JPH0496727A - Dimension measuring device for living body eye - Google Patents

Dimension measuring device for living body eye

Info

Publication number
JPH0496727A
JPH0496727A JP2213999A JP21399990A JPH0496727A JP H0496727 A JPH0496727 A JP H0496727A JP 2213999 A JP2213999 A JP 2213999A JP 21399990 A JP21399990 A JP 21399990A JP H0496727 A JPH0496727 A JP H0496727A
Authority
JP
Japan
Prior art keywords
light beam
reflected
optical path
reflected light
light flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2213999A
Other languages
Japanese (ja)
Other versions
JP2994441B2 (en
Inventor
Hideo Koda
供田 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2213999A priority Critical patent/JP2994441B2/en
Publication of JPH0496727A publication Critical patent/JPH0496727A/en
Application granted granted Critical
Publication of JP2994441B2 publication Critical patent/JP2994441B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To easily execute the superior observation of interference streaks by allowing the reflected light flux supplied from the first measurement object surface and the reflected light flux supplied from the second measurement object surface to interfere with each other. CONSTITUTION:The ultrared light irradiated from an ultrared ray LED 32 is reflected by a half mirror 33, and led into a beam splitter 55, and the reflected light flux is formed to a parallel light flux by an objective lens 56, and led into a living body eye 31, and reflected by a corona 38, and then passes through the objective lens 56 again, and reflected by the beam splitter 55, and led into a CCD camera 34. The optical axis O1 for the corona top point P is positioned, and when the alignment distance is set, the converged light flux P2' is reflected by the corona 38, and the reflected light flux P3 is reflected to an original light path. While, the parallel light flux P1' is led is as converged light flux to an eye bottom 42 by the corona 38 and a lens 41, and a spot is formed by shifting a refraction force correcting lens 29, and the reflected light flux P4 is reflected to the original light path. The reflected light fluxes P3 and P4 are led to a bream splitter 22, and form a planary wave. Accordingly, the number of interference streaks is made nearly constant, and made rough, and the superior observation is facilitated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、干渉縞を観察することにより、生体眼の第1
測定対象面から第2測定対象面までの寸法としての眼軸
長、前房深さ、水晶体厚さ等を非接触で測定することが
できる生体眼の寸法測定装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention provides a method for detecting the first image of a living eye by observing interference fringes.
The present invention relates to an improvement in a living eye dimension measuring device that can measure the axial length, anterior chamber depth, crystalline lens thickness, etc., as dimensions from a measurement target surface to a second measurement target surface, in a non-contact manner.

(従来の技術) 従来から、生体眼の第1測定対象面から第2測定対象面
までの寸法としての眼軸長、前房深さ、水晶体厚さ等を
超音波を用いて測定する、生体眼の寸法測定装置が知ら
れている。
(Prior art) Conventionally, the axial length, anterior chamber depth, crystalline lens thickness, etc., as dimensions from the first measurement target surface to the second measurement target surface of the living eye, are measured using ultrasound. Ocular size measuring devices are known.

この生体眼の測定装置は、眼の前方から超音波を投射し
て、角膜前面、水晶体前面、水晶体後面及び眼底表面に
おける反射波をブラウン管上に描き出し、ブラウン管上
に描き出されたそのエコーグラムを撮影して計測するも
のである。
This biological eye measurement device projects ultrasound from the front of the eye, draws the reflected waves from the front surface of the cornea, front surface of the crystalline lens, back surface of the crystalline lens, and fundus surface on a cathode ray tube, and records the echogram drawn on the cathode ray tube. It is measured by

ところで、従来の生体眼の寸法測定装置は、測定精度が
±0.2mm程度であることから、例えば、測定の結果
得られた眼軸長を用いてl0L(Intraocuja
r Lens)のパワーを決定するには、その眼軸長の
測定精度が不十分であった。
By the way, since the measurement accuracy of conventional living eye size measuring devices is about ±0.2 mm, for example, the axial length obtained as a result of measurement is used to calculate l0L (Intraocuja).
r Lens), the measurement accuracy of the axial length was insufficient.

また、従来の超音波による生体眼の寸法測定装置は、測
定に際して生体眼にプローブを接触させなければならな
いため、感染等の予防措置を構じる必要があり面倒でも
あった。
In addition, the conventional ultrasound-based eye dimension measuring device requires a probe to be brought into contact with the living eye during measurement, which is troublesome and requires preventive measures against infection and the like.

そこで、近年、干渉縞を観察することにより、眼軸長、
前房深さ、水晶体厚さ等を非接触で測定することができ
る生体眼の寸法測定装置が提案されている。
Therefore, in recent years, by observing interference fringes, axial length and
BACKGROUND ART A living eye size measuring device that can measure the depth of the anterior chamber, the thickness of the crystalline lens, etc. in a non-contact manner has been proposed.

第5図に示すのは、眼軸長を測定するために用いる生体
眼の寸法測定装置の一例を示すもので、A、F、Fer
cher et al、 (OPTTC5LETTER
,VOL、13 N。
Figure 5 shows an example of a living eye size measuring device used to measure the axial length.
cher et al, (OPTTC5LETTER
, VOL, 13 N.

3   PP、186−188  <March   
1988ン  0ptical   5ociety 
  ofAmerica)に記載されている技術である
3 PP, 186-188 <March
1988 0ptical 5ociety
This is a technology described in the United States of America).

この生体眼の寸法測定装置は、半導体レーザー1、コリ
メートレンズ2、二枚の平行平面板3,4、ビームスプ
リッタ5、集光レンズ6、撮像カメラ7から概略構成さ
れている。
This living eye size measuring device is roughly composed of a semiconductor laser 1, a collimating lens 2, two parallel plane plates 3 and 4, a beam splitter 5, a condensing lens 6, and an imaging camera 7.

