JP2763584B2 - Front and rear diameter distance measuring device for living eye - Google Patents

Front and rear diameter distance measuring device for living eye

Info

Publication number
JP2763584B2
JP2763584B2 JP1115838A JP11583889A JP2763584B2 JP 2763584 B2 JP2763584 B2 JP 2763584B2 JP 1115838 A JP1115838 A JP 1115838A JP 11583889 A JP11583889 A JP 11583889A JP 2763584 B2 JP2763584 B2 JP 2763584B2
Authority
JP
Japan
Prior art keywords
model
light beam
living eye
eye
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1115838A
Other languages
Japanese (ja)
Other versions
JPH02295536A (en
Inventor
裕明 下薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOPUKON KK
Original Assignee
TOPUKON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOPUKON KK filed Critical TOPUKON KK
Priority to JP1115838A priority Critical patent/JP2763584B2/en
Priority to US07/520,201 priority patent/US5042938A/en
Publication of JPH02295536A publication Critical patent/JPH02295536A/en
Application granted granted Critical
Publication of JP2763584B2 publication Critical patent/JP2763584B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、干渉縞を観察することにより生体眼の第1
測定対象面から第2測定対象面までの前後径距離として
の眼軸長、前房深さ、水晶体厚さ等を非接触で測定する
ことのできる生体眼の前後径距離測定装置の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to a first method of the living eye by observing interference fringes.
The present invention relates to an improvement of an anterior-posterior diameter measurement apparatus for a living eye, which can measure an axial length, an anterior chamber depth, a lens thickness, etc. as a front-rear diameter distance from a measurement target surface to a second measurement target surface without contact.

(従来の技術) 従来から、生体眼の第1測定対象面から第2測定対象
面までの前後径距離としての眼軸長、前房深さ、水晶体
厚さ等を測定する生体眼の前後径距離測定装置として
は、超音波を用いて眼の前方から投射した超音波の角膜
前面、水晶体前面、水晶体後面、眼底表面における反射
波をブラウン管上に描き出し、そのブラウン管上に描き
出されたエコーグラムを撮影して計測するものが知られ
ている。
(Prior Art) Conventionally, an anterior-posterior diameter of a living eye for measuring an axial length, an anterior chamber depth, a lens thickness, and the like as a front-back radial distance from a first measurement target surface to a second measurement target surface of a living eye. As a distance measurement device, the reflected waves of the ultrasonic wave projected from the front of the eye using ultrasonic waves on the front of the cornea, the front of the lens, the rear of the lens, and the fundus surface are drawn on a CRT, and the echogram drawn on the CRT is drawn. There is a known thing that measures by shooting.

(発明が解決しようとする課題) しかしながら、この従来の生体眼の前後径距離測定装
置は、測定精度が±0.2mm程度であり、たとえば、測定
の結果得られた眼軸長を用いてIOL(Intraocular Len
s)のパワーを決定するには、その眼軸長の測定精度が
不十分であるという問題点がある。
(Problems to be Solved by the Invention) However, this conventional living eye front-rear diameter measuring apparatus has a measurement accuracy of about ± 0.2 mm, and uses, for example, an IOL ( Intraocular Len
In determining the power of s), there is a problem that the measurement accuracy of the axial length is insufficient.

また、この従来の超音波による生体眼の前後径距離測
定装置は、測定に際して生体眼にプローブを接触させな
ければならないために、感染等の予防措置を講じなけれ
ばならないという面倒もある。
In addition, this conventional ultrasonic measuring apparatus for measuring the front and rear diameter of a living eye has to be troublesome in that a probe must be brought into contact with the living eye during measurement, so that precautionary measures such as infection must be taken.

そこで、近年、干渉縞を観察することにより眼軸長、
前房深さ、水晶体厚さ等を非接触で測定することのでき
る生体眼の前後径距離測定装置が提案されている。
Therefore, in recent years, by observing interference fringes,
An anterior-posterior diameter distance measuring apparatus for a living eye capable of measuring anterior chamber depth, lens thickness, and the like in a non-contact manner has been proposed.

第5図に示す生体眼の前後径距離測定装置は、眼軸長
を測定するために用いる装置の一例を示すもので、A.F.
Fercher et al.(OPTICS LETTER VOL.13 NO.3 PP.186−
188(March 1988)Optical Socity of America)に記載
されている技術である。
FIG. 5 shows an example of a device for measuring the axial length of a living eye, which is used to measure the axial length of the living eye.
Fercher et al. (OPTICS LETTER VOL.13 NO.3 PP.186−
188 (March 1988) Optical Socity of America).

