JPS62182697A - Nuclear reactor cooling system - Google Patents

Nuclear reactor cooling system

Info

Publication number
JPS62182697A
JPS62182697A JP61023842A JP2384286A JPS62182697A JP S62182697 A JPS62182697 A JP S62182697A JP 61023842 A JP61023842 A JP 61023842A JP 2384286 A JP2384286 A JP 2384286A JP S62182697 A JPS62182697 A JP S62182697A
Authority
JP
Japan
Prior art keywords
tank
reactor
pressure vessel
pipe
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61023842A
Other languages
Japanese (ja)
Inventor
富永 研司
高史 仲山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61023842A priority Critical patent/JPS62182697A/en
Publication of JPS62182697A publication Critical patent/JPS62182697A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は原子カプラントに係り、特に事故時および異常
な過渡変化時に炉心の残留熱除去及び炉心冷却を実施す
るのに好適な、炉心冷却系に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a nuclear couplant, and particularly to a core cooling system suitable for removing residual heat from a reactor core and cooling the core during an accident or abnormal transient change. Regarding.

〔従来の技術〕[Conventional technology]

第2図に従来の加圧水型原子炉(PWR)で使用されて
いる蓄圧系を示す。本システムは事故時に一次冷却系の
圧力が蓄圧タンク21の保持圧力以下に低下すると自動
的に冷却水を注入し冷却材を補給するものである。蓄気
タンク21は、注入のための冷却水および加圧窒素によ
り満たされており、注入に際し外部からの動力を必要と
しない。
Figure 2 shows a pressure accumulator system used in a conventional pressurized water reactor (PWR). This system automatically injects cooling water and replenishes coolant when the pressure of the primary cooling system drops below the holding pressure of the pressure storage tank 21 in the event of an accident. The air storage tank 21 is filled with cooling water and pressurized nitrogen for injection, and does not require external power for injection.

この蓄圧系は特に−次冷却材配管大破断時ブローダウン
終了直後の炉心冷却上重要な役割を果すものである。
This pressure accumulator system plays an important role in cooling the reactor core, especially immediately after blowdown is completed in the event of a major rupture of the secondary coolant pipe.

しかし、従来のPWRの蓄圧器は冷却材喪失事故時に炉
心に冷却水を注入するものであり、異常な過渡変化時に
炉心の崩壊熱を除去するものではなかった。
However, conventional PWR pressure accumulators inject cooling water into the core in the event of a loss of coolant accident, and do not remove decay heat from the core during abnormal transient changes.

また、1次冷却材低温側配管22に接続しているため冷
却材喪失事故に対して破断配管に接続する蓄圧器は役に
立たない。そのためPWHの1次冷却材の系統毎に必要
であった。
Further, since it is connected to the primary coolant low temperature side pipe 22, the pressure accumulator connected to the broken pipe is useless in case of a loss of coolant accident. Therefore, it was necessary for each PWH primary coolant system.

第3図に従来の沸騰水型原子炉(BWR)に使用されて
いた非常用復水器31を示す。非常用復水器31はター
ビントリップのような異常な過渡変化時に主復水器が使
用できない場合、原子炉の崩壊熱を除去するものである
。非常用復水器31は冷却水を満たした復水器タンクお
よびこの冷却水の中に炉蒸気を通す細管があり原子炉圧
力容器1と連結されている。非常用復水器31は原子炉
圧力高により作動し、蒸気管32内の蒸気とドレン管3
3内の復水の水頭差にポンプ等の動的機器なしに自然循
環によって炉心が冷却される構造となっている。
FIG. 3 shows an emergency condenser 31 used in a conventional boiling water reactor (BWR). The emergency condenser 31 removes the decay heat of the reactor when the main condenser cannot be used during an abnormal transient change such as a turbine trip. The emergency condenser 31 has a condenser tank filled with cooling water and a thin tube through which reactor steam passes through the cooling water, and is connected to the reactor pressure vessel 1 . The emergency condenser 31 operates due to high reactor pressure, and the steam in the steam pipe 32 and the drain pipe 3
The structure is such that the reactor core is cooled by natural circulation based on the difference in head of condensate within the reactor, without the need for dynamic equipment such as pumps.