半導体レーザー1から出射されたレーザー光は、コリメ
ートレンズ2により平行光束とされて二枚の平行平面板
3,4に導かれる。二枚の平行平面板34を通過した平
行光束(光束■という)は、ビームスプリッタ5を介し
て生体眼8の眼底9に収束光として導かれ、眼底9で反
射されて略平行光束(平面波)として生体眼8から出射
される。出射された平面波は、ビームスプリッタ5の反
射面10によって集光レンズ6の存在する方向に反射さ
れ、集光レンズ6により集光されて撮像カメラ7に導か
れる。
A laser beam emitted from a semiconductor laser 1 is converted into a parallel beam by a collimating lens 2 and guided to two parallel plane plates 3 and 4. The parallel light flux (referred to as light flux ■) that has passed through the two parallel plane plates 34 is guided as convergent light to the fundus 9 of the living eye 8 via the beam splitter 5, and is reflected by the fundus 9 to form a substantially parallel light flux (plane wave). It is emitted from the living eye 8 as . The emitted plane wave is reflected by the reflecting surface 10 of the beam splitter 5 in the direction of the condenser lens 6, and is condensed by the condenser lens 6 and guided to the imaging camera 7.

また、平行平面板3を通過した平行光束の一部は、平行
平面板4により反射されて反射光束(光束■という)と
して平行平面板3に戻り、平行平面板3により再び反射
されて平行平面板4及びビームスプリッタ5を通過して
生体眼8の角膜11に導かれる9角膜11により反射さ
れた反射光は、発散光(球面波)としてビームスプリッ
タ5に導かれ、その反射面10で集光レンズ6の存在す
る方向に反射され、集光レンズ6により集光されてカメ
ラ7に導かれる。
Also, a part of the parallel light beam that has passed through the parallel plane plate 3 is reflected by the parallel plane plate 4 and returns to the parallel plane plate 3 as a reflected light beam (referred to as a light beam ■), and is reflected again by the parallel plane plate 3 to become a parallel light beam. The light reflected by the cornea 11 that passes through the face plate 4 and the beam splitter 5 and is guided to the cornea 11 of the living eye 8 is guided to the beam splitter 5 as diverging light (spherical wave), and is focused on the reflecting surface 10. The light is reflected in the direction in which the light lens 6 exists, is condensed by the condenser lens 6, and guided to the camera 7.

なお、第5図において、12は、半導体レーザーlの光
量モニター用受光センサである。
In addition, in FIG. 5, 12 is a light receiving sensor for monitoring the amount of light of the semiconductor laser I.

この従来のものにおいては、平行平面板3と平行平面板
4との距離dを可変とし、平行平面板3と平行平面板4
との間に存在する物質の屈折率をn、眼内物質の屈折率
をN、測定によって得られる眼軸長(角膜Hの頂点から
眼底9までの距離)をXとして、 nd=NX の等式を満足するように距離dを調節すると、光束■と
光束■とが等光路長となり、カメラ7により干渉縞が観
察される。従って、干渉縞が観察されたときの距離dを
測定値として得ることにより、眼軸長Xを求めることが
できる。
In this conventional device, the distance d between the parallel plane plate 3 and the parallel plane plate 4 is made variable, and the distance d between the parallel plane plate 3 and the parallel plane plate 4 is made variable.
The refractive index of the substance existing between is n, the refractive index of the intraocular substance is N, and the axial length obtained by measurement (distance from the vertex of the cornea H to the fundus 9) is X, and the equation nd=NX When the distance d is adjusted so as to satisfy the equation, the light beams ■ and ■ have equal optical path lengths, and the camera 7 observes interference fringes. Therefore, the axial length X can be determined by obtaining the distance d at which the interference fringes are observed as a measured value.

(琵明が解決しようとする課題) しかしながら、干渉縞を観察することにより眼軸長を測
定する生体眼の寸法測定装置においては、角膜表mjか
らの反射光束が略球面波であるのに対して眼底面からの
反射光束が略平mj波であることから、角膜頂点から周
辺部に離れるにしたがって干渉縞の本数が非常に多・こ
なり、干渉縞の良好な観察を行うことができないという
問題点がある。
(The problem that Bimei is trying to solve) However, in a living eye size measurement device that measures the axial length by observing interference fringes, the reflected light flux from the corneal surface mj is approximately a spherical wave. Since the reflected light flux from the fundus of the eye is a substantially flat mj wave, the number of interference fringes increases as the distance from the corneal apex to the periphery increases, making it impossible to observe interference fringes well. There is a problem.

特に、眼底からの反射光は、現実には目の屈折力により
略平面波とみなせる程度にはなっていず、その上、干渉
縞が中心部に集まってしまうこと力・ら、干渉縞の本数
を読むことは困雛であった。
In particular, the light reflected from the fundus of the eye cannot actually be considered to be a plane wave due to the refractive power of the eye, and on top of that, the number of interference fringes is limited due to the fact that the interference fringes are concentrated in the center. It was difficult to read.

また、この生体眼の寸法測定装置は、集光レンズ6及び
カメラ7の光軸を生体眼8に対して正確にアライメント
しなければならないのであるが、アライメントがきわめ
て面倒であるという問題点もある。
In addition, this living eye size measuring device requires accurate alignment of the optical axes of the condenser lens 6 and camera 7 with respect to the living eye 8, but there is also the problem that alignment is extremely troublesome. .

本発明は上記問題点に鑑みて為されたものであり、その
目的とするところは、干渉縞の良好な観察を容易に行う
ことができると共に、被検眼の屈折力に影響されずに測
定精度の向上が期待できる、生体眼の寸法測定装置を提
供することにある。
The present invention has been made in view of the above-mentioned problems, and its purpose is to facilitate good observation of interference fringes, and to improve measurement accuracy without being affected by the refractive power of the eye to be examined. It is an object of the present invention to provide a dimension measuring device for a living eye, which can be expected to improve.

