JPH02295533A - Instrument for measuring axial length of eye - Google Patents

Instrument for measuring axial length of eye

Info

Publication number
JPH02295533A
JPH02295533A JP1115840A JP11584089A JPH02295533A JP H02295533 A JPH02295533 A JP H02295533A JP 1115840 A JP1115840 A JP 1115840A JP 11584089 A JP11584089 A JP 11584089A JP H02295533 A JPH02295533 A JP H02295533A
Authority
JP
Japan
Prior art keywords
reflected
light
luminous flux
eye
cornea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1115840A
Other languages
Japanese (ja)
Inventor
Hiroaki Shimozono
裕明 下薗
Akihiro Arai
昭浩 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP1115840A priority Critical patent/JPH02295533A/en
Publication of JPH02295533A publication Critical patent/JPH02295533A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To obtain interference stripes having satisfactory contrust by providing an optical member for luminous quantity adjustment in the projecting optical path of a luminous flux lighting the eye of an organ so that the quantity of light or reflected luminous flux from an eyeground is almost the same as that from the cornea. CONSTITUTION:A parallel luminous flux P2 reflected by a reflecting surface 24' and a parallel luminous flux P1 passing through a beam splitter 24 are guided through a beam splitter 25 to the eye 29 of the organ. The parallel luminous flux P1 is converged through a cornea 32 and a crystal body 33 to an eyeground 34 in the eye 29 of the organ. Then, the parallel luminous flux goes to be an eyeground reflected luminous flux. On the other hand, the parallel luminous flux P2 is reflected on the cornea 32 and goes to be a divergent cornea reflected luminous flux. In the projecting luminous flux of the luminous flux lighting the eye 29 of the organ, namely, in the projecting optical path of the luminous flux lighting the eye 29 between the beam splitters 23 and 24, a concentration varying filter 30 is provided as the optical member for light quantity adjustment so that the quantity of light can be almost same as these eyeground reflected luminous flux and cornea reflected luminous flux.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、干渉縞をB察することにより生体眼の角膜か
ら眼底までの眼軸長を非接触で測定する暇軸長測定装置
の改良に関する. 《従来の技術》 近年、干渉縞を観察することにより眼軸長を非接触で測
定する眼軸長測定装置が提案されている.第3図はこの
眼軸長を非接触で測定する眼輔長測定装置を示しており
、A.F.Ferchar et al. ( OPT
ICS LETTER VOL.13 N0.3 PP
.186−1138 (March 1988) Op
tical Society of America)
に記載されている技術である. この第3図に示す眼軸長測定装置は、半導体レーザーl
、コリメートレンズ2、二枚の平行平面板3、4、ビー
ムスブリッタ5、集光レンズ6、撮像カメラフから概略
構成されている.半導体レーザー1から出射された照明
光束としてのレーザー光はコリメートレンズ2によって
平行光束とされ、二枚の平行平面板3、4に導かれる.
二枚の平行平面板3、4を通過した平行光束(光束■と
いう)はビームスプリッタ5を介して生体111i18
の眼底9に収束光として投光され、眼底9で反射されて
略平行光束(平面波)として生体眼8から出射され、ビ
ームスブリツタ5の反射面10によって集光レンズ6の
存在する方向に反射され、集光レンズ6により集光され
て撮像カメラ7に導かれる.また、平行平面板3を通過
した平行光束の一部は平行平面板4により反射されて反
射光束(光束■という)は平行平面板3に戻り、この平
行平面板3により再び反射されて平行平面板4を通過し
、ビームスブリツタ5を通過して生体限8の角Illi
llに投光される.この角膜11により反射された反射
光束は、発散光(球面波)としてビームスブリツタ5に
導かれ、その反射面10で集光レンズ6の存在する方向
に反射ざれ、集光レンズ6により集光されてカメラ7に
導かれる.なお、第3図において,12は半導体レーザ
ー1の光量モニター用の受光センサである. この従来のものにおいては、平行平面板3と平行平面板
4との距離堂を可変とし、平行平面板3と平行平面板4
との間に存在する物質の屈折率をn、眼内物貿の屈折率
をN.  fIll定によって得られる眼軸長(角WA
l1のIn点から眼底9までの距Ill)をXとして、 nl =NX の等式を満足するように,平行平面板3と平行平面板4
との距離9を調節すると、光束■と光束■とが等光路長
となり、カメラ7により干渉縞が観察される. したがって、この干渉縞が観察されたときの平行平面根
雪を測定値として得ることにより、眼軸長Xを求めるこ
とができる. (発明が解決しようとする課題) ところで、干渉縞のコントラストは互いに干渉される光
束の光量比が一対一のときに、コントラストが最良とな
るものであるが、生体眼には個体差があり、水晶体、硝
子体の透過率が生体眼によって異なるので、眼底からの
反射光束が常に一定であるとは限らず、眼底からの反射
光束の光量と角膜からの反射光束の光量とが著しく異な
ると、干渉縞のコントラストが低下するという問題点が
ある. 本発明は上記の事情に鑑みて為されたもので、その目的
とするところは、コントラストの良好な干渉縞を得るこ
とのできる眼軸長測定装置を提供することにある. (課題を解決するための手段) 本発明に係わる眼軸長測定装置は、上記の目的を達成す
るため、眼底からの反射光束の光量と角膜からの反射光
束の光量とがほぼ同一となるように、生体眼への照明光
束の投光光路中に、光m調節用光学部材を設けたところ
にある. (作用) 本発明に係わる眼軸長測定装置によれば、干渉縞のコン
トラストが良好でないときは、光量調節用光学部材を用
いて、干渉縞のコントラストが塵好となるように眼底か
らの反射光束の光量と角膜からの反射光束の光量とを調
節する. (実施例) 第1図において、20は半導体レーザー、2lはコリメ
ートレンズ、22は光路長変更部材、n、24、25は
ビームスプリツタである.半導体レーザー20から出射
された照明光束としてのレーザー光は、コリメートレン
ズ21により平行光束とされる.その平行光束は光束分
割部材としてのビームスブリッタ23の反射面26によ
りビームスプリツタ24に導かれる平行光束P1と、光
路長変更部材22に導かれる平行光束P2とに分割され
る.ここで、ビームスプリツタ23はビームスプリツタ
23の反射面26を通過するレーザー光の透過光量に対
してビームスプリツタ23の反射面26により反射され
るレーザー光の反射光量が少なくなるようにその反射面
26の反射率を設計してある.ビームスブリツタ23と
ビームスブリッタ24との間の照明光束の投光光路には
、光量調節用光学部材としての漂度可変フィルター30
が設けられている.この濃度可変フィルター30は、第
2図に示すように、その軸31を中心にして矢印方向に
透過光量が連続的に変化する構成である. 光路長変更部材22は反射面前、28を有している.こ
の先路長変更部材22は矢印方向に可動されて、平行光
束P2の光路長を変更する機能を有する.光路長変更部
材22を矢印方向に可動させて、光路長をΔL/2(こ
こでは、光路長変更部材25の機械的移動距離に等しい
)だけ変化させると,平行光束ptの光路長はずれ量Δ
Lだけ変化する.ビームスブリッタ24は反射面24′
を有し、光路合成部材として機能する. 反射面24′により反射された平行光束P2とビームス
ブリツタ24を通過した平行光束P+とはビームスブリ
ッタ25を介して生体眼2gに導かれる.平行光束P1
は角膜羽、水晶体33を介して生体眼29の眼底34に