この第5図に示す生体眼の前後径距離測定装置は、半
導体レーザー1、コリメートレンズ2、二枚の平行平面
板3、4、ビームスプリッタ5、集光レンズ6、撮像カ
メラ7から概略構成されている。半導体レーザー1から
出射されたレーザー光はコリメートレンズ2によって平
行光束とされ、二枚の平行平面板3、4に導かれる。二
枚の平行平面板3、4を通過した平行光束(光束とい
う)はビームスプリッタ5を介して生体眼8の眼底9に
収束光として導かれ、眼底9で反射されて略平行光束
(平面波)として生体眼8から出射され、ビームスプリ
ッタ5の反射面10によって集光レンズ6の存在する方向
に反射され、集光レンズ6により集光されて撮像カメラ
7に導かれる。また、平行平面板3を通過した平行光束
の一部は平行平面板4により反射されて反射光束(光束
という)は平行平面板3に戻り、この平行平面板3に
より再び反射されて平行平面板4を通過し、ビームスプ
リッタ5を通過して生体眼8の角膜11に導かれる。この
角膜11により反射された反射光は、発散光(球面波)と
してビームスプリッタ5に導かれ、その反射面10で集光
レンズ6の存在する方向に反射され、集光レンズ6によ
り集光されてカメラ7に導かれる。なお、第5図におい
て、12は半導体レーザー1の光量モニター用の受光セン
サである。
The apparatus for measuring the front-to-rear diameter distance of the living eye shown in FIG. 5 is roughly composed of a semiconductor laser 1, a collimator lens 2, two parallel flat plates 3, 4, a beam splitter 5, a condenser lens 6, and an imaging camera 7. ing. Laser light emitted from the semiconductor laser 1 is converted into a parallel light beam by the collimator lens 2 and guided to two parallel flat plates 3 and 4. A parallel light beam (referred to as a light beam) that has passed through the two parallel flat plates 3 and 4 is guided as convergent light to the fundus 9 of the living eye 8 via the beam splitter 5 and is reflected by the fundus 9 to be substantially parallel light beam (plane wave). As a result, the light is emitted from the living eye 8, is reflected by the reflection surface 10 of the beam splitter 5 in the direction in which the condenser lens 6 exists, is condensed by the condenser lens 6, and is guided to the imaging camera 7. A part of the parallel light flux passing through the parallel flat plate 3 is reflected by the parallel flat plate 4, and the reflected light beam (referred to as a light flux) returns to the parallel flat plate 3, and is reflected again by the parallel flat plate 3 to be parallel flat plate. 4, and passes through the beam splitter 5 to the cornea 11 of the living eye 8. The light reflected by the cornea 11 is guided to the beam splitter 5 as divergent light (spherical wave), reflected by the reflection surface 10 in the direction in which the condenser lens 6 exists, and condensed by the condenser lens 6. To the camera 7. In FIG. 5, reference numeral 12 denotes a light receiving sensor for monitoring the amount of light of the semiconductor laser 1.

この従来のものにおいては、平行平面板3と平行平面
板4との距離lを可変とし、平行平面板3と平行平面板
4との間に存在する物質の屈折率をn、眼内物質の屈折
率をN、測定によって得られる眼軸長(角膜11の頂点か
ら眼底9までの距離)をXとして、 nl=NX の等式を満足するように、平行平面板3と平行平面板4
との距離lを調節すると、光束と光束とが等光路長
となり、カメラ7により干渉縞が観察される。
In this conventional device, the distance 1 between the parallel flat plate 3 and the parallel flat plate 4 is variable, the refractive index of a substance existing between the parallel flat plate 3 and the parallel flat plate 4 is n, and the refractive index of the intraocular substance is n. Assuming that the refractive index is N and the axial length of the eye (the distance from the vertex of the cornea 11 to the fundus oculi 9) obtained by the measurement is X, the parallel flat plates 3 and 4 satisfy the equation of nl = NX.
Is adjusted, the luminous flux becomes equal in optical path length, and the camera 7 observes interference fringes.

従って、この干渉縞が観察されたときの平行平面板l
を測定値として得ること二より、眼軸長Xを求めること
ができる。
Therefore, the plane parallel plate l when this interference fringe is observed
Is obtained as a measurement value, the eye axis length X can be obtained.

ところが、この干渉縞を観察することにより眼軸長を
測定する生体眼の前後径距離測定装置は、角膜表面から
の反射光束がほぼ球面波であるのに対して眼底面からの
反射光束がほぼ平面波であるので、角膜頂点から周辺部
に離れるに従って干渉縞の本数が非常に多くなる。従っ
て、干渉縞の観察を良好に行うことができない。また、
このものは、集光レンズ6、カメラ7の光軸を生体眼8
に対して正確にアライメントしなければならないのであ
るが、このアライメントがきわめて面倒であるという問
題点もある。
However, in a living eye's front-to-rear radial distance measuring device that measures the axial length by observing the interference fringes, the reflected light flux from the corneal surface is almost a spherical wave, whereas the reflected light flux from the fundus oculi is almost the same. Since it is a plane wave, the number of interference fringes becomes very large as it goes away from the vertex of the cornea to the periphery. Therefore, observation of interference fringes cannot be performed well. Also,
The optical axis of the condenser lens 6 and the camera 7 is
Alignment must be performed accurately, but there is a problem that this alignment is extremely troublesome.

本発明は上記の事情に鑑みて為されたもので、その目
的とするところは、生体眼に対するアライメントを正確
に行なわなくとも干渉縞の観察が容易でかつ測定精度の
向上を期待できる生体眼の前後径距離測定装置を提供す
ることにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a living eye capable of easily observing interference fringes and improving measurement accuracy without accurately performing alignment with the living eye. An object of the present invention is to provide a front-rear diameter measuring device.