(課題を解決するための手段) 本発明に係る生体眼の寸法測定装置は、上記目的を達成
するため、 生体眼にコヒーレンス長の短い光束を投光し、前記生体
眼の第1測定対象面からの反射光束と第2測定対象面か
らの反射光束との干渉に基づき、前記第1測定対象面か
ら前記第2測定対象面までの寸法を測定する生体眼の寸
法測定装置において、前記コヒーレンス長の短い光束を
、前記第1測定対象面への投光光束と前記第2測定対象
面への投光光束とに光路分割部材により分割すると共に
・再度、光路合成部材により光路合成して、前記生体眼
に投光する光束投光手段を有し、 前記光路分割部材と前記光路合成部材との間に、前記第
1測定対象面からの反射光束の波面形状と前記第2測定
対象面からの反射光束の波面形状とを、前記光路分割部
材で略同一とするための屈折力補正光学系を設け、 前記生体眼からの反射光束が前記両投光光束の光路を逆
に通り、前記光路分割部材で光路を合成して、前記第1
測定対象面からの反射光束と前記第2測定対象面からの
反射光束とを干渉させることを特徴としている。
(Means for Solving the Problems) In order to achieve the above object, the living eye dimension measuring device according to the present invention projects a light beam with a short coherence length onto the living eye, and comprises the following steps: In the biological eye dimension measuring device that measures the dimension from the first measurement target surface to the second measurement target surface based on the interference between the reflected light flux from the and the second measurement target surface, the coherence length The short light beam of It has a light beam projecting means for projecting light onto the living eye, and a wavefront shape of the reflected light beam from the first measurement object surface and a wavefront shape of the reflected light beam from the second measurement object surface are provided between the optical path splitting member and the optical path combining member. A refractive power correction optical system is provided to make the wavefront shape of the reflected light beam substantially the same in the optical path splitting member, and the reflected light beam from the living eye passes through the optical path of both the projected light beams in reverse, and the optical path splitting member The optical path is synthesized by the member, and the first
It is characterized in that the light beam reflected from the surface to be measured and the light beam reflected from the second surface to be measured are caused to interfere with each other.

(作用) 本発明に係る生体眼の寸法測定装置によれば、屈折力補
正光学系により、第1測定対象面からの反射光束の波面
形状と第2測定対象面からの反射光束の波面形状とを光
路分割部材で略同一として干渉させるため、干渉縞の本
数が少なく或は略−定となって観察が容易となる。
(Function) According to the living eye dimension measuring device according to the present invention, the refractive power correction optical system allows the wavefront shape of the reflected light beam from the first measurement object surface and the wavefront shape of the reflection light beam from the second measurement object surface to be adjusted. Since the optical path splitting member allows the interference fringes to be substantially the same, the number of interference fringes is small or substantially constant, making observation easier.

(実施例1) 第1図は本発明に係る生体眼の寸法測定装置の第1実施
例の光学系を示すもので、生体眼の寸法としての眼軸長
の測定に用いられる。
(Embodiment 1) FIG. 1 shows an optical system of a first embodiment of the living eye dimension measuring device according to the present invention, which is used to measure the axial length as the dimension of the living eye.

第1図において、20は半導体レーザー、21はコリメ
ートレンズ、22.23はビームスプリッタである。半
導体レーザー2oにはコヒーレンス長がO,bnm程度
の比較的コヒーレンス長の短いものを用いる。これは、
コヒーレンス長の長いものを用いると、光路差が大きく
ズしていても干渉縞が得られて眼軸長の測定精度が低下
するからである。また、コヒーレンス長の極端に短いも
のを用いると、光路差がほんの少しズしていても干渉縞
が得られず、なかなか干渉縞が得られないことによ1,
1測定に時間がかかることになるがらである。
In FIG. 1, 20 is a semiconductor laser, 21 is a collimating lens, and 22 and 23 are beam splitters. The semiconductor laser 2o has a relatively short coherence length of about O.bnm. this is,
This is because if a lens with a long coherence length is used, interference fringes will be obtained even if the optical path difference is largely shifted, and the accuracy of measuring the axial length will deteriorate. In addition, if an extremely short coherence length is used, interference fringes cannot be obtained even if the optical path difference is slightly shifted, and it is difficult to obtain interference fringes.
However, it takes time for one measurement.

半導体レーザー20から出射されたレーザー光は、コリ
メートレンズ21により平行光束とされる。この平行光
束は、光路分割部材としてのビームスジ2ノツク220
反射面24により、ビームスプリッタ23に導かれる平
行光束P1と光路長変更部材25に導かれる平行光束P
2とに分割される。光路長変更部材25は、反射面26
.27を有しており、矢印方向へと動かすことにより平
行光束P2の光路長を変更する機能を有する。光路長変
更部材25を矢印方向に(△L/2)だけ移動させると
、平行光束P2の光路長はズレ量△Lだけ変化する。
The laser beam emitted from the semiconductor laser 20 is made into a parallel beam by the collimating lens 21. This parallel light flux is transmitted through a beam streak 2 notch 220 as an optical path splitting member.
A parallel light beam P1 guided to the beam splitter 23 and a parallel light beam P guided to the optical path length changing member 25 by the reflective surface 24.
It is divided into 2. The optical path length changing member 25 has a reflective surface 26
.. 27, and has a function of changing the optical path length of the parallel light beam P2 by moving it in the direction of the arrow. When the optical path length changing member 25 is moved by (ΔL/2) in the direction of the arrow, the optical path length of the parallel light beam P2 changes by the shift amount ΔL.

ビームスプリッタ23は、反射透過面28を有しており
光路合成部材として機能する。ビームスプリッタ23と
ビームスプリッタ22との間には、屈折力補正レンズ2
9が設けられている。屈折力補正レンズ29は、ビーム
スプリッタ22を通過してきた平行光束P1を収束光束
PI−としてビームスプリッタ23の反射透過面28に
導く機能を有する。また、ビムスブリッタ23には、光
路長変更部材25からの平行光束P2が導かれる。この
平行光束r〕2は、反射透過面28で反射されて平行光
束P2−となり、平行光束P2  と収束光束P1゛と
は、ビームスプリッタ55を介して対物レンズ56に導
かわる。この対物レンズ56で、被検眼が正常眼のとき
収束光束P、−は平行光束P1″となり、平行光束P2
−は収束光束P2″となり共に生体眼31に導かれる。
The beam splitter 23 has a reflective/transmissive surface 28 and functions as an optical path combining member. A refractive power correction lens 2 is provided between the beam splitter 23 and the beam splitter 22.
9 is provided. The refractive power correction lens 29 has a function of guiding the parallel light beam P1 that has passed through the beam splitter 22 to the reflective/transmissive surface 28 of the beam splitter 23 as a convergent light beam PI-. Further, the parallel light beam P2 from the optical path length changing member 25 is guided to the bims splitter 23. This parallel light beam r]2 is reflected by the reflective/transmissive surface 28 to become a parallel light beam P2-, and the parallel light beam P2 and the convergent light beam P1' are guided to the objective lens 56 via the beam splitter 55. With this objective lens 56, when the eye to be examined is a normal eye, the convergent light flux P, - becomes a parallel light flux P1'', and the parallel light flux P2
- becomes a convergent light beam P2'' and both are guided to the living eye 31.

