凝縮性ガスベント管18あるいは圧力抑制室16内の圧力
上昇を検知して開閉弁22を開くと、熱交換器9の伝熱管
10と共に不凝縮性ガスベント管18内に蓄積された多量の
不凝縮性ガスは、開閉弁22を経由して低圧容器23に吸引
される。
At this time, by a pressure detector (not shown),
When the on-off valve 22 is opened upon detecting a pressure increase in the non-condensable gas vent pipe 18 or the pressure suppression chamber 16, the heat transfer pipe of the heat exchanger 9 is opened.
A large amount of non-condensable gas accumulated in the non-condensable gas vent pipe 18 together with 10 is sucked into the low-pressure container 23 via the opening / closing valve 22.

【0054】これにより、熱交換器9の伝熱管10及び不
凝縮性ガスベント管18内の圧力は低下し、伝熱管10内の
不凝縮性ガスを排出して、不凝縮性ガスが蓄積されるこ
とを防ぐことから、熱交換器9における熱交換及び蒸気
凝縮性能を良好に維持させることができる。
As a result, the pressure in the heat transfer tube 10 and the noncondensable gas vent tube 18 of the heat exchanger 9 decreases, the noncondensable gas in the heat transfer tube 10 is discharged, and the noncondensable gas is accumulated. Since this is prevented, the heat exchange and vapor condensing performance in the heat exchanger 9 can be favorably maintained.

【0055】また、開閉弁22及び低圧容器23をドライウ
ェル13内に設置しているので、保守が容易である。な
お、低圧容器23は事故発生に際して上昇するドライウェ
ル13内の温度に影響されて低圧容器23の温度が上昇する
と、内部圧力も上昇して不凝縮性ガスベント管18との圧
力差が少なくなり、不凝縮性ガスを吸引する有効容量が
低下するので、周囲温度の影響を避けるために予め断熱
材で囲んで置くとよい。
Further, since the on-off valve 22 and the low pressure container 23 are installed in the dry well 13, maintenance is easy. When the low-pressure container 23 is affected by the temperature in the dry well 13 that rises when an accident occurs and the temperature of the low-pressure container 23 rises, the internal pressure also rises and the pressure difference between the non-condensable gas vent pipe 18 decreases. Since the effective capacity for sucking the non-condensable gas decreases, it is preferable to enclose it in advance with a heat insulating material in order to avoid the influence of ambient temperature.

【0056】第2実施例は、図2の要部構成断面図に示
すように、開閉弁22と低圧容器23を圧力抑制室16内に配
置した構成としている。この構成によれば、事故発生時
のドライウェル13に比べて圧力抑制室16の温度は低く、
低圧容器23に対して断熱材による覆いは不要である。な
お、他の作用については、上記第1実施例と同様のもの
が得られる。
In the second embodiment, the on-off valve 22 and the low pressure container 23 are arranged in the pressure suppression chamber 16 as shown in the sectional view of the essential structure of FIG. According to this configuration, the temperature of the pressure suppression chamber 16 is lower than that of the dry well 13 at the time of the accident,
The low-pressure container 23 does not need to be covered with a heat insulating material. In addition, about the other effect | action, the thing similar to the said 1st Example is obtained.

【0057】第3実施例として、上記第1実施例及び第
2実施例において、開閉弁22を開いて不凝縮性ガスベン
ト管18の不凝縮性ガスを低圧容器23に吸引させる時期と
しては、冷却材喪失事故が発生すると、図3の特性図に
おける曲線20で示すように、ドライウェル13の圧力は上
昇して、蒸気と不凝縮性ガスが熱交換器9に入る。
As a third embodiment, in the above first and second embodiments, the timing for opening the on-off valve 22 and sucking the non-condensable gas in the non-condensable gas vent pipe 18 into the low pressure container 23 is cooling. When a material loss accident occurs, the pressure in the dry well 13 rises and vapor and non-condensable gas enter the heat exchanger 9, as shown by the curve 20 in the characteristic diagram of FIG.

【0058】熱交換器9において蒸気が凝縮されると水
室12の圧力が低くなり、不凝縮性ガスは不凝縮性ガスベ
ント管18に蓄積され始める。この時に圧力抑制室16の圧
力も曲線21で示すように、ドライウェル13の圧力とほぼ
同様に変化する。
When the steam is condensed in the heat exchanger 9, the pressure in the water chamber 12 becomes low, and the noncondensable gas starts to accumulate in the noncondensable gas vent pipe 18. At this time, the pressure in the pressure suppression chamber 16 changes almost in the same manner as the pressure in the dry well 13, as shown by the curve 21.