しかしながら、従来のBWRで使用されている非常用復
水器31は冷却材喪失事故時には注水能力がなかった。
However, the emergency condenser 31 used in conventional BWRs did not have the ability to inject water in the event of a loss of coolant accident.

また胴側を大気開放にすることによりタンクの設計圧を
さげていた。
The design pressure of the tank was also lowered by opening the shell side to the atmosphere.

なお、この種公知側としては、特開昭57−69289
号公報に記載のものがある。
In addition, as a publicly known side of this kind, Japanese Patent Application Laid-Open No. 57-69289
There is something described in the publication.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

現在、原子炉の安全系については、信頼性の向上、経済
性の向上あるいは固有の安全性の向上のため、動的機器
を用いずに自然の力で炉心の安全性を確保することが検
討されている。また、経済性向上の観点から原子炉の崩
壊熱除去機能及び注水機能に対し、同−設備で達成する
ことが望まれていた。
Currently, regarding the safety system of nuclear reactors, in order to improve reliability, improve economic efficiency, or improve inherent safety, consideration is being given to ensuring the safety of the reactor core using natural forces without using dynamic equipment. has been done. Furthermore, from the perspective of improving economic efficiency, it was desired that the same equipment would be able to perform the decay heat removal function and water injection function of a nuclear reactor.

本発明の目的は、動的機器を用いず自然の力で炉心の安
全性を確保すること、及び原子炉の崩壊熱除去と注水機
能を同−設備で達成することにある。
The purpose of the present invention is to ensure the safety of a reactor core using the power of nature without using dynamic equipment, and to achieve the decay heat removal and water injection functions of a nuclear reactor with the same equipment.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため本発明は、軽水型原子炉におい
て、原子炉圧力容器より高位置に設置された通常時水の
満たされた胴部および管部からなる二重管構造をなすタ
ンクと、該タンク胴側気相部と原子炉圧力容器気相部を
結ぶ第1の蒸気管と。
In order to achieve the above object, the present invention provides a tank in a light water nuclear reactor, which has a double pipe structure consisting of a body and a pipe section that are normally filled with water and is installed at a higher position than the reactor pressure vessel; a first steam pipe connecting the tank body side gas phase part and the reactor pressure vessel gas phase part;

該タンク管側上部と原子炉圧力容器気相部を結ぶ第2の
蒸気管と、該タンク胴側液相部と原子炉圧力容器液相部
を結ぶ注水配管と、該タンク管側下部と圧力容器液相部
を結ぶ配管とで構成され、プラントの異常な過渡時には
非常用の復水機能および事故時には、非常用の冷却機能
を有するようにIしたものである。
A second steam pipe that connects the upper part of the tank pipe side and the reactor pressure vessel gas phase part, a water injection pipe that connects the tank body side liquid phase part and the reactor pressure vessel liquid phase part, and a water injection pipe that connects the tank pipe side lower part and the pressure vessel part. It consists of piping that connects the liquid phase part of the container, and is designed to have an emergency condensing function in the event of abnormal plant transients and an emergency cooling function in the event of an accident.

〔作用〕[Effect]

本発明は、事故時に原子炉圧力容器内の蒸気を利用して
圧力容器内へ冷却材を注水することを特徴としている。
The present invention is characterized in that in the event of an accident, coolant is injected into the reactor pressure vessel using steam within the reactor pressure vessel.

この際、M側に原子炉蒸気を注入する際に設計圧力があ
がらないような作動ロジックを構成している。また、異
常な過渡変化時には蓄えられている冷却材を利用して非
常用の復水器1としての機能をもたせた。すなわち1本
発明では、原子炉圧力容器より高位置に二重管構造のタ
ンクを設けてその胴側を通常時水に満に満たしている。
At this time, an operating logic is configured such that the design pressure does not increase when reactor steam is injected into the M side. Furthermore, in the event of an abnormal transient change, the stored coolant is used to function as an emergency condenser 1. That is, in one aspect of the present invention, a tank with a double pipe structure is provided at a higher position than the reactor pressure vessel, and the shell side of the tank is normally filled with water.