収束され、限底34により反射されて眼底反射光束とな
る.この眼底反射光束線再び水晶体礼角膜32を通過し
て平行光束となり、ビームスブリッタ25に導かれる.
一方、平行光束P2は角膜32により反射されて発散性
の角膜反射光束となり、ビームスブリッタ25に導かれ
る.lI底反射光束と角膜反射光束とはビームスプリツ
タ25の反射面35で反射され、集光レンズ36の位置
する方向に偏向される.そして、角膜反射光束と眼底反
射光束とは集光レンズ36により集光されてCODカメ
ラ37に導かれる. CODカメラ37はテレビモニター38とハイパスフィ
ルター39とに接続されている.ハイバスフィルター3
9はCCDカメラ37から出力される干渉信号成分のう
ち、周波数成分の高いものを通過させる機能を有する.
後述する干渉縞のコントラ・ストを制御するためには周
波数成分の高いものを用いるのが望ましいからである.
このハイバスフィルター39はコントラスト判定回路4
0に接続されている.コントラスト判定回路40は干渉
縞のコントラストが所定レベルよりも高いか否かを判別
し、干渉縞のコントラストが高くなるように自動的に濃
度可変フィルター30を調節駆動する鍔節駆動手段とし
て、機能する. この眼軸長測定装置による測定は以下のようにして行う
. 既知の基準の眼軸長をXsとする.この基準眼軸長Xs
には、生体II29の平均眼軸長《22mIl〜24m
II1》を用いる. ここで、光路長変更部材22を矢
印方向に動かしたとき、光路長変更部材22の矢印方向
の所定位置で、干渉縞がテレビモニター38に写し出さ
れたとする.このときの平行光束P+に対する平行光束
P!の光路差を基準光路差L●と定義する.今、平行光
束P+が点K+から点K2に至るまでの光路長をK+K
*とし、平行光束P2が点K1で反射され、光路長変更
部材22を経由して点K2に至るまでの光路長をK +
 K s + K s K a + K a K aと
すると、基準光路差し●は、 Ls=+:K+K*+KsKa+K4K*−KtKaで
ある. ただし、K + K s、K a K eは空気中での
平行光束P2の光路長、KsKaは光路長変更部材22
の屈折率を含めたうえでの光路長とする. 基準光路差L●と基準眼軸長X●との間には、生体眼2
9の平均屈折率をNとすると、基準眼軸長X●に基づく
光路差はN−X●であるので、L●=N−X− ・・・
 ・・・■ の関係式が成立する. 次に、未知の眼軸長Xを有する生体8129をセツトす
る.このとき、テレビモニター38に干渉縞が写し出さ
れなかったとする.そこで、光路長変更部材22を矢印
方向に可動させる.光路長変更部材22を基準位置から
(ΔL/2)だけ移動させたときにテレビモニター38
に干渉縞が写し出されたとする. 眼軸長Xに基づく光路長はN−Xであり、これが基準光
路差L.とずれ量ΔLとの和に等しいとき干渉縞が得ら
れるのであるから、 N−X=L●+ΔL ・・・■ よって、未知の眼軸長Xは、■式を■式に代入して変形
することにより、 X=x●+(ΔL/N ) として、求められる. 干渉縞のコントラストが所定レベルよりも低いときは、
コントラスト判定回路40が濃度可変フィルター30を
回転させて眼底反射光束の光鳳と角膜反射光束の光量と
がほぼ同一となるように濃度可変フィルター30を自動
的に調節する.(効果) 本発明に係わる生体限の前後径距離測定装置は以上説明
したように、角膜からの反射光束の光量と眼底からの反
射光束の光量とをほぼ同一にさせるようにしたので、干
渉縞のコントラストを良好にすることができる.
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an improvement in a free axis length measuring device that non-contactly measures the axial length from the cornea to the fundus of a living eye by observing interference fringes. .. <<Prior art>> In recent years, axial length measurement devices have been proposed that measure the axial length of the eye in a non-contact manner by observing interference fringes. FIG. 3 shows an eyelid length measuring device that measures the eye axial length in a non-contact manner. F. Ferchar et al. (OPT
ICS LETTER VOL. 13 N0.3 PP
.. 186-1138 (March 1988) Op.
tical Society of America)
This is the technology described in . The axial length measuring device shown in FIG.
, a collimating lens 2, two plane parallel plates 3 and 4, a beam splitter 5, a condensing lens 6, and an imaging camera. A laser beam as an illumination beam emitted from a semiconductor laser 1 is made into a parallel beam by a collimating lens 2 and guided to two parallel plane plates 3 and 4.
The parallel light flux (referred to as the light flux ■) passing through the two parallel plane plates 3 and 4 is transmitted to the living body 111i18 via the beam splitter 5.
The light is projected as convergent light onto the fundus 9 of the eye, is reflected by the fundus 9, is emitted from the living eye 8 as a substantially parallel light beam (plane wave), and is reflected by the reflective surface 10 of the beam splitter 5 in the direction of the condenser lens 6. The light is focused by a condensing lens 6 and guided to an imaging camera 7. Also, a part of the parallel light flux that has passed through the parallel plane plate 3 is reflected by the parallel plane plate 4, and the reflected light flux (referred to as a light flux ■) returns to the parallel plane plate 3, and is reflected again by this parallel plane plate 3 to become a parallel light beam. It passes through the face plate 4, passes through the beam splitter 5, and reaches the corner Illi of the living limit 8.
The light is projected onto the ll. The reflected light beam reflected by the cornea 11 is guided to the beam splitter 5 as diverging light (spherical wave), is reflected by the reflecting surface 10 in the direction of the condenser lens 6, and is condensed by the condenser lens 6. and guided to camera 7. In addition, in FIG. 3, 12 is a light receiving sensor for monitoring the light amount of the semiconductor laser 1. In this conventional device, the distance between the parallel plane plate 3 and the parallel plane plate 4 is made variable, and the distance between the parallel plane plate 3 and the parallel plane plate 4 is made variable.
The refractive index of the substance existing between the two is n, and the refractive index of the intraocular material is N. The axial length (angle WA
Assuming that the distance Ill) from point In of l1 to the fundus 9 is X, the plane parallel plate 3 and the plane parallel plate 4 are arranged so as to satisfy the equation nl = NX.