(課題を解決するための手段) 本発明に係わる生体眼の前後径距離測定装置は、上記
の目的を達成するため、 生体眼の第1測定対象面から第2測定対象面までの前
後径距離を測定するために用いる模型視器と、 前記模型視器からの反射光束と前記生体眼からの反射
光束との干渉を観測する観測光学系と、 光束を分割して前記生体眼と前記模型視器とに干渉性
の分割光束を導く光束分割部材とを有し、 前記模型視器には前記第1測定対象面に対応する第1
模型面と前記第2測定対象面に対応する第2模型面とが
少なくとも設けられ、 第1模型面と前記第1測定対象面との干渉縞を観測す
ると共に前記第2模型面と前記第2測定対象面との干渉
縞を観測して、前記第1測定対象面から第2対象面まで
の前後径距離を測定することを特徴とする。
(Means for Solving the Problems) In order to achieve the above-mentioned object, a longitudinal diameter distance measuring apparatus for a living eye according to the present invention includes: a longitudinal distance distance from a first measuring surface to a second measuring surface of a living eye; A model eyesight used to measure the distance; an observation optical system for observing interference between a reflected light beam from the model eyesight and a reflected light beam from the living eye; A light beam splitting member that guides a coherent split light beam to a device, wherein the model eyesight has a first light beam corresponding to the first measurement target surface.
At least a model surface and a second model surface corresponding to the second measurement target surface are provided, and interference fringes between the first model surface and the first measurement target surface are observed, and the second model surface and the second model surface are observed. The method is characterized by observing interference fringes with a measurement target surface and measuring a front-rear radial distance from the first measurement target surface to the second target surface.

(作用) 本発明に係わる生体眼の前後径距離測定装置によれ
ば、第1模型面からの反射波面と第1測定対象面からの
反射波面との波面形状がほぼ同一であり、かつ、第2模
型面からの反射波面と第2測定対象面からの反射波面も
ほぼ同一であり、同一波面形状同士を干渉させて干渉縞
を得るので、得られる干渉縞が良好である。
(Action) According to the living eye longitudinal distance measuring apparatus according to the present invention, the wavefront shapes of the reflected wavefront from the first model surface and the reflected wavefront from the first measurement target surface are substantially the same, and The reflected wavefront from the two model surfaces and the reflected wavefront from the second measurement target surface are also substantially the same, and interference fringes are obtained by causing the same wavefront shapes to interfere with each other, so that the obtained interference fringes are good.

(実施例1) 第1図は本発明に係わる生体眼の前後径距離測定装置
の第1実施例の光学系を示すもので、生体眼の前後径距
離としての眼軸長の測定に用いられ、この第1図におい
て、20は半導体レーザー、21はコリメータレンズ、22は
ビームスプリッタ、23は模型視器、24は生体眼、25は集
光レンズ、26はCCDカメラ、27はテレビモニターであ
る。半導体レーザー2レーザには、コヒーレント長が0.
1mm以下のものが用いられる。0.1mm以上のコヒーレント
長のものを用いると模型式23を後述する光軸方向に少し
ぐらい動かしても干渉縞がどの位置でも得られることに
なり、測定精度として0.1mm程度のものを得られないか
らである。また、極端にコヒーレント長が短い半導体レ
ーザー20を用いるのも望ましくない。というのは、測定
精度は向上するが干渉縞がなかなか得られず、測定に時
間がかかることになるからである。とくに、後述する眼
底と第2模型面との干渉に基づく干渉縞は、眼底の形状
が複雑であるので複雑な形状となり、極端にコヒーレン
ト長が短い半導体レーザー20を用いると干渉縞が得られ
たか否かの判断が容易でない。
(Embodiment 1) FIG. 1 shows an optical system of a first embodiment of a living eye longitudinal distance measuring apparatus according to the present invention, which is used for measuring an axial length as a longitudinal distance of a living eye. In FIG. 1, reference numeral 20 denotes a semiconductor laser, 21 denotes a collimator lens, 22 denotes a beam splitter, 23 denotes a model eyesight, 24 denotes a living eye, 25 denotes a condensing lens, 26 denotes a CCD camera, and 27 denotes a television monitor. . The semiconductor laser 2 laser has a coherent length of 0.
1 mm or less is used. If a coherent length of 0.1 mm or more is used, interference fringes can be obtained at any position even if the model formula 23 is slightly moved in the optical axis direction described later, and a measurement accuracy of about 0.1 mm cannot be obtained. Because. It is also undesirable to use a semiconductor laser 20 having an extremely short coherent length. This is because the measurement accuracy is improved, but interference fringes are not easily obtained, and the measurement takes time. In particular, the interference fringes based on the interference between the fundus and the second model surface, which will be described later, have a complicated shape due to the complicated shape of the fundus, and have the interference fringes been obtained by using the semiconductor laser 20 having an extremely short coherent length? It is not easy to determine whether or not.

半導体レーザー20から出射されたレーザー光はコリメ
ートレンズ21により平行光束とされる。その平行光束は
光束分割部材としてのビームスプリッタ22の反射面28に
より生体眼24に導かれる平行光束P1と、模型視器23に導
かれる平行光束P2とに分割される。
The laser light emitted from the semiconductor laser 20 is converted into a parallel light beam by the collimating lens 21. As the parallel light flux into a parallel light beam P 1 is guided to the living eye 24 by the reflecting surface 28 of the beam splitter 22 as a light beam splitting member is divided into a parallel light flux and P 2 is guided to the model view 23.