収束光束P2′は、角膜曲率中心40に向かう光束とな
る。
The convergent light beam P2' becomes a light beam directed toward the center of corneal curvature 40.

装置本体は、生体銀31に対し赤外LED32を用いて
アライメントされるものであり、CCDカメラ34は、
前眼部観察用として用いられる。赤外LED32から出
射された赤外光は、コンデンサレンズ36、ピンホール
37、リレーレンズ49を通過してハーフミラ−33で
反射され、ビームスプリッタ55に導かれる。ビームス
プリッタ55の反射面30で反射された光束は、対物レ
ンズ56で平行光束となり、生体銀31に導かれる。ビ
ームスプリッタ55は、半導体レーザ光を透過させ、そ
の他の光は反射する機能を有している。
The main body of the device is aligned with the living silver 31 using an infrared LED 32, and the CCD camera 34 is
Used for observing the anterior segment of the eye. Infrared light emitted from the infrared LED 32 passes through a condenser lens 36, a pinhole 37, and a relay lens 49, is reflected by a half mirror 33, and is guided to a beam splitter 55. The light beam reflected by the reflective surface 30 of the beam splitter 55 becomes a parallel light beam by the objective lens 56 and is guided to the biological silver 31. The beam splitter 55 has a function of transmitting semiconductor laser light and reflecting other light.

赤外光は、生体銀31の第1測定対象面である角膜38
により反射されて再び対物レンズ56を通過し、ビーム
スプリッタ55で反射されハーフミラ−33を通過し結
像レンズ35を透過して、CCDカメラ34に導かれる
。CCDカメラ34は、後述するTVモニター44に接
続されている。生体銀31に対する光学系のアライメン
トは、TVモニター44に写し出された赤外反射光束の
反射輝点を観測して行うものであり、光学系の光軸方向
に直交する平面内で上下左右方向に光学系を動かすこと
により、角膜頂点Pに対する光学系の光軸O0の位置合
わせが行われる。
The infrared light is applied to the cornea 38 which is the first measurement target surface of the living silver 31.
The beam is reflected by the beam splitter 55, passes through the half mirror 33, passes through the imaging lens 35, and is guided to the CCD camera 34. The CCD camera 34 is connected to a TV monitor 44, which will be described later. The alignment of the optical system with respect to the living silver 31 is performed by observing the reflected bright spot of the infrared reflected light beam displayed on the TV monitor 44, and is aligned vertically and horizontally within a plane perpendicular to the optical axis direction of the optical system. By moving the optical system, the optical axis O0 of the optical system is aligned with the corneal vertex P.

収束光束P2″が生体銀31の角膜38の角膜曲率中心
40に向って入射するように、生体銀31に対する光学
系の光軸方向のアライメント距離が設定されると、第2
図に示すように、収束光束P2″は角膜38により反射
され、その反射光束P、は元の光路に反射される。一方
、生体銀31に導かれる平行光束P、″は、角膜38及
び水晶体41により収束光束として第2測定対象面であ
る眼底42に導かれる。
When the alignment distance in the optical axis direction of the optical system with respect to the living silver 31 is set so that the convergent light beam P2'' enters toward the corneal curvature center 40 of the cornea 38 of the living silver 31, the second
As shown in the figure, the convergent light beam P2'' is reflected by the cornea 38, and the reflected light beam P, is reflected back to the original optical path.On the other hand, the parallel light beam P,'' guided to the living body silver 31 is reflected by the cornea 38 and the crystalline lens. 41, the light beam is guided as a convergent light beam to the fundus 42, which is the second measurement target surface.

そして、屈折力補正レンズ29を移動させることにより
、眼底42にスポットが形成され、この眼底42により
反射された反射光束P4は、再び水晶体41及び角膜3
8を通過し元の光路に反射される。
By moving the refractive power correction lens 29, a spot is formed on the fundus 42, and the reflected light beam P4 reflected by the fundus 42 is transferred to the lens 41 and the cornea 3 again.
8 and is reflected back to the original optical path.

反射されたそれぞれの反射光束P3.P4は、元の光路
を通過してビームスプリッタ22に導かれる(第1図参
照)。ビームスプリッタ22での両度射光束P3.P4
は、波面形状が略平面な平面波となる。反射光束P4は
、ビームスプリッタ22の反射面24により反射されて
結像レンズ46を通りコンフォーカル絞り47に結像し
、コリメートレンズ48により平行光束としてCCDカ
メラ43に導かれる。CCDカメラ43は、TVモニタ
ー44に接続されている。
Each reflected light beam P3. P4 passes through the original optical path and is guided to the beam splitter 22 (see FIG. 1). Both incident light beams P3 at the beam splitter 22. P4
becomes a plane wave with a substantially flat wavefront shape. The reflected light beam P4 is reflected by the reflecting surface 24 of the beam splitter 22, passes through the imaging lens 46, forms an image on the confocal diaphragm 47, and is guided to the CCD camera 43 as a parallel light beam by the collimating lens 48. The CCD camera 43 is connected to a TV monitor 44.

この生体銀の寸法測定装置による測定は、以下に説明す
るようにして行う。
The measurement of this living silver using the size measuring device is performed as described below.