事故時には、圧力および水位信号により原子炉蒸気をタ
ンク胴側気相部に注入し11目側冷却材を原子炉圧力容
器内に注入する。一方、異常な過渡変化時には原子炉蒸
気をタンク管側に通し、胴側冷却材と熱交換することに
よって、炉心の熱除去を行う。
In the event of an accident, reactor steam is injected into the tank body side gas phase part and 11th side coolant is injected into the reactor pressure vessel based on pressure and water level signals. On the other hand, during abnormal transient changes, heat is removed from the reactor core by passing reactor steam through the tank pipe side and exchanging heat with the shell side coolant.

〔実施例〕〔Example〕

第1図に本発明の概要を示す。 FIG. 1 shows an overview of the present invention.

本発明は原子炉圧力容器1よりも高位置におかれた通常
時、水の満たされたタンク2、および当該タンク2の気
相部と原子炉圧力容器の蒸気相部を結ぶ蒸気管および当
該タンク2の液相部を原子炉圧力容器1の液相部を結ぶ
注水配管6から構成されている。またタンク1内は伝熱
用の細管が通り、管側3と+m側4に分けられている。
The present invention relates to a tank 2 which is normally placed at a higher position than a reactor pressure vessel 1 and is filled with water, a steam pipe connecting a gas phase part of the tank 2 to a steam phase part of the reactor pressure vessel, and It consists of a water injection pipe 6 that connects the liquid phase part of the tank 2 to the liquid phase part of the reactor pressure vessel 1. A thin tube for heat transfer passes through the tank 1, and the tank is divided into a tube side 3 and a +m side 4.

圧力容器1とタンクを結ぶ蒸気管5および注水配管6は
それぞれ途中で分かれ、タンク胴側4および管側3に接
続している。また蒸気管5とタンク管側3を結ぶ配管途
中には蒸気加減弁7、蒸気管5とタンク胴側4を結ぶ配
管途中には蒸気注入弁8が設けられており、注水配管6
とタンク管側3を結ぶ配管途中には復水弁9、注水配管
6とタンク胴側4を結ぶ配管途中には、冷却材注入弁1
0が設けられている。
A steam pipe 5 and a water injection pipe 6 that connect the pressure vessel 1 and the tank are separated in the middle and connected to the tank body side 4 and the pipe side 3, respectively. Further, a steam control valve 7 is provided in the middle of the pipe connecting the steam pipe 5 and the tank pipe side 3, a steam injection valve 8 is provided in the middle of the pipe connecting the steam pipe 5 and the tank body side 4, and the water injection pipe 6
A condensate valve 9 is installed in the pipe connecting the tank pipe side 3 and a coolant injection valve 1 is installed in the pipe connecting the water injection pipe 6 and the tank body side 4.
0 is set.

この構造により事故時には原子炉圧力容器1→蒸気管5
→蒸気注入弁8→タンク胴側4→冷却材注入弁10→注
水配管6→原子炉圧力容器1で閉回路が構成される。
Due to this structure, in the event of an accident, the reactor pressure vessel 1 → steam pipe 5
→ Steam injection valve 8 → Tank body side 4 → Coolant injection valve 10 → Water injection pipe 6 → Reactor pressure vessel 1 constitute a closed circuit.

一方、異常な過渡変化時には原子炉圧力容器1−蒸気管
5−蒸気加減弁7−タンク管側3−復水弁9−注水配管
6−原子炉圧力容器1で閉回路が形成される。
On the other hand, during an abnormal transient change, a closed circuit is formed by the reactor pressure vessel 1 - the steam pipe 5 - the steam control valve 7 - the tank pipe side 3 - the condensate valve 9 - the water injection pipe 6 - the reactor pressure vessel 1.

また、通常運転中は復水弁9および冷却材注入弁10は
閉となっている。
Further, during normal operation, the condensate valve 9 and the coolant injection valve 10 are closed.