模型視器23は第1測定対象面としての角膜29に対応す
る第1模型面30と第2測定対象面としての眼底31に対応
する第2模型面32とを有する。その第1模型面30の曲率
半径は角膜29の曲率半径の平均的な値に設定されてい
る。ここでは、第1模型面30の曲率半径は7〜8mmであ
る。第2模型面32の曲率半径は眼底31の曲率半径の平均
的な値に設定されている。また、模型視器23の屈折率n
は眼内物質の屈折率Nと略同程度とされ、第1模型面30
から第2模型面32までの距離l1は生体眼24の眼軸長の平
均的な値に設定されている。ここでは、距離l1は22mm〜
24mmである。また、模型視器23に進入した平行光束が第
2模型面32に収束されるように、距離l1、第1模型面30
の曲率光束、第2模型面32の曲率半径、屈折率nが選定
されている。その模型視器23は光軸O1の方向に移動可能
とされている。
The model eyesight 23 has a first model surface 30 corresponding to the cornea 29 as a first measurement target surface, and a second model surface 32 corresponding to the fundus 31 as a second measurement target surface. The radius of curvature of the first model surface 30 is set to an average value of the radius of curvature of the cornea 29. Here, the radius of curvature of the first model surface 30 is 7 to 8 mm. The radius of curvature of the second model surface 32 is set to an average value of the radius of curvature of the fundus 31. Also, the refractive index n of the model eyesight 23
Is approximately the same as the refractive index N of the intraocular substance, and the first model surface 30
Distance l 1 from to the second model surface 32 is set to the average value of the axial length of the living eye 24. Here, the distance l 1 is from 22 mm
24 mm. Further, the distance l 1 and the first model surface 30 are set so that the parallel light beam entering the model eyesight 23 is converged on the second model surface 32.
, The radius of curvature of the second model surface 32, and the refractive index n are selected. Its Model vision 23 is movable in the direction of the optical axis O 1.

角膜29と第1模型面30とにより反射された反射光束は
ほぼ発散光束(ほぼ球面波)となる。一方、眼底31によ
り反射された反射光束と第2模型面により反射された反
射光束とは、角膜29、第1模型面30から出射される際に
それぞれほぼ平行光束(ほぼ平面波)となる。
The light beam reflected by the cornea 29 and the first model surface 30 becomes a substantially divergent light beam (substantially spherical wave). On the other hand, the reflected light beam reflected by the fundus 31 and the reflected light beam reflected by the second model surface become substantially parallel light beams (substantially plane waves) when emitted from the cornea 29 and the first model surface 30, respectively.

この実施例による生体眼の前後径距離測定装置によれ
ば、模型視器23をその第1模型面30がビームスプリッタ
22の反射面28に関して生体眼24の角膜29と共役となるよ
うに光軸O1の方向に移動させると、第1模型面30により
反射された光束P2′と角膜29により反射された光束P1
とが観測光学系の一部を構成する集光レンズ25により集
光されてCCDカメラ26に導かれ、光束P1′、P2′に基づ
く干渉縞がテレビモニター27に写し出される。また、模
型視器23をその第2模型面32がビームスプリッタ22の反
射面28に関して生体眼24の眼底31と共役になるように光
軸O1の方向に移動させると、第2模型面32により反射さ
れた光束P2″と眼底31により反射された光束P1″とに基
づく干渉縞が同様にしてテレビモニター27に写し出され
る。
According to the apparatus for measuring the longitudinal distance of the living eye according to this embodiment, the model eyesight 23 is connected to the first model surface 30 by the beam splitter.
When the reflecting surface 28 of the lens 22 is moved in the direction of the optical axis O 1 so as to be conjugate with the cornea 29 of the living eye 24, the light flux P 2 ′ reflected by the first model surface 30 and the light flux reflected by the cornea 29 P 1
Are condensed by a condenser lens 25 constituting a part of the observation optical system and guided to a CCD camera 26, and interference fringes based on the light fluxes P 1 ′ and P 2 ′ are projected on a television monitor 27. Also, moving a model view 23 in the direction of the optical axis O 1 so the fundus 31 and the conjugate of a living eye 24 with respect to the reflecting surface 28 of the second model surface 32 the beam splitter 22, the second model surface 32 The interference fringes based on the light beam P 2 ″ reflected by the light beam and the light beam P 1 ″ reflected by the fundus 31 are similarly projected on the television monitor 27.

生体眼24の眼軸長をXとして、角膜29と第1模型面30
とに基づく干渉縞が得られたときの光軸O1方向の模型視
器24の位置をX1、眼底31と第2模型面32とに基づく干渉
縞が得られたときの光軸O1方向の模型視器24の位置をX2
とすると、 N・X=(X1−X2)+n・l1 である。
Assuming that the axial length of the living eye 24 is X, the cornea 29 and the first model surface 30
The optical axis O 1 when the interference fringes based the position of the optical axis O 1 direction of the model view 24 when the interference fringe based on the bets were obtained and X 1, the fundus 31 and the second model surface 32 obtained X 2 position of model eyesight 24 in direction
When a N · X = (X 1 -X 2) + n · l 1.

従って、上記の等式を変形することにより、 として、眼軸長が求まる。Therefore, by modifying the above equation, As a result, the axial length is obtained.

この模型視器23を用いて干渉縞を観測して生体眼の前
後径距離を測定する生体眼の前後径距離測定装置によれ
ば、干渉を起こす光束同士の波面形状がほぼ同一である
ので、干渉縞の本数として適度のものが得られ、得られ
た干渉縞を良好に観察できることになる。
According to the biological eye longitudinal distance measuring device that measures the interference fringe by observing interference fringes using this model eyesight 23, since the wavefront shapes of the light beams that cause interference are substantially the same, An appropriate number of interference fringes can be obtained, and the obtained interference fringes can be favorably observed.