By adjusting the distance 9 between the light beam and the light beam ■, the light beam ■ and the light beam ■ have equal optical path lengths, and the camera 7 observes interference fringes. Therefore, by obtaining the parallel plane root snow as a measurement value when this interference fringe is observed, the axial length X can be determined. (Problem to be Solved by the Invention) By the way, the contrast of interference fringes is best when the light intensity ratio of mutually interfered light beams is one to one, but there are individual differences in living eyes. Since the transmittance of the crystalline lens and vitreous body differs depending on the living eye, the reflected light flux from the fundus is not always constant, and if the amount of light reflected from the fundus and the amount of light reflected from the cornea are significantly different, The problem is that the contrast of the interference fringes decreases. The present invention has been made in view of the above circumstances, and its purpose is to provide an axial length measuring device that can obtain interference fringes with good contrast. (Means for Solving the Problems) In order to achieve the above object, the axial length measuring device according to the present invention is configured so that the amount of light reflected from the fundus of the eye and the amount of light reflected from the cornea are almost the same. In this case, an optical member for adjusting the light m is provided in the light path of the illumination light beam to the living eye. (Function) According to the axial length measuring device of the present invention, when the contrast of interference fringes is not good, the optical member for adjusting the amount of light is used to adjust the reflection from the fundus so that the contrast of interference fringes is fine. Adjust the light intensity of the light beam and the light intensity of the light beam reflected from the cornea. (Example) In FIG. 1, 20 is a semiconductor laser, 2l is a collimating lens, 22 is an optical path length changing member, and n, 24, and 25 are beam splitters. The laser beam as the illumination beam emitted from the semiconductor laser 20 is made into a parallel beam by the collimating lens 21. The parallel light beam is split by the reflecting surface 26 of the beam splitter 23 as a light beam splitting member into a parallel light beam P1 guided to the beam splitter 24 and a parallel light flux P2 guided to the optical path length changing member 22. Here, the beam splitter 23 is configured such that the amount of laser light reflected by the reflective surface 26 of the beam splitter 23 is smaller than the amount of transmitted laser light passing through the reflective surface 26 of the beam splitter 23. The reflectance of the reflective surface 26 is designed. A variable drift filter 30 as an optical member for adjusting the amount of light is provided in the projection optical path of the illumination light beam between the beam splitter 23 and the beam splitter 24.
is provided. As shown in FIG. 2, this variable density filter 30 has a structure in which the amount of transmitted light changes continuously in the direction of the arrow around its axis 31. The optical path length changing member 22 has a reflective surface 28 in front. This forward path length changing member 22 is moved in the direction of the arrow and has the function of changing the optical path length of the parallel light beam P2. When the optical path length changing member 22 is moved in the direction of the arrow to change the optical path length by ΔL/2 (here, equal to the mechanical movement distance of the optical path length changing member 25), the optical path length of the parallel light beam pt changes by the amount Δ
Only L changes. The beam splitter 24 has a reflective surface 24'
It functions as an optical path combining member. The parallel light beam P2 reflected by the reflecting surface 24' and the parallel light beam P+ passing through the beam splitter 24 are guided to the living eye 2g via the beam splitter 25. Parallel light flux P1
is converged on the fundus 34 of the living eye 29 via the corneal feathers and the crystalline lens 33, and is reflected by the fundus 34 to become a fundus reflected light beam. This light flux line reflected from the fundus passes through the crystalline cornea 32 again, becomes a parallel light flux, and is guided to the beam splitter 25.