一方、蒸気加減弁7は開、蒸気注入弁8は閉となってい
る。
On the other hand, the steam control valve 7 is open and the steam injection valve 8 is closed.

そのため、原子炉圧力容器1からタンク内の細管途中ま
では蒸気で満たされ、細管途中から復水弁9までは水で
満たされ平衡状態を保っている。
Therefore, the area from the reactor pressure vessel 1 to the middle of the thin tube in the tank is filled with steam, and the area from the middle of the thin tube to the condensate valve 9 is filled with water to maintain an equilibrium state.

〔異常な過渡変化時〕[During abnormal transient changes]

第4図に異常な過渡変化時の運転方法を示す。 Figure 4 shows the operating method during abnormal transient changes.

タービントリップ時にタービンバイパス弁、開放失敗、
または主復水器真空低下等により、主復水器が使用でき
ない場合には、本発明により原子炉の崩壊熱を除去する
ことが可能である。
Turbine bypass valve fails to open during turbine trip,
Alternatively, when the main condenser cannot be used due to a drop in vacuum in the main condenser, etc., the present invention allows the decay heat of the reactor to be removed.

このような場合には、注水配管6とタンク管側を結ぶ復
水弁9を開放する。
In such a case, the condensate valve 9 connecting the water injection pipe 6 and the tank pipe side is opened.

この弁が開かれると蒸気管内の蒸気と注水配管 −6内
の復水の水頭差による自然循環によって炉心が冷却され
る。
When this valve is opened, the core is cooled by natural circulation due to the head difference between the steam in the steam pipe and the condensate in water injection pipe -6.

すなわち、原子炉圧力容器1内の蒸気は蒸気管5を通っ
て原子炉へもどる。タンク内の冷却水は一次系の熱を吸
収し沸騰し、発生蒸気はベント弁11を通って、大気中
へ放出される。
That is, the steam in the reactor pressure vessel 1 returns to the reactor through the steam pipe 5. The cooling water in the tank absorbs the heat of the primary system and boils, and the generated steam passes through the vent valve 11 and is released into the atmosphere.

〔事故時〕[At the time of accident]

第5図に事故時の運転方法を示す。 Figure 5 shows the driving method in the event of an accident.

配管破断などの事故時には本発明は低圧の非常用注水系
としての機能をもつ。
In the event of an accident such as a pipe breakage, the present invention functions as a low-pressure emergency water injection system.

原子炉圧力がある程度低圧になった場合には、タンクか
ら大気に開放するベント弁11を閉鎖し、蒸気管5と管
側を結ぶ蒸気加減弁7を閑にし、蒸気管5と胴側を結ぶ
蒸気注入弁8および注水配管6と胴側を結ぶ冷却材注入
弁9を開放する。
When the reactor pressure becomes low to a certain extent, the vent valve 11 that opens the tank to the atmosphere is closed, the steam control valve 7 that connects the steam pipe 5 and the pipe side is left open, and the steam pipe 5 is connected to the shell side. The steam injection valve 8 and the coolant injection valve 9 connecting the water injection pipe 6 and the shell side are opened.

これにより原子炉圧力容器の蒸気はタンク胴側4へ流れ
込み原子炉圧力容器とタンク胴側4の圧力が等しくなっ
た場合には、タンク胴側4の冷却水が重力によって落下
し原子炉圧力容器1内へ注水される。
As a result, the steam in the reactor pressure vessel flows into the tank shell side 4, and when the pressures in the reactor pressure vessel and the tank shell side 4 become equal, the cooling water in the tank shell side 4 falls due to gravity, and the reactor pressure vessel Water is injected into 1.

第6図にBWR−5とABWRの原子炉の概略図を示す
FIG. 6 shows a schematic diagram of the BWR-5 and ABWR reactors.

第6図をもとにLOCA時の運転特性について説明する
。再循環配管(PLR)を設置している。
The operating characteristics during LOCA will be explained based on FIG. 6. Recirculation piping (PLR) is installed.

