JPH02161Y2 - - Google Patents

Info

Publication number
JPH02161Y2
JPH02161Y2 JP2176085U JP2176085U JPH02161Y2 JP H02161 Y2 JPH02161 Y2 JP H02161Y2 JP 2176085 U JP2176085 U JP 2176085U JP 2176085 U JP2176085 U JP 2176085U JP H02161 Y2 JPH02161 Y2 JP H02161Y2
Authority
JP
Japan
Prior art keywords
light
image
eye
light source
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2176085U
Other languages
Japanese (ja)
Other versions
JPS61139201U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2176085U priority Critical patent/JPH02161Y2/ja
Publication of JPS61139201U publication Critical patent/JPS61139201U/ja
Application granted granted Critical
Publication of JPH02161Y2 publication Critical patent/JPH02161Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、他覚式検眼に用いられる眼屈折度測
定装置に関し、特に光源の像を眼の角膜上の正し
い位置に結像させるための調整手段に関する。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention relates to an eye refraction measurement device used in objective optometry, and in particular, to an eye refractive power measuring device used for objective optometry. Concerning adjustment means.

(考案の概要) 本考案は、眼屈折度測定装置において、第1お
よび第2の2つの光源の像を眼の角膜上に第1の
光学系を通して正しく結像させるための調整用の
第3の光源を、前記2つの光源のほぼ中間に配設
し、当該第3の光源からの光を角膜上に結像させ
る第3の光学系を前記第1の光学系と共用させる
ことにより、構造の簡単化、コストの低廉化、光
量損失の減少化、および製作時における調整の容
易化を可能にしたものである。
(Summary of the invention) The present invention provides an eye refractive power measuring device that uses a third light source for adjustment in order to correctly form images of two light sources, a first and a second light source, on the cornea of the eye through a first optical system. A light source is disposed approximately midway between the two light sources, and a third optical system for forming an image of light from the third light source on the cornea is shared with the first optical system. This makes it possible to simplify the process, reduce costs, reduce light loss, and facilitate adjustment during manufacturing.