On the other hand, the parallel light beam P2 is reflected by the cornea 32 to become a diverging corneal-reflected light beam, and is guided to the beam splitter 25. The lI bottom-reflected light beam and the corneal-reflected light beam are reflected by the reflecting surface 35 of the beam splitter 25 and deflected in the direction in which the condenser lens 36 is located. The corneal reflected light flux and the fundus reflected light flux are condensed by a condenser lens 36 and guided to a COD camera 37. The COD camera 37 is connected to a television monitor 38 and a high-pass filter 39. High bass filter 3
9 has a function of passing high frequency components among the interference signal components output from the CCD camera 37.
This is because it is desirable to use a high-frequency component in order to control the contrast of interference fringes, which will be described later.
This high bass filter 39 is the contrast judgment circuit 4.
Connected to 0. The contrast determination circuit 40 determines whether or not the contrast of the interference fringes is higher than a predetermined level, and functions as a collar drive means that automatically adjusts and drives the variable density filter 30 so that the contrast of the interference fringes becomes higher. .. Measurement using this axial length measuring device is performed as follows. Let the known reference axial length be Xs. This standard axial length Xs
The average axial length of living body II29《22ml~24m
II1》 is used. Here, suppose that when the optical path length changing member 22 is moved in the direction of the arrow, interference fringes are projected on the television monitor 38 at a predetermined position of the optical path length changing member 22 in the direction of the arrow. At this time, the parallel light flux P with respect to the parallel light flux P+! The optical path difference is defined as the reference optical path difference L●. Now, the optical path length of the parallel light beam P+ from point K+ to point K2 is K+K
*, and the optical path length from when the parallel light beam P2 is reflected at point K1 to point K2 via the optical path length changing member 22 is K +
If K s + K s Ka + Ka Ka Ka, then the reference optical path difference ● is Ls=+:K+K*+KsKa+K4K*-KtKa. However, K + K s, K a Ke is the optical path length of the parallel light beam P2 in the air, and KsKa is the optical path length changing member 22
The optical path length is taken to include the refractive index of . Between the reference optical path difference L● and the reference axial length X●, there is a difference between the living eye 2
If the average refractive index of 9 is N, the optical path difference based on the reference axial length X● is N-X●, so L●=N-X-...
...■ The relational expression holds true. Next, a living body 8129 with an unknown axial length X is set. Assume that no interference fringes are displayed on the television monitor 38 at this time. Therefore, the optical path length changing member 22 is moved in the direction of the arrow. When the optical path length changing member 22 is moved by (ΔL/2) from the reference position, the TV monitor 38
Suppose that interference fringes are projected on . The optical path length based on the axial length X is N-X, which is the reference optical path difference L. Since interference fringes are obtained when it is equal to the sum of the amount of deviation and the amount of deviation ΔL, N-X = L● + ΔL ...■ Therefore, the unknown axial length X can be transformed by substituting the formula ■ into the formula ■. By doing so, it can be found as X=x●+(ΔL/N). When the contrast of the interference fringes is lower than a predetermined level,
The contrast determination circuit 40 rotates the variable density filter 30 and automatically adjusts the variable density filter 30 so that the light intensity of the fundus reflected light beam and the corneal reflected light beam become almost the same. (Effects) As explained above, the in-vivo anteroposterior diameter distance measuring device according to the present invention makes the amount of light reflected from the cornea and the amount of light reflected from the fundus almost the same, so interference fringes are prevented. The contrast can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる眼軸長測定装置の光学系を示す
図、 第2図は第1図に光量調節用光学部材の平面図、第3図
は従来の眼軸長測定装置の光学系を示す図、 である.
Fig. 1 is a diagram showing the optical system of the axial length measuring device according to the present invention, Fig. 2 is a plan view of the optical member for adjusting the light amount in Fig. 1, and Fig. 3 is a diagram showing the optical system of the conventional axial length measuring device. This is a diagram showing the system.