【0059】その後に圧力抑制室16における圧力の時間
変化が、矢印24の時点でしばらくの間一定となる。した
がって、圧力抑制室16内に図示しない圧力検出器を設置
し、所定時間内で圧力変化がないことを検知して、この
時点で開閉弁22を開けて、不凝縮性ガスベント管18内に
蓄積された不凝縮性ガスを低圧容器23に吸引させる。
After that, the time change of the pressure in the pressure suppression chamber 16 becomes constant for a while at the time of arrow 24. Therefore, a pressure detector (not shown) is installed in the pressure suppression chamber 16, detects that there is no pressure change within a predetermined time, opens the on-off valve 22 at this point, and accumulates in the noncondensable gas vent pipe 18. The generated non-condensable gas is sucked into the low pressure container 23.

【0060】なお、開閉弁22を開けて不凝縮性ガスが低
圧容器23に吸引されると、不凝縮性ガスベント管18内と
低圧容器23内の圧力差がなくなるが、不凝縮性ガスの貯
溜容量が増大するので、前記熱交換器9内の不凝縮性ガ
スは不凝縮性ガスベント管18側に流れ易くなる。
When the on-off valve 22 is opened and the non-condensable gas is sucked into the low pressure container 23, the pressure difference between the non-condensable gas vent pipe 18 and the low pressure container 23 disappears, but the non-condensable gas is stored. Since the capacity is increased, the noncondensable gas in the heat exchanger 9 easily flows to the noncondensable gas vent pipe 18 side.

【0061】また、開閉弁22を開けておく時間及び、そ
の回数は不凝縮性ガスの不凝縮性ベント管18に蓄積され
た状態と、低圧容器23に吸引させたことによる相互の圧
力差により適宜行なってもよい。
The time and the number of times the open / close valve 22 is kept open depend on the pressure difference between the state in which the non-condensable gas is accumulated in the non-condensable vent pipe 18 and the pressure in the low-pressure container 23. You may perform it suitably.

【0062】第4実施例は、開閉弁22を開く時期とし
て、図3に示す矢印24の時点を実験等により事故発生か
らの経過時間として確認して、予め設定時間として設定
しておくことで、事故発生に際しては簡便な機構で適切
なタイミングにより開閉弁22を開制御して、不凝縮性ガ
スベント管18に蓄積した不凝縮性ガスを低圧容器23に吸
引させることができる。
In the fourth embodiment, as the timing for opening the on-off valve 22, the time point indicated by the arrow 24 in FIG. 3 is confirmed as the elapsed time from the occurrence of the accident by experiments or the like, and the preset time is set. When an accident occurs, the open / close valve 22 is controlled to be opened with a simple mechanism at an appropriate timing so that the noncondensable gas accumulated in the noncondensable gas vent pipe 18 can be sucked into the low-pressure container 23.

【0063】第5実施例としては、重力落下式炉心冷却
プール6の冷却水6aが空になるときと、不凝縮性ガス
が不凝縮性ガスベント管18に蓄積されたときとはほぼ一
致する。
In the fifth embodiment, the time when the cooling water 6a in the gravity-falling type core cooling pool 6 is emptied and the time when the noncondensable gas is accumulated in the noncondensable gas vent pipe 18 are almost the same.

【0064】したがって、重力落下式炉心冷却プール水
6aが空になったことを図示しない水位検出器で検知し
て、不凝縮性ガスベント管18に配設された開閉弁22を開
くことにより、不凝縮性ガスベント管18に蓄積した不凝
縮性ガスを適切に低圧容器23に吸引させることができ
る。
Therefore, when the gravity drop type core cooling pool water 6a is emptied, it is detected by a water level detector (not shown) and the on-off valve 22 arranged in the non-condensable gas vent pipe 18 is opened, The non-condensable gas accumulated in the condensable gas vent pipe 18 can be appropriately sucked into the low pressure container 23.