(実施例2) 第2図は本発明に係わる生体眼の前後径距離測定装置
の光学系の第2実施例を示すもので、互いに別体の光学
物体である2個の模型視器を用いて眼軸長を測定する場
合を示しており、この第2図において、33は生体眼24の
角膜29に対応する第1模型面30を備えた模型視器、34は
生体眼24の眼底31に対応する第2模型面32を備えた模型
視器である。ビームスプリッタ22と生体眼24との間に
は、生体眼24に導かれる分割光束P1を模型視器33に導か
れる光束と生体眼24に導かれる光束とに分割する光束分
割部材としてのビームスプリッタ35が設けられ、36はそ
のビームスプリッタ35の反射面である。模型視器34とビ
ームスプリッタ22との間には、ビームスプリッタ22の反
射面28に関してビームスプリッタ3突起と共役位置にビ
ームスプリッタ35とほぼ同一形状かつほぼ同一厚さ、ほ
ぼ同一屈折率を有する光路長補正用光学部材37が配設さ
れ、模型視器34からビームスプリッタ22の反射面28まで
の光学距離と模型視器33からビームスプリッタ35を経由
してのビームスプリッタ22の反射面28までの光学距離と
がほぼ等しくなるように設定されている。なお、模型視
器34の表面32′には、模型視器34に入射する分割光束
P2′がその表面32′で極力反射されないように反射防止
処理膜が形成されている。
(Embodiment 2) FIG. 2 shows a second embodiment of the optical system of the longitudinal distance measuring apparatus for a living eye according to the present invention, in which two model visual instruments which are separate optical objects are used. In FIG. 2, reference numeral 33 denotes a model eyesight provided with a first model surface 30 corresponding to the cornea 29 of the living eye 24, and 34 denotes a fundus 31 of the living eye 24. Is a model eyesight provided with a second model surface 32 corresponding to. Between the beam splitter 22 and the living eye 24, the beam as a light beam splitting member for splitting into a light beam guided to the light beam and a living eye 24 guided the split light beams P 1 to be guided to the living eye 24 on the model view 33 A splitter 35 is provided, and 36 is a reflection surface of the beam splitter 35. An optical path having substantially the same shape, substantially the same thickness, and substantially the same refractive index as the beam splitter 35 at a position conjugate with the projection of the beam splitter 3 with respect to the reflection surface 28 of the beam splitter 22 between the model visual instrument 34 and the beam splitter 22. A length correcting optical member 37 is provided, and the optical distance from the model visual device 34 to the reflection surface 28 of the beam splitter 22 and the optical distance from the model visual device 33 to the reflection surface 28 of the beam splitter 22 via the beam splitter 35 are provided. The optical distance is set to be substantially equal. It should be noted that the split light beam incident on the model
An anti-reflection treatment film is formed so that P 2 ′ is not reflected as much as possible on its surface 32 ′.

模型視器33とビームスプリッタ35との間、模型視器34
と光路長補正用光学部材37との間には、光量調節用光学
部材38、39が設けられている。この光量調節用光学部材
38には、第3図に矢印で示す方向に濃度が可変の光学濃
度可変フィルターを用いる。生体眼24の水晶体、硝子体
の透過率は生体眼によって個体差があり、生体眼24から
の反射光束と模型視器33、34からの反射光束とが著しく
異なると、干渉縞のコントラストが著しく低下するの
で、干渉縞のコントラストが良好となるように模型視器
33、34からの反射光束の光量を生体眼24からの反射光束
の光量に近づけるように光量調節用光学部材38、39をそ
の軸38′、39′を中心に回転させて調節するのである。
Between the model sight 33 and the beam splitter 35, the model sight 34
Between the optical path length correcting optical member 37 and the optical path length correcting optical member 37, light amount adjusting optical members 38 and 39 are provided. This optical member for adjusting the amount of light
For 38, an optical density variable filter whose density is variable in the direction indicated by the arrow in FIG. 3 is used. The lens of the living eye 24, the transmittance of the vitreous body has individual differences depending on the living eye, and if the reflected light flux from the living eye 24 and the reflected light flux from the model eyes 33 and 34 are significantly different, the contrast of the interference fringe is remarkable. Model eyesight so that the contrast of interference fringes is good.
The light amount adjusting optical members 38 and 39 are rotated about their axes 38 'and 39' to adjust the light amounts of the reflected light beams from the 33 and 34 so as to approach the light amount of the reflected light beam from the living eye 24.

模型視器33と模型視器34とは、同時に光軸O1、O2の方
向に可動されるもので、模型視器33の第1模型面30と角
膜29とがほぼ共役であるとき模型視器33に基づく干渉縞
がテレビモニター27に写し出され、模型視器34の第2模
型面32と眼底31とがほぼ共役であるときの模型視器34に
基づく干渉縞もテレビモニター27に写し出される。
The model eyes 33 and 34 are simultaneously movable in the directions of the optical axes O 1 and O 2. When the first model surface 30 and the cornea 29 of the model eyes 33 are almost conjugate, The interference fringes based on the eyesight 33 are projected on the television monitor 27, and the interference fringes based on the model vision 34 when the second model surface 32 of the model vision 34 and the fundus 31 are almost conjugated are also projected on the television monitor 27. It is.