先ず、既知の基準の眼軸長をX8とする。この基準眼軸
長XBには生体銀31の平均眼軸長(22mm〜24m
m)を用いる。ここで、平均眼軸長を有する模を眼を所
定位置に配置して光路長変更部材25を矢印方向(第1
図参照)に動かしたとき、光路長変更部材25の矢印方
向の所定位置で、干渉縞がTVモニター44に写し出さ
れたとする。このときの平行光束Pに対する平行光束P
2の光路差を、基準光路差しeと定義する。今、平行光
束P1が点に、から点に2に至るまでの光路長をに、に
2とし、平行光束P2が点に1で反射され、光路長変更
部材25を経由して点に2に至るまでの光路長をに1に
3 + K3に4 + K4に2とすると、基準光路差
L[]は、 L8”(KIK3+に3に4+に4に2  KIK2+
である。なお、基準光路差Leであるときの光路長変更
部材25の所定位置を基準位置とする。
First, the known reference axial length is assumed to be X8. This reference axial length XB includes the average axial length of living silver 31 (22 mm to 24 m).
m) is used. Here, a model having an average axial length is placed with the eye at a predetermined position, and the optical path length changing member 25 is moved in the direction of the arrow (the first
Suppose that when the optical path length changing member 25 is moved to a position shown in FIG. Parallel light flux P for parallel light flux P at this time
The optical path difference of 2 is defined as a reference optical path difference e. Now, the optical path length of the parallel light beam P1 from point 2 to point 2 is set to 2, and the parallel light beam P2 is reflected at point 1 and passes through the optical path length changing member 25 to point 2. If the optical path length is 1 to 3 + K3 to 4 + K4 to 2, the reference optical path difference L[] is L8'' (KIK3+ to 3 to 4+ to 4 to 2 KIK2+
It is. Note that the predetermined position of the optical path length changing member 25 when the reference optical path difference Le is reached is the reference position.

また、生体銀31の平均屈折率をNとすると、基準眼軸
長Xeに基づく光路差はN−Xeであるので、」準光路
差L8と基準眼軸長x8との間には、L、=N−X、 
 ・・・・・・■ の関係が成立する。
Furthermore, if the average refractive index of the living silver 31 is N, the optical path difference based on the reference axial length Xe is N-Xe, so that between the quasi-optical path difference L8 and the reference axial length x8, there is L, =N−X,
・・・・・・■ The following relationship holds true.

次に、未知の眼軸長Xを有する生体銀31に対して光学
系をアライメントする。このとき、TVモニター44に
干渉縞が写し出されなかったとする。そこで、光路長変
更部材25を矢印方向に動かす。光路長変更部材25を
基準位置かb(△L/2)だけ移動させたとき、TVモ
ニター44に干渉縞が写し出されたとする。
Next, the optical system is aligned with respect to the living body silver 31 having an unknown axial length X. Assume that no interference fringes are displayed on the TV monitor 44 at this time. Therefore, the optical path length changing member 25 is moved in the direction of the arrow. Assume that interference fringes are displayed on the TV monitor 44 when the optical path length changing member 25 is moved from the reference position by b (ΔL/2).

眼軸長Xに基づく光路長はN−Xであり、これが基準光
路差L6とズし量△Lとの和に等しいとき干渉縞が得し
れるのて−あるから、 NX−L8+△L ・−・・・■ となる。
The optical path length based on the axial length −...■ becomes.

よって、未知の眼軸長Xは、0式を0式に代入して変形
することにより、 X=X8+(△L/N) として、求められる。
Therefore, the unknown axial length X can be obtained by substituting and transforming the 0 equation into the 0 equation as follows: X=X8+(ΔL/N).

ところで、TVモニター44に写し出された干渉縞は、
眼底42からの反射光束P4の光量と角膜38からの反
射光束P3の光量とが著しく異なると、そのコントラス
トが低くなる。というのは、干渉縞のコントラストは、
互いに干渉される光束同士の光量が等しいときに最良と
なるからである。そこで、この光学系では、ビームスプ
リッタ22の反射面24の反射率を調節して角膜38か
らの反射光束P3の光量と眼底42からの反射光束P4
の光量とを略等しくするために、ビームスプリッタ22
を通過するレーザー光の透過光量に対してビームスプリ
ッタ22により反射されるレーザー光の反射光量が少な
くなるように設計しである。しかし、生体型3工に個体
差があるため、眼底42からの反射光束P4の光量が個
体差に伴って変わる場合がある。
By the way, the interference fringes displayed on the TV monitor 44 are
If the amount of reflected light beam P4 from the fundus 42 and the amount of reflected light beam P3 from the cornea 38 are significantly different, the contrast will be low. This is because the contrast of the interference fringes is
This is because it is best when the amounts of light beams that interfere with each other are equal. Therefore, in this optical system, the reflectance of the reflective surface 24 of the beam splitter 22 is adjusted to increase the amount of reflected light beam P3 from the cornea 38 and the reflected light beam P4 from the fundus 42.
In order to make the amount of light approximately equal to that of the beam splitter 22
The beam splitter 22 is designed so that the amount of laser light reflected by the beam splitter 22 is smaller than the amount of laser light that passes through the beam splitter 22. However, since there are individual differences among the three biological models, the amount of light reflected from the fundus 42 may vary depending on the individual differences.

そこで、この実施例にあっては、ビームスプリッタ22
と屈折力補正レンズ29との間に、濃度可変フィルター
45が設けられている。干渉縞のコントラストが低いと
きは、濃度可変フィルター45を回転させて眼底42か
らの反射光束P4の光量と角膜38からの反射光束P3
の光量とが略同一となるように調節し、コントラストの
良好な干渉縞が得られるようにする。なお、前房の深さ
や水晶体の厚みを測定する場合は、ビームスプリッタ2
2と屈折力補正レンズ29の間に高屈折力の光路長変更
部材50を挿入し、平行光束P1と平行光束P2との間
の光路長差を短縮して測定を行う。
Therefore, in this embodiment, the beam splitter 22
A variable density filter 45 is provided between the refractive power correction lens 29 and the refractive power correction lens 29 . When the contrast of the interference fringes is low, the variable density filter 45 is rotated to adjust the amount of the reflected light beam P4 from the fundus 42 and the reflected light beam P3 from the cornea 38.
The amount of light is adjusted to be approximately the same as the amount of light, so that interference fringes with good contrast can be obtained. In addition, when measuring the depth of the anterior chamber or the thickness of the crystalline lens, use beam splitter 2.
An optical path length changing member 50 with a high refractive power is inserted between the refractive power correction lens 29 and the refractive power correction lens 29, and the measurement is performed by shortening the optical path length difference between the parallel light beam P1 and the parallel light beam P2.