このためこの位置での両端破断が最悪の事故事象と想定
され、この場合には原子炉内の冷却材がPLR配管を通
って流出し炉心が露出してしまう。
Therefore, a rupture at both ends at this location is assumed to be the worst accident event, and in this case, the coolant inside the reactor will flow out through the PLR piping and the reactor core will be exposed.

このため従来のBWRでシュラウド外側への注水は事故
時の冷却効果として期待できなかった。
For this reason, injecting water to the outside of the shroud in conventional BWRs could not be expected to have a cooling effect in the event of an accident.

これに対し、図中右側のABWRプラントでは圧力容器
下方に大口径配管は存在しない。
On the other hand, in the ABWR plant on the right side of the figure, there is no large-diameter piping below the pressure vessel.

そのため、設計基準事故として炉心より上部の中小配管
破断を相定しており、事故時に原子炉内の冷却材流出流
量は抑制され、LOCA時にも原子炉水位は高く維持さ
れる。
Therefore, breakage of small and medium-sized pipes above the reactor core has been determined as a design basis accident, and in the event of an accident, the flow rate of coolant leaking inside the reactor will be suppressed, and the reactor water level will be maintained high even in the event of a LOCA.

このため、シュラウド外側に冷却材を注水することは、
炉心の冠水および炉心冷却に大きな効果をもつ。
For this reason, injecting coolant to the outside of the shroud is
It has a great effect on flooding the reactor core and cooling the reactor core.

次に本発明の効果を異常な過渡変化時と事故時の両者に
分けて評価する。
Next, the effects of the present invention will be evaluated separately for both abnormal transient changes and accidents.

〔異常な過渡変化時〕[During abnormal transient changes]

第7図に異常な過渡変化時の原子炉圧力および原子炉水
位変化を示す。
Figure 7 shows reactor pressure and reactor water level changes during abnormal transient changes.

本評価ではタービントリップ時にタービンバイパス弁閉
失敗を仮定する。
In this evaluation, it is assumed that the turbine bypass valve fails to close when the turbine trips.

原子炉は時刻0秒にスクラムするが炉心の残留熱除去系
がない場合には、原子炉圧力が徐々に増加することが考
えられる。
Although the reactor scrams at time 0 seconds, if there is no residual heat removal system in the reactor core, it is thought that the reactor pressure will gradually increase.

しかし、本発明の復水機能により原子炉蒸気は凝縮され
、原子炉圧力は徐々に減少する。
However, due to the condensation function of the present invention, the reactor steam is condensed and the reactor pressure gradually decreases.

また、その間原子炉水位はほとんど変化しない。Additionally, the reactor water level hardly changes during this period.

〔事故時〕[At the time of accident]

第8図に事故時の原子炉圧力および原子炉水位変化を示
す。
Figure 8 shows changes in reactor pressure and reactor water level at the time of the accident.

本評価はABWRにおいて最も厳しいと考えられるHr
’C3配管の破損を仮定したものである。
This evaluation is considered to be the most severe in ABWR.
'This assumes that the C3 pipe is damaged.

事故後、原子炉圧力は主蒸気隔離弁閉により、徐々に上
昇するが、自動減圧系の作動によって低下の方向へむか
う、この間原子炉水位は、有効燃料長頂部より低下する
ことはないが、自動減圧系作動による減圧沸騰終了接は
原子炉水位は徐々に低下しつづける。しかし原子炉圧力
が本発明の冷却系の設定圧に達すると、タンクから炉心
への重力落下による注水が始まり、炉心が露出すること
はない。
After the accident, the reactor pressure gradually rose due to the closure of the main steam isolation valve, but started to drop due to the operation of the automatic pressure reduction system.During this period, the reactor water level did not fall below the top of the effective fuel length, but When the automatic depressurization system operates to complete the depressurized boiling, the reactor water level continues to gradually decrease. However, when the reactor pressure reaches the set pressure of the cooling system of the present invention, water injection begins by gravity falling from the tank to the reactor core, and the reactor core is not exposed.