従って、既知の眼軸長X0を測定したときの光軸O2方向
の模型視器33の位置をX10、光軸O1方向の模型視器34の
位置をX20として、未知の生体眼24の眼軸長Xを測定し
たときの光軸O1、O2方向の模型視器33、34の位置をそれ
ぞれX3、X4とすると、 (X3−X10)+n・(X4−X20)=N・(X−X0) ここで、nは模型視器34の屈折率である。
Therefore, when the known eye axis length X 0 is measured, the position of the model visual instrument 33 in the optical axis O 2 direction is X 10 , and the position of the model visual instrument 34 in the optical axis O 1 direction is X 20. Assuming that the positions of the model visual instruments 33 and 34 in the directions of the optical axes O 1 and O 2 when measuring the axial length X of the eye 24 are X 3 and X 4 , respectively, (X 3 −X 10 ) + n · (X 4− X 20 ) = N · (X−X 0 ) where n is the refractive index of the model eyesight 34.

これによって、未知の眼軸長Xが求められる。 Thus, the unknown axial length X is obtained.

この第2実施例によれば、模型視器33、34を同時に可
動させて角膜29により得られる干渉縞と眼底31により得
られる干渉縞とを同時にテレビモニター27に写し出して
観測できるので、第1実施例に較べて測定時間を短縮で
きる。
According to the second embodiment, since the model eyesights 33 and 34 are simultaneously moved, the interference fringe obtained by the cornea 29 and the interference fringe obtained by the fundus 31 can be simultaneously projected on the television monitor 27 and observed. The measurement time can be reduced as compared with the embodiment.

(実施例3) 第4図は生体眼の前後径距離測定装置の第3実施例を
示すもので、生体眼の前後径距離としての前房深さの測
定のために用いられ、生体眼24の角膜29に対応する第1
模型面30と生体眼24の水晶体40の前面41に対応する第2
模型面42とを備えた模型視器43を用いることにしたもの
であり、第1模型面30と角膜29とによる干渉縞を観察す
ると共に、第2模型面42と水晶体40の前面41とによる干
渉縞を観察して前房深さを測定するものである。
(Embodiment 3) FIG. 4 shows a third embodiment of a living eye longitudinal distance measuring apparatus, which is used for measuring the anterior chamber depth as the longitudinal distance of a living eye. The first corresponding to the cornea 29 of
The second corresponding to the model surface 30 and the front surface 41 of the crystalline lens 40 of the living eye 24
A model visual field 43 having a model surface 42 is used to observe interference fringes between the first model surface 30 and the cornea 29, and to use the second model surface 42 and the front surface 41 of the crystalline lens 40. The interference fringes are observed to measure the anterior chamber depth.

以上、実施例について説明したが、水晶体40の前面41
に対応する第1模型面と水晶体40の後面44に対応する第
2模型面とを備えた模型視器を用いて干渉縞を観察する
ことにすれば、生体眼の前後径距離としての水晶体の前
面から後面までの水晶体40の厚さを測定することができ
る。
As described above, the embodiment has been described.
By observing the interference fringes using a model eyesight having a first model surface corresponding to the first lens surface and a second model surface corresponding to the rear surface 44 of the lens 40, the lens lens as the front-rear radial distance of the living eye can be obtained. The thickness of the crystalline lens 40 from the front surface to the rear surface can be measured.

(効果) 本発明に係わる生体眼の前後径距離測定装置は以上説
明したように、第1模型面からの反射波面と第1測定対
象面からの反射波面との波面形状がほぼ同一であると共
に、第2模型面からの反射波面と第2測定対象面からの
反射波面もほぼ同一であるので、同一波面形状同士が干
渉されることになり、観察される干渉縞が良好に得られ
ることになる。
(Effect) As described above, the front-rear radial distance measuring apparatus for a living eye according to the present invention has substantially the same wavefront shape as the reflected wavefront from the first model surface and the reflected wavefront from the first measurement target surface. Since the reflected wavefront from the second model surface and the reflected wavefront from the second measurement target surface are almost the same, the same wavefront shapes interfere with each other, and the observed interference fringes can be obtained well. Become.

また、干渉される波面形状同士がほぼ同一となるの
で、生体眼に対するアライメントを厳格に行わなくても
容易に良好な干渉縞を得ることができる。
Further, since the wavefront shapes to be interfered are substantially the same, a good interference fringe can be easily obtained without strictly performing alignment with the living eye.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係わる生体眼の前後径距離測定装置の
第1実施例の光学系を示す図、 第2図は本発明に係わる生体眼の前後径距離測定装置の
第2実施例の光学系を示す図、 第3図は第2図に示す光量調節用光学部材の平面図、 第4図は本発明に係わる生体眼の前後径距離測定装置の
第3実施例の光学系を示す図、 第5図は従来の生体眼の前後径距離測定装置の光学系を
示す図。 20…半導体レーザー 22…ビームスプリッタ(光束分割部材) 23…模型視器、24…生体眼、27…テレビモニター 28…反射面、29…角膜、30…第1模型面 31…眼底、32…第2模型面 33、34、43…模型視器、35…ビームスプリッタ 40…水晶体、41…前面、44…後面
FIG. 1 is a diagram showing an optical system of a first embodiment of a living eye longitudinal distance measuring apparatus according to the present invention, and FIG. 2 is a second embodiment of a living eye longitudinal distance measuring apparatus according to the present invention. FIG. 3 shows an optical system, FIG. 3 is a plan view of a light amount adjusting optical member shown in FIG. 2, and FIG. 4 shows an optical system of a living eye longitudinal distance measuring apparatus according to a third embodiment of the present invention. FIG. 5 is a diagram showing an optical system of a conventional apparatus for measuring the longitudinal distance of a living eye. 20 ... Semiconductor laser 22 ... Beam splitter (beam splitting member) 23 ... Model eye, 24 ... Live eye, 27 ... TV monitor 28 ... Reflective surface, 29 ... Cornea, 30 ... First model surface 31 ... Fundus, 32 ... 2 model surfaces 33, 34, 43 ... model visual, 35 ... beam splitter 40 ... crystalline lens, 41 ... front, 44 ... rear