Claims (2)

【特許請求の範囲】[Claims] (1)生体眼に照明光束を投光して、該生体眼の角膜か
らの反射光束と眼底からの反射光束との干渉に基づき角
膜から眼底までの眼軸長を測定する眼軸長測定装置にお
いて、 前記眼底からの反射光束の光量と前記角膜からの反射光
束の光量とがほぼ同一となるように、前記生体眼への照
明光束の投光光路中に、光量調節用光学部材を設けたこ
とを特徴とする眼軸長測定装置。
(1) An axial length measurement device that projects an illumination light beam onto a living eye and measures the axial length from the cornea to the fundus based on the interference between the light flux reflected from the cornea of the living eye and the light flux reflected from the fundus. In this method, an optical member for adjusting the light amount is provided in the light path of projecting the illumination light beam to the living eye so that the light amount of the reflected light beam from the fundus of the eye and the light amount of the reflected light beam from the cornea are almost the same. An axial length measuring device characterized by:
(2)前記光量調節用光学部材を前記眼底からの反射光
束の光量と前記角膜からの反射光束の光量とが同一とな
るように自動的に調節駆動する駆動手段が設けられてい
る請求項1に記載の眼軸長測定装置。
(2) A driving means is provided for automatically adjusting and driving the light amount adjusting optical member so that the amount of light reflected from the fundus of the eye and the amount of light reflected from the cornea are the same. The axial length measuring device described in .
JP1115840A 1989-05-09 1989-05-09 Instrument for measuring axial length of eye Pending JPH02295533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1115840A JPH02295533A (en) 1989-05-09 1989-05-09 Instrument for measuring axial length of eye