平行光束P、″を眼底42に投影したとき、生体型31
の屈折力が正常眼でないときは、眼底42からの反射光
束P4が平面波からズレ、眼底42からの反射光束P4
の波面形状と角膜38からの反射光束P3の波面形状と
が同一でなくなる。このときの屈折力の補正は、屈折力
補正レンズ29により行うことができる。つまり、屈折
力補正レンズ29により、生体型31の個体差に基づく
屈折力に応じて平行光束P1からずらした光束とし、眼
底42に小スポットが形成されるように、即ち、両波面
形状が同一となるように、屈折力補正レンズ29を動が
し調整する。
When the parallel light beam P,'' is projected onto the fundus 42, the biological type 31
When the refractive power of the eye is not normal, the reflected light flux P4 from the fundus 42 deviates from a plane wave, and the reflected light flux P4 from the fundus 42
The wavefront shape of the reflected light beam P3 from the cornea 38 is no longer the same as the wavefront shape of the reflected light beam P3. Correction of the refractive power at this time can be performed by the refractive power correction lens 29. In other words, the refractive power correction lens 29 generates a light beam that is shifted from the parallel light beam P1 according to the refractive power based on individual differences in the living body type 31, so that a small spot is formed on the fundus 42, that is, both wavefront shapes are the same. The refractive power correction lens 29 is moved and adjusted so that.

従って、両反射光束の波面形状がビームスプリンタ22
で略同一となり、干渉することとなる。
Therefore, the wavefront shape of both reflected light beams is
They are almost the same and will interfere.

(実施例2) 第3図は、本発明に係る生体型の寸法測定装置の第2実
施例を示しており、第1測定対象面からの反射光束と第
2測定対象面からの反射光束との干渉状態を電気的に検
出して未知の眼軸長Xを求めることとしたものである。
(Example 2) FIG. 3 shows a second example of the biological type dimension measuring device according to the present invention, in which the reflected light flux from the first measurement target surface and the reflected light flux from the second measurement target surface are The unknown axial length X is determined by electrically detecting the interference state.

第3図に示す寸法測定装置の光学系では、CCDカメラ
43を設ける代わりに、検出手段としての絞り52、結
像し・ンズ53及びフォトディテクタ54が設けられて
いる。
In the optical system of the dimension measuring apparatus shown in FIG. 3, instead of providing the CCD camera 43, a diaphragm 52, an imaging lens 53, and a photodetector 54 are provided as detection means.

絞り52には、中央に円形光学開口56が設けられてい
る。円形光学開口56の代わりに、干渉光束をスリット
光束とするためのクロススリットを設けてもよい。この
絞り52は、後述する干渉検出信号Sのピークが適度と
なるように選定され、絞り52を通過した反射光束P4
は、フォトディテクタ54に入射される。
The aperture 52 is provided with a circular optical aperture 56 at its center. Instead of the circular optical aperture 56, a cross slit may be provided to convert the interference light beam into a slit light beam. This diaphragm 52 is selected so that the peak of the interference detection signal S, which will be described later, is appropriate, and the reflected light beam P4 passing through the diaphragm 52
is incident on the photodetector 54.

この第2実施例に係る生体型の寸法測定装置による測定
は、以下に説明するようにして行う。
Measurement by the living body size measuring device according to the second embodiment is performed as described below.

先ず、第1実施例と同様に、光路長変更部材25を既知
の基準眼軸長X8を用いて調節し、既知の基準眼軸長X
。を得たときの光路長変更部材25の基準位置を予め求
めておく。
First, as in the first embodiment, the optical path length changing member 25 is adjusted using the known reference axial length X8, and the known reference axial length X8 is adjusted.
. The reference position of the optical path length changing member 25 when the optical path length changing member 25 is obtained is determined in advance.

次に、基準の眼軸長X8に対して未知の眼軸長Xを有す
る生体型31をセットし、光路長変更部材25を矢印で
示す方向に移動させる。光路長変更部材25の移動に応
じ、フォトディテクタ54は、第4図に示すような干渉
検出信号Sを出力する。
Next, the biological mold 31 having an unknown ocular axial length X with respect to the reference ocular axial length X8 is set, and the optical path length changing member 25 is moved in the direction shown by the arrow. In response to the movement of the optical path length changing member 25, the photodetector 54 outputs an interference detection signal S as shown in FIG.

すなわち、未知の眼軸長Xに対応する光路長NXと、平
行光束P1に対する1)−′行光束1〕2の光路差との
差がゼロに近づくにしたがい、フォトディテクタ54か
ら変化のある干渉検出信号Sの出力が開始され、その差
がゼロに近づけば近づくほど干渉検出信号Sのピークが
大きくなる。そして、更に、光路長変更部材25を同方
向に動かす。すると、光路長NXと光路差との差が大き
くなって干渉検出信号Sのピークが小さくなり、やがて
干渉検出信号Sの変化が検出されなくなる。
That is, as the difference between the optical path length NX corresponding to the unknown axial length The output of the signal S is started, and as the difference approaches zero, the peak of the interference detection signal S becomes larger. Then, the optical path length changing member 25 is further moved in the same direction. Then, the difference between the optical path length NX and the optical path difference increases, the peak of the interference detection signal S becomes smaller, and eventually no change in the interference detection signal S is detected.

今、干渉検出信号Sの変化の現れ始めた時刻をt3、干
渉検出信号Sの変化の終了時刻をt2として、例えば、
時刻t、と時刻t2との中間で眼軸長Xの測定値を得る
ことにすると、tm= (t 1 + t2) / 2
の時刻のときに基準光路差L8からの光路長変更部材2
5のズレ量ΔL(基準位置からの移動距離に等しい)を
検出し下記の式に基づく演算を行えば、未知の眼軸長X
を求めることができる。
Now, assuming that the time when the change in the interference detection signal S begins to appear is t3, and the time when the change in the interference detection signal S ends is t2, for example,
If we decide to obtain the measured value of the axial length X between time t and time t2, then tm = (t 1 + t2) / 2
At the time of , the optical path length changing member 2 from the reference optical path difference L8
By detecting the deviation amount ΔL (equal to the moving distance from the reference position) of 5 and performing calculations based on the following formula, the unknown axial length
can be found.