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】生体眼の第1測定対象面から第2測定対象
面までの前後径距離を測定するために用いる模型視器
と、 前記模型視器からの反射光束と前記生体眼からの反射光
束との干渉を観測する観測光学系と、 光束を分割して前記生体眼と前記模型視器とに干渉性の
分割光束を導く光束分割部材とを有し、 前記模型視器には前記第1測定対象面に対応する第1模
型面と前記第2測定対象面に対応する第2模型面とが少
なくとも設けられ、 第1模型面と前記第1測定対象面との干渉縞を観測する
と共に前記第2模型面と前記第2測定対象面との干渉縞
を観測して、前記第1測定対象面から第2対象面までの
前後径距離を測定することを特徴とする生体眼の前後径
距離測定装置。
1. A model eyesight used for measuring a front-rear radial distance from a first measurement object surface to a second measurement object surface of a living eye, a reflected light beam from the model eyesight and a reflection from the living eye An observation optical system for observing interference with the light beam; and a light beam splitting member that splits the light beam and guides the coherent split light beam to the living eye and the model visual device. At least a first model surface corresponding to one measurement target surface and a second model surface corresponding to the second measurement target surface are provided, and interference fringes between the first model surface and the first measurement target surface are observed. Observing interference fringes between the second model surface and the second measurement target surface, and measuring a front-rear diameter distance from the first measurement target surface to the second target surface, the front-rear diameter of the living eye, Distance measuring device.
【請求項2】前記前後径距離は、眼軸長、前房深さ及び
水晶体厚さのうちいずれか一つであることを特徴とする
請求項1に記載の生体眼の前後径距離測定装置。
2. The living-body eye front-rear diameter measuring apparatus according to claim 1, wherein the front-rear diameter distance is any one of an axial length, an anterior chamber depth, and a lens thickness. .
【請求項3】生体眼の第1測定対象面から第2測定対象
面までの前後距離としての眼軸長を測定するために用い
る模型視器と、 前記模型視器からの反射光束と前記生体眼からの反射光
束との干渉を観測する観測光学系と、 光束を分割して前記生体眼と前記模型視器とに干渉性の
分割光束を導く光束分割部材とを有し、 前記模型視器には前記生体眼の角膜表面に対応する第1
模型面と前記生体眼の眼底面に対応する第2模型面とが
設けられ、 前記第1模型面と前記角膜表面との干渉縞を観測すると
共に前記第2模型面と前記眼底面との干渉縞を観測し
て、前記角膜表面から眼底面までの前後径距離として眼
軸長を測定することを特徴とする生体眼の前後径距離測
定装置。
3. A model eyesight used for measuring an axial length as a front-back distance from a first measurement target surface to a second measurement target surface of a living eye, a reflected light beam from the model eyesight and the living body An observation optical system for observing interference with a light beam reflected from the eye, and a light beam splitting member that splits the light beam and guides the coherent split light beam to the living eye and the model visual device; The first corresponding to the corneal surface of the living eye
A model surface and a second model surface corresponding to the fundus of the living eye are provided, and interference fringes between the first model surface and the corneal surface are observed and interference between the second model surface and the fundus oculi is observed. An apparatus for measuring an axial length of a living eye as observing a stripe and measuring an axial length as an anteroposterior radial distance from the corneal surface to a fundus oculi.
【請求項4】前記第1模型面が前記角膜表面の曲率にほ
ぼ対応して形成され、前記第2模型面が前記眼底面の曲
率にほぼ対応して形成されていることを特徴とする請求
項1又は請求項3に記載の生体眼の前後径距離測定装
置。
4. A method according to claim 1, wherein said first model surface is formed substantially corresponding to a curvature of said corneal surface, and said second model surface is formed substantially corresponding to a curvature of said fundus fundus. 4. The apparatus for measuring a front-to-rear diameter distance of a living eye according to claim 1 or 3.
【請求項5】前記模型視器は、前記第1模型面と前記第
2模型面とが光学物体を用いて一体に形成され、該光学
物体の屈折率は前記被検眼の眼内物質の屈折率にほぼ等
しいことを特徴とする請求項3に記載の生体眼の前後径
距離測定装置。
5. The model eyesight wherein the first model surface and the second model surface are integrally formed by using an optical object, and the refractive index of the optical object is a refractive index of an intraocular substance of the eye to be examined. 4. The apparatus according to claim 3, wherein the ratio is substantially equal to the ratio.
【請求項6】前記模型視器は、前記第1模型面を有する
光学物体と、該光学物体とは別体に形成されて前記第2
模型面を有する光学物体とからなることを特徴とする請
求項3に記載の生体眼の前後径距離測定装置。
6. An optical object having said first model surface and said optical object having said second object formed separately from said optical object.
4. The apparatus according to claim 3, comprising an optical object having a model surface.
【請求項7】前記模型視器と前記生体眼とには、半導体
レーザーから出射された光束が前記光束分割部材により
分割されて導かれることを特徴とする請求項3に記載の
生体眼の前後径距離測定装置。
7. A front and rear view of a living eye according to claim 3, wherein a light beam emitted from a semiconductor laser is divided and guided by said light beam splitting member to said model eyesight and said living eye. Diameter measuring device.
【請求項8】前記半導体レーザーにはコヒーレント長が
0.1mm以下のものを用いることを特徴とする請求項7に
記載の生体眼の前後径距離測定装置。
8. The semiconductor laser has a coherent length.
8. The apparatus for measuring a front-to-rear diameter distance of a living eye according to claim 7, wherein the apparatus has a diameter of 0.1 mm or less.
【請求項9】前記模型視器は、前記第1模型面を有する
光学物体と、該光学物体とは別体に形成されて前記第2
模型面を有する光学物体とからなり、前記各模型視器と
前記生体眼とには、半導体レーザーから出射された光束
が前記光束分割部材により分割されて導かれ、前記半導
体レーザーにはコヒーレント長が0.1mm以下のものが用
いられ、前記第2模型面を有する光学物体の表面には反
射防止処理膜が施されていることを特徴とする請求項3
に記載の生体眼の前後径距離測定装置。
9. An optical object having the first model surface, wherein the model visual device is formed separately from the optical object, and
A light beam emitted from a semiconductor laser is divided and guided by the light beam splitting member to each of the model eyesight and the living eye, and the semiconductor laser has a coherent length. 4. An optical object having a thickness of 0.1 mm or less is used, and an anti-reflection coating is applied to a surface of the optical object having the second model surface.
4. The apparatus for measuring a front-to-rear diameter distance of a living eye according to claim 1.
JP1115838A 1989-05-09 1989-05-09 Front and rear diameter distance measuring device for living eye Expired - Lifetime JP2763584B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1115838A JP2763584B2 (en) 1989-05-09 1989-05-09 Front and rear diameter distance measuring device for living eye
US07/520,201 US5042938A (en) 1989-05-09 1990-05-03 Apparatus for measuring length of visual line length, depth of anterior chamber, thickness of crystal lens, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1115838A JP2763584B2 (en) 1989-05-09 1989-05-09 Front and rear diameter distance measuring device for living eye