このように、従来の設備では独立に設けられていた異常
な過渡変化時の崩壊熱除去を目的とするシステムおよび
事故時の炉心内への注水を目的とするシステムを一つの
機器とすることが可能であるため、空間的にもまた。コ
スト的にも大きな利点がある。
In this way, the system for removing decay heat during abnormal transient changes and the system for injecting water into the reactor core in the event of an accident, which were installed independently in conventional equipment, can now be combined into one piece of equipment. Because it is possible, spatially as well. There is also a big cost advantage.

また、事故時の注水系として見た場合、本発明では、原
子炉圧力容器内の蒸気を利用した重力落下式の注水系で
あるため従来の安全系に比較して動的機器が少なく高い
信頼性と固有の安全性を有する。
In addition, when viewed as a water injection system in the event of an accident, the present invention is a gravity-drop type water injection system that uses steam in the reactor pressure vessel, so compared to conventional safety systems, it has fewer moving components and is highly reliable. safety and inherent safety.

〔発明の効果〕〔Effect of the invention〕

従来の設備では独立に設けられていた異常な過渡変化時
の崩壊熱除去を目的とするシステムおよび事故時の炉心
内への注水を目的とするシステムを本発明では一つの機
器とすることが可能であり。
With the present invention, the system for removing decay heat during abnormal transient changes and the system for injecting water into the reactor core in the event of an accident, which were installed independently in conventional equipment, can be combined into one piece of equipment. Yes.

空間的にもコスト的にも大きな利点がある。There are significant advantages in terms of space and cost.

また、事故時の注水系として見た場合、本発明では、原
子炉圧力容器内の蒸気を利用した重力落下式の注水系で
あるため従来の安全系に比較して動的機器が少なく高い
信頼性と固有の安全性を有するという効果がある。
In addition, when viewed as a water injection system in the event of an accident, the present invention is a gravity-drop type water injection system that uses steam in the reactor pressure vessel, so compared to conventional safety systems, it has fewer moving components and is highly reliable. It has the advantage of having safety and inherent safety.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す系統図、第2図は従来
のPWRの蓄圧系を示す系統図、第3図1、は従来のB
WRの非常用復水器を示す系統図、第4図はおよび第5
図は本発明の詳細な説明する図で、第4図は異常な過渡
時の運転を示す図、第5図は事故時の運転を示す図、第
6図はABWRとB W Rの比較を示す断面図、第7
図は本発明の異常な過渡変化時の評価を説明する線図、
第8図は本発明の事故時の評価を、JArv7する線図
である。 1・・・原子炉圧力容器、2・・タンク、3・・・タン
ク管側、4・・・タンク胴側、5川蒸気管、6・・・注
水配管、7・・・蒸気加減弁、8・・蒸気注入弁、9・
・・復水弁。 10・・・冷却材注入弁、11・・・ベント弁、21・
・・蓄圧タンク、22・・・1次冷却材低温側配管、3
1・・・非常用復水器、32・・・蒸気管、33・・・
ドレン管。
Fig. 1 is a system diagram showing an embodiment of the present invention, Fig. 2 is a system diagram showing a conventional PWR pressure accumulation system, and Fig. 3 is a system diagram showing a conventional PWR pressure accumulation system.
System diagram showing WR's emergency condenser, Figures 4 and 5
The figures are diagrams explaining the present invention in detail. Figure 4 is a diagram showing operation during abnormal transients, Figure 5 is a diagram showing operation during an accident, and Figure 6 is a diagram showing a comparison between ABWR and BWR. Sectional view shown, No. 7
The figure is a diagram explaining the evaluation at the time of abnormal transient change of the present invention,
FIG. 8 is a diagram showing JArv7 evaluation of the present invention at the time of an accident. 1... Reactor pressure vessel, 2... Tank, 3... Tank pipe side, 4... Tank body side, 5 River steam pipe, 6... Water injection piping, 7... Steam control valve, 8. Steam injection valve, 9.
...Condensate valve. 10... Coolant injection valve, 11... Vent valve, 21.
... Pressure storage tank, 22 ... Primary coolant low temperature side piping, 3
1... Emergency condenser, 32... Steam pipe, 33...
drain pipe.