NX= L8+△L=L、+△L(tmlX=(L8+
△L)/N =X、十ΔL/N なお、干渉検出信号Sにゆらぎが生じているのは以下の
理由からである。
NX= L8+△L=L, +△L(tmlX=(L8+
ΔL)/N = X, ΔL/N The reason why the interference detection signal S fluctuates is as follows.

反射光束P3及び反射光束P4は、絞り52を介してフ
ォトディテクタ54の所定の領域に導かれるため、所定
の領域に干渉縞の明るい箇所が位置すれば干渉検出信号
Sが正のピークとなり、干渉縞の暗い箇所が位置すると
負のピークとなる。
The reflected light flux P3 and the reflected light flux P4 are guided to a predetermined area of the photodetector 54 via the aperture 52, so if a bright spot of the interference fringe is located in the predetermined area, the interference detection signal S becomes a positive peak, and the interference fringe When the dark spot of is located, it becomes a negative peak.

この第2実施例によれば、電気的検出手段に基づいて、
第1測定対象面である角膜38が−らの反射光束と第2
測定対象面である眼底42からの反射光束との干渉状態
を検出できるので、生体眼31の寸法を迅速且つ正確に
計測することができる。
According to this second embodiment, based on the electrical detection means,
The cornea 38, which is the first measurement target surface,
Since the state of interference with the reflected light beam from the fundus 42, which is the surface to be measured, can be detected, the dimensions of the living eye 31 can be measured quickly and accurately.

また、コンフォーカル絞り47は、CcDカメラ43上
でのノイズを除去するために設けられている。
Further, the confocal diaphragm 47 is provided to remove noise on the CcD camera 43.

このノイズは、生体眼31からの反射光束P3及び反射
光束P4が、照射光束P、及び照射光束P2の元の光路
ではなく、反射光束P3が反射光束P4の光路もしくは
反射光P4が反射光P3の光路に入った場合に発生する
ものである。しかしながら、元の光路とは異なる光路を
通ってきた光束であってノイズに関係する光束は、光路
長が違うのみならずコンフォーカル絞り47上で結像さ
れることはないので、コンフォーカル絞り47のピンホ
ールを通過する光量は少なくノイズは微小となる。
This noise is caused by the fact that the reflected light flux P3 and the reflected light flux P4 from the living eye 31 are not in the original optical path of the irradiation light flux P and the irradiation light flux P2, and that the reflected light flux P3 is the optical path of the reflected light flux P4, or the reflected light beam P4 is the reflected light beam P3. This occurs when the light enters the optical path of However, the light flux that has passed through an optical path different from the original optical path and is related to noise not only has a different optical path length but is not imaged on the confocal aperture 47, so the confocal aperture 47 The amount of light passing through the pinhole is small and the noise is minute.

ところで、各実施例では、第1測定対象面である角膜3
8への照射位置を角膜38の曲率中心40としているが
、照射位置を角膜38の頂点Pとしても同様な結果を得
ることができる。
By the way, in each example, the cornea 3 which is the first measurement target surface
Although the irradiation position on the cornea 8 is set at the center of curvature 40 of the cornea 38, similar results can be obtained even if the irradiation position is set at the vertex P of the cornea 38.

以上、各実施例について説明したが、基準光路差LI3
を水晶体41の前面から後面までの水晶体厚さに対応さ
せて設定すれば、生体眼31の寸法としての水晶体厚さ
を測定できる。同様に、基準光路差Leを角膜38から
水晶体41の前面までの前房深さに対応させて設定すれ
ば、その前房深さを測定することができる。
Although each embodiment has been described above, the reference optical path difference LI3
If is set in accordance with the thickness of the crystalline lens from the front surface to the back surface of the crystalline lens 41, the thickness of the crystalline lens as a dimension of the living eye 31 can be measured. Similarly, if the reference optical path difference Le is set to correspond to the anterior chamber depth from the cornea 38 to the front surface of the crystalline lens 41, the anterior chamber depth can be measured.

(効果) 本発明に係る生体眼の寸法測定装置は、以上説明したよ
うに、屈折力補正光学系により、第1測定対象面からの
反射光束の波面形状と第2測定対象面からの反射光束の
波面形状とを光路分割部材で略同一として干渉させるこ
とにしたので、干渉縞の本数が略一定となると共に粗く
なり、干渉縞の良好な観測が容易となる。
(Effects) As explained above, the living eye dimension measuring device according to the present invention uses the refractive power correction optical system to adjust the wavefront shape of the reflected light beam from the first measurement target surface and the reflected light flux from the second measurement target surface. Since the optical path splitting member is used to make the wavefront shapes substantially the same and cause interference, the number of interference fringes becomes approximately constant and becomes coarse, making it easy to observe the interference fringes well.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る生体眼の寸法測定装置の第1実
施例の光学系を示す図である。 第2図は、第1図に示す生体眼からの反射光束を示す図
である。 第3図は、本発明に係る生体眼の寸法測定装置の第2実
施例の光学系を示す図である。 第4図は、第3図に示すフォトディテクタから出力され
た干渉検出信号の説明図である。 第5図は、従来の生体眼の寸法測定装置の光学系を示す
図である。 22・・・ビームスプリッタ(光路分割部材)23・・
・ビームスプリッタ(光路合成部材)25  光路長変
更部材 2つ・・屈折力補正レンズ(屈折力補正光学系)31・
・・生体眼 38・・・角膜(第1測定対象面) 42・・眼底(第2測定対象面) 52・・・絞り
FIG. 1 is a diagram showing an optical system of a first embodiment of a living eye size measuring device according to the present invention. FIG. 2 is a diagram showing the reflected light flux from the living eye shown in FIG. 1. FIG. 3 is a diagram showing an optical system of a second embodiment of the living eye dimension measuring device according to the present invention. FIG. 4 is an explanatory diagram of an interference detection signal output from the photodetector shown in FIG. 3. FIG. 5 is a diagram showing an optical system of a conventional living eye dimension measuring device. 22... Beam splitter (optical path splitting member) 23...
・Beam splitter (optical path combining member) 25 2 optical path length changing members ・Refractive power correction lens (refractive power correction optical system) 31 ・
...Living eye 38...Cornea (first measurement target surface) 42...Fundus (second measurement target surface) 52...Aperture

Claims (3)