Publications (2)

Publication Number Publication Date
JPH02295536A JPH02295536A (en) 1990-12-06
JP2763584B2 true JP2763584B2 (en) 1998-06-11

Family

ID=14672372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1115838A Expired - Lifetime JP2763584B2 (en) 1989-05-09 1989-05-09 Front and rear diameter distance measuring device for living eye

Country Status (1)

Country Link
JP (1) JP2763584B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4769923B2 (en) * 1998-12-10 2011-09-07 カール ツァイス メディテック アクチエンゲゼルシャフト Integrated device for non-contact measurement of the axial length of the eye and / or the curvature of the cornea and / or the depth of the anterior chamber, suitable for the calculation of intraocular lenses
DE10042751A1 (en) * 2000-08-31 2002-03-14 Thomas Hellmuth System for the contactless measurement of the optical image quality of an eye
JP4907227B2 (en) * 2006-05-29 2012-03-28 株式会社ニデック Intraocular dimension measuring device
ITPI20120009A1 (en) * 2012-01-24 2013-07-25 Visia Imaging S R L "A METHOD TO REDUCE THE TIME OF THE MEASUREMENT TO SCANNING THE EYE AXIAL LENGTH AND DEVICE TO IMPLEMENT THIS METHOD"
WO2016153571A1 (en) 2015-03-25 2016-09-29 Optimedica Corporation Multiple depth optical coherence tomography system and method and laser eye surgery system incorporating the same

Also Published As

Publication number Publication date
JPH02295536A (en) 1990-12-06

Similar Documents

Publication Publication Date Title
US5493109A (en) Optical coherence tomography assisted ophthalmologic surgical microscope
EP0697611B9 (en) Optical coherence tomography assisted surgical apparatus
US7084986B2 (en) System for measuring the optical image quality of an eye in a contactless manner
US5042938A (en) Apparatus for measuring length of visual line length, depth of anterior chamber, thickness of crystal lens, etc.
US6741359B2 (en) Optical coherence tomography optical scanner
JP4059317B2 (en) Optical multiple short coherence interferometry measurement method and arrangement for the eye
US20030011745A1 (en) Device for measuring aberration refraction of the eye
US9161687B2 (en) Device for interferometrically measuring the eye length and the anterior eye segment
US11154192B2 (en) Method and arrangement for high-resolution topography of the cornea of an eye
JP2723967B2 (en) Living eye size measurement device
CN112244760A (en) Imaging device for realizing function of anterior segment OCT integrated biological measuring instrument based on beam splitter prism
JP2763584B2 (en) Front and rear diameter distance measuring device for living eye
US20020063849A1 (en) Eye characteristic measuring apparatus
CN113229777B (en) Visual quality analyzer
JP2019058486A (en) Eye measurement apparatus and method
JP2994441B2 (en) Living eye size measurement device
RU187692U1 (en) Device for endoscopic optical coherence tomography with wavefront correction
JPH02295537A (en) Instrument for finding range between back and forth diameters of eye in organ
JP3221725B2 (en) Eye measurement device
CN111163681A (en) Optical aberration of phase-sensitive optical coherence tomography measurement front section
CN113558563B (en) OCT-based eye axis measuring method and device
CN117617891A (en) Scanning laser eye refraction interstitial topographic map measuring device
JP2004129674A (en) Instrument and method for ophthalmological optics characteristic measuring
KR20210056863A (en) Optical coherence tomography device for obtaining amplified signal
JPH02295533A (en) Instrument for measuring axial length of eye