Claims (1)

【特許請求の範囲】 1、軽水型原子炉において、原子炉圧力容器より高位置
に設置された通常時水の満たされた胴部および管部から
なる二重管構造をなすタンクと、該タンク胴側気相部と
原子炉圧力容器気相部を結ぶ第1の蒸気管と、該タンク
管側上部と原子炉圧力容器気相部を結ぶ第2の蒸気管と
、該タンク胴側液相部と原子炉圧力容器液相部を結ぶ注
水配管と、該タンク管側下部と圧力容器液相部を結ぶ配
管とで構成され、プラントの異常な過渡時には非常用の
復水機能および事故時には、非常用の冷却機能を有する
ことを特徴とする原子炉冷却系。 2、特許請求の範囲第1項において、事故時には原子炉
圧力容器からの蒸気を第1の蒸気管を通してタンク胴側
に注入し、該タンクと原子炉圧力容器の圧力を等しくし
てから自由落下によつて当該タンク内の水を原子炉圧力
容器内へ注水することを特徴とする原子炉冷却系。 3、特許請求の範囲第1項において、事故時に予め設定
された原子炉圧力低および原子炉水位低の両信号で該タ
ンクに原子炉蒸気を注入するとともに、タンク内の冷却
水を原子炉圧力容器に注水することにより、該タンクの
設計圧力を低減することを特徴とする原子炉冷却系。 4、特許請求の範囲第1項まはた第2項において、プラ
ントの異常な過渡変化時にはタンク胴側の気相部を大気
開放し、原子炉圧力容器内の蒸気を該タンク管側を通す
ることにより、原子炉蒸気をタンク内冷却材と熱交換し
て凝縮し、炉心の熱除去を行うことを特徴とする原子炉
冷却系。
[Scope of Claims] 1. In a light water nuclear reactor, a tank having a double pipe structure consisting of a body and a tube that is normally filled with water and installed at a higher position than the reactor pressure vessel, and the tank A first steam pipe that connects the shell side gas phase part and the reactor pressure vessel vapor phase part, a second steam pipe that connects the upper part of the tank pipe side and the reactor pressure vessel gas phase part, and a liquid phase part of the tank shell side. It consists of a water injection pipe that connects the reactor pressure vessel liquid phase section to the reactor pressure vessel liquid phase section, and a water injection pipe that connects the lower part of the tank pipe side and the pressure vessel liquid phase section.It has an emergency condensation function during abnormal plant transients and an emergency condensation pipe in the event of an accident. A nuclear reactor cooling system characterized by having an emergency cooling function. 2. In claim 1, in the event of an accident, steam from the reactor pressure vessel is injected into the tank body side through the first steam pipe, and the pressures in the tank and the reactor pressure vessel are equalized before free falling. A nuclear reactor cooling system characterized in that water in the tank is injected into a reactor pressure vessel. 3. In claim 1, at the time of an accident, reactor steam is injected into the tank based on both the preset reactor pressure low and reactor water level low signals, and the cooling water in the tank is supplied to the reactor pressure. A nuclear reactor cooling system characterized in that the design pressure of a tank is reduced by injecting water into the container. 4. In claim 1 or 2, when there is an abnormal transient change in the plant, the gas phase part on the tank body side is opened to the atmosphere, and the steam in the reactor pressure vessel is passed through the tank pipe side. A nuclear reactor cooling system characterized by exchanging heat with the coolant in the tank and condensing the reactor steam to remove heat from the reactor core.
JP61023842A 1986-02-07 1986-02-07 Nuclear reactor cooling system Pending JPS62182697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61023842A JPS62182697A (en) 1986-02-07 1986-02-07 Nuclear reactor cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61023842A JPS62182697A (en) 1986-02-07 1986-02-07 Nuclear reactor cooling system

Publications (1)

Publication Number Publication Date
JPS62182697A true JPS62182697A (en) 1987-08-11