【0065】第6実施例は、前記熱交換器9において熱
交換を十分に機能させるためには、伝熱管10に蓄積さ
れた不凝縮性ガスを極力取り除くことであるが、これに
は、低圧容器23の容積を伝熱管10の容積と相当にすると
よい。
The sixth embodiment is to remove the non-condensable gas accumulated in the heat transfer tube 10 as much as possible in order to make the heat exchange function sufficiently in the heat exchanger 9. The volume of the container 23 may be equivalent to the volume of the heat transfer tube 10.

【0066】伝熱管10の一例としては、内径 0.05m、高
さ1.8m、1ユニットにつき約 500本となっているものが
ある。したがって、この伝熱管10の容積は、0.052 ×π
/4×1.8 × 500=1.6( m3 )であるから、低圧容器23に
ついてもこの程度の容積のものを設置することで、不凝
縮性ガスの貯溜容量を2倍とすることができる。
An example of the heat transfer tube 10 is one having an inner diameter of 0.05 m, a height of 1.8 m, and about 500 tubes per unit. Therefore, the volume of this heat transfer tube 10 is 0.05 2 × π
Since /4×1.8×500=1.6 (m 3 ), the storage capacity of the noncondensable gas can be doubled by installing the low-pressure container 23 having such a volume.

【0067】第7実施例として、低圧容器23を予め負圧
としておくことにより、その利用できる有効容量が増大
できる。この際に開閉弁22の開操作を複数回とし、それ
ぞれ短時間とすることで、不凝縮性ガスベント管18と低
圧容器23との差圧をその都度得る。
As a seventh embodiment, by preliminarily setting the low pressure container 23 to a negative pressure, the available effective capacity can be increased. At this time, the opening / closing valve 22 is opened a plurality of times for a short time to obtain the differential pressure between the noncondensable gas vent pipe 18 and the low-pressure container 23 each time.

【0068】また、有効容量を効果的に活用して不凝縮
性ガスベント管18から低圧容器23へ多くの不凝縮性ガス
が吸引できる。さらに、低圧容器23を同一容量にするな
らば、小形化とすることが容易となる。
Further, by effectively utilizing the effective capacity, a large amount of non-condensable gas can be sucked from the non-condensable gas vent pipe 18 to the low pressure container 23. Furthermore, if the low-pressure container 23 has the same volume, it is easy to make it compact.

【0069】[0069]

【発明の効果】以上本発明によれば、熱交換器の伝熱管
内に流入した不凝縮性ガスの排出が良好となり、熱交換
器における蒸気凝縮機能を良好として原子炉圧力容器及
び原子炉格納容器の温度と共に、圧力の上昇を抑制する
ことから、原子炉運転の安全性と信頼性を向上する効果
がある。
As described above, according to the present invention, the non-condensable gas that has flowed into the heat transfer tube of the heat exchanger is discharged well, and the steam condensing function in the heat exchanger is improved so that the reactor pressure vessel and the reactor containment are improved. Since it suppresses the rise of pressure as well as the temperature of the vessel, it has the effect of improving the safety and reliability of reactor operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る第1実施例の原子炉格納容器の冷
却装置の要部構成断面図。
FIG. 1 is a cross-sectional view of the essential parts of a cooling device for a reactor containment vessel according to a first embodiment of the present invention.

【図2】本発明に係る第2実施例の原子炉格納容器の冷
却装置の要部構成断面図。
FIG. 2 is a cross-sectional view of the essential parts of a cooling device for a reactor containment vessel according to a second embodiment of the present invention.

【図3】本発明に係る一実施例で、冷却材喪失事故時の
ドライウェル及び圧力抑制室の圧力特性図。
FIG. 3 is a pressure characteristic diagram of a dry well and a pressure suppression chamber at the time of a loss of coolant accident in one embodiment according to the present invention.

【図4】従来の原子炉格納容器の冷却装置の構成断面
図。
FIG. 4 is a sectional view showing the configuration of a conventional cooling device for a reactor containment vessel.

【図5】冷却材喪失事故時のドライウェル及び圧力抑制
室の圧力特性図。
FIG. 5 is a pressure characteristic diagram of a dry well and a pressure suppression chamber at the time of a loss of coolant accident.