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1115840A JPH02295533A (en) 1989-05-09 1989-05-09 Instrument for measuring axial length of eye

Publications (1)

Publication Number Publication Date
JPH02295533A true JPH02295533A (en) 1990-12-06

Family

ID=14672425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1115840A Pending JPH02295533A (en) 1989-05-09 1989-05-09 Instrument for measuring axial length of eye

Country Status (1)

Country Link
JP (1) JPH02295533A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202107472D0 (en) 2021-05-26 2021-07-07 Occuity Ltd Optical measurement apparatus and method of measuring an axial length

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202107472D0 (en) 2021-05-26 2021-07-07 Occuity Ltd Optical measurement apparatus and method of measuring an axial length
GB2607042A (en) 2021-05-26 2022-11-30 Occuity Ltd Optical measurement apparatus and method of measuring an axial length
WO2022248270A1 (en) 2021-05-26 2022-12-01 Occuity Limited Optical measurement apparatus and method of measuring an axial length

Similar Documents

Publication Publication Date Title
US5162641A (en) System and method for detecting, correcting and measuring depth movement of target tissue in a laser surgical system
JP3725572B2 (en) Apparatus for illuminating the fundus using a scanning sample radiation beam
JP4769923B2 (en) Integrated device for non-contact measurement of the axial length of the eye and / or the curvature of the cornea and / or the depth of the anterior chamber, suitable for the calculation of intraocular lenses
US6004314A (en) Optical coherence tomography assisted surgical apparatus
US5042938A (en) Apparatus for measuring length of visual line length, depth of anterior chamber, thickness of crystal lens, etc.
JP4517211B2 (en) Eye characteristic measuring device
JP3406944B2 (en) Lens measuring device
US7490939B2 (en) Eye characteristics measuring system
JP2723967B2 (en) Living eye size measurement device
JP4722853B2 (en) Device for the measurement of the front of the eye
US5349399A (en) Intraocular length measuring instrument having phase compensating means
US6164778A (en) Corneal endothelial cell photographing apparatus
US20230021386A1 (en) Optical coherence tomography receiver
JPH02295533A (en) Instrument for measuring axial length of eye
JP2763584B2 (en) Front and rear diameter distance measuring device for living eye
JP2994441B2 (en) Living eye size measurement device
CN111163681A (en) Optical aberration of phase-sensitive optical coherence tomography measurement front section
JPH02295537A (en) Instrument for finding range between back and forth diameters of eye in organ
JP3221725B2 (en) Eye measurement device
JPS59118130A (en) Microscope for ophthalmic operation
SU1266519A1 (en) Tv camera for fundus of the eye
JPH0397436A (en) Corneal shape measuring device
JP3001247B2 (en) Eye refractive power measuring device
JPH02161Y2 (en)
JPS63203131A (en) Tonometer