Family

ID=12121653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61023842A Pending JPS62182697A (en) 1986-02-07 1986-02-07 Nuclear reactor cooling system

Country Status (1)

Country Link
JP (1) JPS62182697A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4986956A (en) * 1989-11-27 1991-01-22 Stone & Webster Engineering Corporation Passive nuclear power plant containment system
US5059385A (en) * 1990-05-04 1991-10-22 General Electric Company Isolation condenser passive cooling of a nuclear reactor containment
US5106571A (en) * 1989-03-20 1992-04-21 Wade Gentry E Containment heat removal system
US5120490A (en) * 1988-09-21 1992-06-09 Hitachi, Ltd. Liquid filling method for a high-temperature and high-pressure vessel and apparatus therefor
US5217680A (en) * 1988-09-21 1993-06-08 Hitachi, Ltd. Liquid filling method for a high-temperature and high-pressure vessel and apparatus therefor
EP2549484A1 (en) 2011-07-20 2013-01-23 Hitachi-GE Nuclear Energy, Ltd. Nuclear power plant
US10726959B2 (en) 2012-02-23 2020-07-28 Hitachi-Ge Nuclear Energy, Ltd. Nuclear power plant

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120490A (en) * 1988-09-21 1992-06-09 Hitachi, Ltd. Liquid filling method for a high-temperature and high-pressure vessel and apparatus therefor
US5217680A (en) * 1988-09-21 1993-06-08 Hitachi, Ltd. Liquid filling method for a high-temperature and high-pressure vessel and apparatus therefor
US5106571A (en) * 1989-03-20 1992-04-21 Wade Gentry E Containment heat removal system
US4986956A (en) * 1989-11-27 1991-01-22 Stone & Webster Engineering Corporation Passive nuclear power plant containment system
US5059385A (en) * 1990-05-04 1991-10-22 General Electric Company Isolation condenser passive cooling of a nuclear reactor containment
EP2549484A1 (en) 2011-07-20 2013-01-23 Hitachi-GE Nuclear Energy, Ltd. Nuclear power plant
US10726959B2 (en) 2012-02-23 2020-07-28 Hitachi-Ge Nuclear Energy, Ltd. Nuclear power plant

Similar Documents

Publication Publication Date Title
US5106571A (en) Containment heat removal system
JP4675926B2 (en) Boiling water reactor
US5102616A (en) Full pressure passive emergency core cooling and residual heat removal system for water cooled nuclear reactors
US6795518B1 (en) Integral PWR with diverse emergency cooling and method of operating same
US5309487A (en) Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems
US4587079A (en) System for the emergency cooling of a pressurized water nuclear reactor core
CN104733060A (en) Passive residual heat removal system of marine nuclear power device
JPS62187291A (en) Passive safety device for nuclear reactor
CN101719386A (en) Entire passive shutdown safe cooling device of advanced pressurized water reactor nuclear power plant and operation program thereof
JPH04125495A (en) Nuclear reactor facility
CN210271804U (en) Emergent waste heat discharge system of water injection formula lead bismuth fast reactor
JPS62182697A (en) Nuclear reactor cooling system
US5828714A (en) Enhanced passive safety system for a nuclear pressurized water reactor
Ishiwatari et al. Safety of super LWR,(I) safety system design
JPS6333697A (en) Container-heat removing device
CN209149827U (en) A kind of secondary side residual heat removal system of active and passive combination
KR19980029457A (en) Passive secondary side condensation system of pressurized water reactor
JPS6375691A (en) Natural circulation type reactor
JPH08334584A (en) System and method for control of water inventory of condenser pool in boiling water reactor
JPH04109197A (en) Reactor core decay heat removing device for pressurized water reactor
Iwamura et al. A concept and safety characteristics of JAERI passive safety reactor (JPSR)
Conway et al. Simplified safety and containment systems for the IRIS reactor
JP2021189042A (en) Nuclear power plant
Kataoka et al. Conceptual design and safety characteristics of a natural-circulation boiling water reactor
Lee et al. Safety system consideration of a supercritical-water cooled fast reactor with simplified PSA