【符号の説明】[Explanation of symbols]

1…原子炉建屋、2…原子炉格納容器、3…炉心、4…
原子炉圧力容器、5…主蒸気配管、6…重力落下式炉心
冷却系プール、6a…冷却水、7…冷却水配管、8…冷
却水プール、9…熱交換器、10…伝熱管、11…蒸気室、
12…水室、13…ドライウェル、14…蒸気供給管、15…凝
縮水戻り管、16…圧力抑制室、17…サプレッションプー
ル、18…不凝縮性ガスベント管、19…圧力抑制ベント
管、20…ドライウェルの圧力曲線、21…圧力抑制室の圧
力曲線、22…開閉弁、23…低圧容器、24…圧力抑制室の
圧力一時一定時点(矢印)。
1 ... Reactor building, 2 ... Reactor containment vessel, 3 ... Reactor core, 4 ...
Reactor pressure vessel, 5 ... Main steam piping, 6 ... Gravity drop type core cooling system pool, 6a ... Cooling water, 7 ... Cooling water piping, 8 ... Cooling water pool, 9 ... Heat exchanger, 10 ... Heat transfer tube, 11 … The steam room,
12 ... Water chamber, 13 ... Dry well, 14 ... Steam supply pipe, 15 ... Condensate return pipe, 16 ... Pressure suppression chamber, 17 ... Suppression pool, 18 ... Non-condensable gas vent pipe, 19 ... Pressure suppression vent pipe, 20 … Drywell pressure curve, 21… Pressure suppression chamber pressure curve, 22… Open / close valve, 23… Low pressure container, 24… Pressure suppression chamber pressure temporary certain point (arrow).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G21C 9/004 GDB 13/00 GDB ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G21C 9/004 GDB 13/00 GDB

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 重力落下式炉心冷却系プールを備えて原
子炉格納容器内に含まれた蒸気及び不凝縮性ガスを熱交
換器に吸引して蒸気を冷却凝縮させると共に不凝縮性ガ
スを不凝縮性ガスベント管を介してサプレッションプー
ルに排出させる冷却装置において、前記不凝縮性ガスベ
ント管に開閉弁を介した低圧容器を接続したことを特徴
とする原子炉圧力容器の冷却装置。
1. A gravity-drop type core cooling system pool is provided, and steam and non-condensable gas contained in the reactor containment vessel are sucked into a heat exchanger to cool and condense the steam and to prevent non-condensable gas from being condensed. In a cooling device for discharging to a suppression pool via a condensable gas vent pipe, a low-pressure container via an open / close valve is connected to the non-condensable gas vent pipe.
【請求項2】 前記不凝縮性ガスベント管に接続した低
圧容器を、原子炉格納容器のドライウェル内に設置した
ことを特徴とする請求項1記載の原子炉格納容器の冷却
装置。
2. The cooling device for a reactor containment vessel according to claim 1, wherein the low pressure container connected to the non-condensable gas vent pipe is installed in a dry well of the reactor containment vessel.
【請求項3】 前記不凝縮性ガスベント管に接続した低
圧容器を、原子炉格納容器の圧力抑制室内に設置したこ
とを特徴とする請求項1記載の原子炉格納容器の冷却装
置。
3. The cooling device for a reactor containment vessel according to claim 1, wherein the low-pressure container connected to the non-condensable gas vent pipe is installed in a pressure suppression chamber of the reactor containment vessel.
【請求項4】 前記低圧容器を不凝縮性ガスベント管に
接続した開閉弁を冷却材喪失事故発生後で圧力抑制室内
圧力が所定時間一定となったときに、開くことを特徴と
する請求項1及至請求項3記載の原子炉格納容器の冷却
装置。
4. The on-off valve, which connects the low-pressure container to the non-condensable gas vent pipe, opens when the pressure in the pressure suppression chamber becomes constant for a predetermined time after the occurrence of a loss of coolant accident. The cooling device for the reactor containment vessel according to claim 3.
【請求項5】 前記低圧容器を不凝縮性ガスベント管に
接続した開閉弁を冷却材喪失事故後に予め設定した時間
で開くことを特徴とする請求項1及至請求項3記載の原
子炉格納容器の冷却装置。
5. The reactor containment vessel according to claim 1, wherein the on-off valve connecting the low-pressure vessel to the non-condensable gas vent pipe is opened at a preset time after a loss of coolant accident. Cooling system.
【請求項6】 前記低圧容器を不凝縮性ガスベント管に
接続した開閉弁を、前記重力落下式炉心冷却系プールの
冷却水が空になったときに開くことを特徴とする請求項
1及至請求項3記載の原子炉格納容器の冷却装置。
6. The on-off valve, which connects the low-pressure vessel to a non-condensable gas vent pipe, is opened when the cooling water in the gravity-drop core cooling system pool is emptied. Item 3. A cooling device for a reactor containment vessel according to Item 3.
【請求項7】 前記不凝縮性ガスベント管に接続した低
圧容器の容積を、前記熱交換器における伝熱管の容積相
当としたことを特徴とする請求項1及至請求項3記載の
原子炉格納容器の冷却装置。
7. The reactor containment vessel according to claim 1, wherein the volume of the low-pressure vessel connected to the non-condensable gas vent pipe corresponds to the volume of the heat transfer tube in the heat exchanger. Cooling system.
【請求項8】 前記不凝縮性ガスベント管に接続した低
圧容器を予め負圧としておくことを特徴とする請求項1
及至請求項3記載の原子炉格納容器の冷却装置。
8. The low-pressure container connected to the non-condensable gas vent pipe is set to a negative pressure in advance.
The cooling device for the reactor containment vessel according to claim 3.
JP7017571A 1995-02-06 1995-02-06 Reactor containment cooling device Pending JPH08211181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7017571A JPH08211181A (en) 1995-02-06 1995-02-06 Reactor containment cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7017571A JPH08211181A (en) 1995-02-06 1995-02-06 Reactor containment cooling device