【特許請求の範囲】[Claims] (1)生体眼にコヒーレンス長の短い光束を投光し、前
記生体眼の第1測定対象面からの反射光束と第2測定対
象面からの反射光束との干渉に基づき、前記第1測定対
象面から前記第2測定対象面までの寸法を測定する生体
眼の寸法測定装置において、前記コヒーレンス長の短い
光束を、前記第1測定対象面への投光光束と前記第2測
定対象面への投光光束とに光路分割部材により分割する
と共に、再度、光路合成部材により光路合成して、前記
生体眼に投光する光束投光手段を有し、 前記光路分割部材と前記光路合成部材との間に、前記第
1測定対象面からの反射光束の波面形状と前記第2測定
対象面からの反射光束の波面形状とを、前記光路分割部
材で略同一とするための屈折力補正光学系を設け、 前記生体眼からの反射光束が前記両投光光束の光路を逆
に通り、前記光路分割部材で光路を合成して、前記第1
測定対象面からの反射光束と前記第2測定対象面からの
反射光束とを干渉させることを特徴とする生体眼の寸法
測定装置。
(1) A light beam with a short coherence length is projected onto the living eye, and based on the interference between the reflected light beam from the first measurement object surface of the living eye and the reflected light beam from the second measurement object surface, the first measurement object In a living eye dimension measuring device that measures the dimension from a surface to the second measurement target surface, the light beam with the short coherence length is projected into the first measurement target surface and the second measurement target surface. a light beam projecting means that divides the projected light beam into the projected light beam by an optical path dividing member, combines the optical paths again by an optical path combining member, and projects the light onto the living eye; In between, a refractive power correction optical system is provided for making the wavefront shape of the reflected light flux from the first measurement target surface and the wavefront shape of the reflected light flux from the second measurement target surface substantially the same by the optical path splitting member. The reflected light beam from the living eye passes through the optical paths of both the projected light beams in reverse, and the optical paths are combined by the optical path splitting member,
A dimension measuring device for a living eye, characterized in that a reflected light flux from a measurement target surface and a reflected light flux from the second measurement target surface are caused to interfere with each other.
(2)前記第1測定対象面からの反射光束と前記第2測
定対象面からの反射光束との干渉状態を電気的に検出す
る検出手段を備えていることを特徴とする請求項1に記
載の生体眼の寸法測定装置。
(2) The apparatus further comprises a detection means for electrically detecting an interference state between the reflected light beam from the first measurement object surface and the reflection light beam from the second measurement object surface. A device for measuring the dimensions of the living eye.
(3)前記光束投光手段は光路長変更部材を備え、前記
検出手段は干渉検出信号を出力するフォトディテクタを
備え、前記干渉検出信号と前記光路長変更部材の位置と
に基づき生体眼の寸法を測定することを特徴とする請求
項2に記載の生体眼の寸法測定装置。
(3) The light beam projecting means includes an optical path length changing member, the detecting means includes a photodetector that outputs an interference detection signal, and the size of the living eye is determined based on the interference detection signal and the position of the optical path length changing member. 3. The living eye dimension measuring device according to claim 2, wherein the device measures dimensions of a living eye.
JP2213999A 1990-08-13 1990-08-13 Living eye size measurement device Expired - Lifetime JP2994441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2213999A JP2994441B2 (en) 1990-08-13 1990-08-13 Living eye size measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2213999A JP2994441B2 (en) 1990-08-13 1990-08-13 Living eye size measurement device

Publications (2)

Publication Number Publication Date
JPH0496727A true JPH0496727A (en) 1992-03-30
JP2994441B2 JP2994441B2 (en) 1999-12-27

Family

ID=16648586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2213999A Expired - Lifetime JP2994441B2 (en) 1990-08-13 1990-08-13 Living eye size measurement device

Country Status (1)

Country Link
JP (1) JP2994441B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005348755A (en) * 2004-06-08 2005-12-22 Nidek Co Ltd Ophthalmologic measuring device
JP2009112430A (en) * 2007-11-02 2009-05-28 Nidek Co Ltd Instrument for measuring eye size
JP2010540914A (en) * 2007-09-28 2010-12-24 カール ツァイス メディテック アクチエンゲゼルシャフト Short coherence interferometer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005348755A (en) * 2004-06-08 2005-12-22 Nidek Co Ltd Ophthalmologic measuring device
JP4619694B2 (en) * 2004-06-08 2011-01-26 株式会社ニデック Ophthalmic measuring device
JP2010540914A (en) * 2007-09-28 2010-12-24 カール ツァイス メディテック アクチエンゲゼルシャフト Short coherence interferometer
JP2009112430A (en) * 2007-11-02 2009-05-28 Nidek Co Ltd Instrument for measuring eye size

Also Published As

Publication number Publication date
JP2994441B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
JP2723967B2 (en) Living eye size measurement device
JP4692939B2 (en) Eye characteristics measuring device
JP2763584B2 (en) Front and rear diameter distance measuring device for living eye
JPH0496727A (en) Dimension measuring device for living body eye
JPH10276985A (en) Inspection instrument for optical data of eyeball
JPH05115437A (en) Eye axial length measuring instrument
JPH01293841A (en) Reflectometer
JP4606560B2 (en) Ophthalmic optical characteristic measuring device
JPH06137841A (en) Ophthalmological measuring device
JP3417602B2 (en) Ophthalmic measurement device
JP3221725B2 (en) Eye measurement device
JPH02295537A (en) Instrument for finding range between back and forth diameters of eye in organ
JPH06205739A (en) Organism eye measuring device
JPH0430296B2 (en)
JP2823660B2 (en) Length measuring device
JP4216549B2 (en) Ophthalmic optical characteristic measuring device
JPH0330752A (en) Apparatus for measuring dimension of living eye
JPH02302243A (en) Measuring instrument for refractive index of eyes
CN113558563B (en) OCT-based eye axis measuring method and device
JPS5975035A (en) Apparatus for measuring cornea shape
JP3639658B2 (en) Beam deflector for ophthalmic examination
JPH0397436A (en) Corneal shape measuring device
JPH08308800A (en) Ophthalmologic apparatus
JPH02220626A (en) Apparatus for measuring shape of cornea
JP2005253576A (en) Ophthalmic apparatus