Publications (1)

Publication Number Publication Date
JPH08211181A true JPH08211181A (en) 1996-08-20

Family

ID=11947608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7017571A Pending JPH08211181A (en) 1995-02-06 1995-02-06 Reactor containment cooling device

Country Status (1)

Country Link
JP (1) JPH08211181A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045546A1 (en) * 1998-03-03 1999-09-10 Siemens Aktiengesellschaft Containment vessel and method for operating a condenser in a nuclear power plant
CN112908500A (en) * 2021-01-14 2021-06-04 中广核研究院有限公司 Volume control method for non-condensable gas at top of pressure container
CN113035394A (en) * 2021-03-05 2021-06-25 哈尔滨工程大学 Containment built-in efficient heat exchanger adopting gas storage compartment type
CN113035396A (en) * 2021-03-05 2021-06-25 哈尔滨工程大学 Double-wheel double-blade composite power air blowing type efficient heat exchanger built in containment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045546A1 (en) * 1998-03-03 1999-09-10 Siemens Aktiengesellschaft Containment vessel and method for operating a condenser in a nuclear power plant
CN112908500A (en) * 2021-01-14 2021-06-04 中广核研究院有限公司 Volume control method for non-condensable gas at top of pressure container
CN113035394A (en) * 2021-03-05 2021-06-25 哈尔滨工程大学 Containment built-in efficient heat exchanger adopting gas storage compartment type
CN113035396A (en) * 2021-03-05 2021-06-25 哈尔滨工程大学 Double-wheel double-blade composite power air blowing type efficient heat exchanger built in containment
CN113035394B (en) * 2021-03-05 2023-12-19 哈尔滨工程大学 Adopt built-in high-efficient heat exchanger of containment of gas storage compartment formula

Similar Documents

Publication Publication Date Title
JP2642763B2 (en) Reactor system
US3718539A (en) Passive nuclear reactor safeguard system
US20170162281A1 (en) Passive containment cooling and filtered venting system, and nuclear power plant
US5096659A (en) Reactor containment vessel
EP0475700A1 (en) Passive cooling means for water cooled nuclear reactor plants
JPH04125495A (en) Nuclear reactor facility
US4950448A (en) Passive heat removal from containment
JPH0769455B2 (en) Nuclear reactor system
JP3159820B2 (en) Reactor containment equipment
JPH0820539B2 (en) Nuclear reactor system
JP2018136172A (en) Emergency core cooling system and boiling-water nuclear power plant using the same
US5353318A (en) Pressure suppression system
JP3507547B2 (en) Pressure suppression containment system
JP2528977B2 (en) Containment vessel
JPH085772A (en) Reactor containment
US4998509A (en) Passive heat removal from containment
JPH08211181A (en) Reactor containment cooling device
JP2001228280A (en) Reactor
JP4031259B2 (en) Reactor containment cooling equipment
JP2020046367A (en) Condensing device, nuclear power plant and operation method thereof
JPH04254795A (en) Cooling system of nuclear power station
JPH05323084A (en) Reactor containment
JP3524116B2 (en) Reactor containment cooling system
JP2004239817A (en) Containment pressure suppression system
JPS6346397B2 (en)