(従来の技術) 眼の屈折度を測定する方法としては、一定の距
離から段階的に大きさを変えた文字または符号を
判別させる自覚式検眼が広く行なわれてきたが、
近年、眼屈折度測定装置を用いて行う他覚式検眼
が普及しつつある。この眼屈折度測定装置として
は種々の構成のものが提案されているが、第3図
に示すような装置が広く用いられている。すなわ
ち2つの光源1,2より放射された光線はレンズ
3により平行光線となり、光軸上に設けられたタ
ーゲツト4に形成された丸孔4aを通つてレンズ
5に至る。これらの2つの光線は前記レンズ3と
同じ光軸上に設けられた前記レンズ5によつて集
束され、ビームスプリツタ6を通つて眼7の角膜
7a上に前記2つの光源1,2の像1a,2aを
結像する。一方前記ターゲツト4に形成された丸
孔4aの像は、前記レンズ5と角膜7aを通つて
眼7の網膜7b上に4bとして結像する。この細
膜7b上に結像した前記丸孔4aの像4bは網膜
7bから反射し、前記ビームスプリツタ6に形成
された反射面6aにより、前記光源1及び2の中
心と前記眼7のほぼ中心とを結ぶ光軸8に対しほ
ぼ直角に反射され、さらに反射鏡9によつて該光
軸8とほぼ平行な方向に反射される。この反射光
はレンズ10によつて集束され、さらにレンズ1
1によつて平行光線となり、レンズ12によつて
検知器13に集束されて前記ターゲツト4の丸孔
4aの前記網膜上に結像された像4bが該検知器
13のセンサ部に結像される。また前記ターゲツ
ト4には光源14によつて照射される固視標15
が該ターゲツト4に直角に固設されており、この
固視標15を通過した光は反射鏡16によつて前
記光軸8方向に反射されて、前記レンズ5、ビー
ムスプリツタ6及び角膜7aを通つて網膜7b上
に固視標15の像を結像するようになつている。
このとき前記光源1,2からは近赤外光が放射さ
れ、前記固視標15を照射する光源14からは可
視光が放射されており、前記反射鏡16は近赤外
光を透過し可視光を反射するように形成されてい
る。またこれらの光源14、固視標15及び反射
鏡16を一体的に固設したターゲツト4は、図示
せぬ駆動源によつて移動可能に構成されており、
前記レンズ11もこのターゲツト4に固設されて
いる。被検者は該固視標15を反射鏡16によつ
て形成された虚像15aとして見るわけである
が、この固視標15の虚像15aの光軸8上の位
置は、ターゲツト4と僅かに離れており、ターゲ
ツト4の像4bを網膜7b上に合焦させたとき
に、固視標15の網膜7b上の像はピントがぼけ
る、いわゆる雲霧されるようになつている。
(Prior Art) As a method for measuring the refractive power of the eye, subjective optometry has been widely used, in which letters or symbols of varying size are discriminated from a fixed distance.
In recent years, objective eye examination using an eye refraction measuring device has become popular. Although various configurations have been proposed as this eye refraction measuring device, the device shown in FIG. 3 is widely used. That is, the light beams emitted from the two light sources 1 and 2 are turned into parallel beams by the lens 3, and reach the lens 5 through a circular hole 4a formed in a target 4 provided on the optical axis. These two light beams are focused by the lens 5, which is disposed on the same optical axis as the lens 3, and pass through a beam splitter 6 to form images of the two light sources 1 and 2 on the cornea 7a of the eye 7. 1a and 2a are imaged. On the other hand, the image of the circular hole 4a formed in the target 4 passes through the lens 5 and the cornea 7a and forms an image 4b on the retina 7b of the eye 7. The image 4b of the circular hole 4a formed on the thin film 7b is reflected from the retina 7b, and is reflected by the reflective surface 6a formed on the beam splitter 6, and is reflected from the center of the light sources 1 and 2 and approximately between the eye 7 and the center of the light sources 1 and 2. The light is reflected approximately perpendicularly to the optical axis 8 connecting the center, and is further reflected by the reflecting mirror 9 in a direction approximately parallel to the optical axis 8. This reflected light is focused by lens 10, and then further focused by lens 1.
1 becomes a parallel beam of light, which is focused on the detector 13 by the lens 12, and an image 4b formed on the retina of the round hole 4a of the target 4 is imaged on the sensor section of the detector 13. Ru. The target 4 also has a fixation target 15 illuminated by a light source 14.
is fixed to the target 4 at right angles, and the light passing through the fixation target 15 is reflected by the reflecting mirror 16 in the direction of the optical axis 8, and is reflected by the lens 5, the beam splitter 6, and the cornea 7a. An image of the fixation target 15 is formed on the retina 7b through the retina 7b.
At this time, near-infrared light is emitted from the light sources 1 and 2, visible light is emitted from the light source 14 that illuminates the fixation target 15, and the reflector 16 transmits the near-infrared light and makes it visible. Designed to reflect light. Further, the target 4, in which the light source 14, the fixation target 15, and the reflecting mirror 16 are integrally fixed, is configured to be movable by a drive source (not shown).
The lens 11 is also fixed to this target 4. The subject sees the fixation target 15 as a virtual image 15a formed by the reflecting mirror 16, but the position of the virtual image 15a of the fixation target 15 on the optical axis 8 is slightly different from the target 4. When the image 4b of the target 4 is focused on the retina 7b, the image of the fixation target 15 on the retina 7b is out of focus, or is so-called foggy.

上述のように構成された眼屈折度測定装置によ
り被検者の眼屈折度を測定しようとするときは、
被検者の眼を固視標15の像15aに向わせて視
線を光軸8に一致させ、光源1,2を交互に点滅
させて網膜7b上に結像したターゲツト4の像4
bの反射光を検知器13のセンサ部に結像させ
る。このとき固視標15は雲霧されているので被
検者の眼に機械近視などの一時的な変化が生ずる
ことなく、自然な無調節状態で測定することがで
きる。ターゲツト4の位置がレンズ5の焦点位置
に設定されている場合は、眼7が正常視であれば
光源1,2による網膜7b上のターゲツト4の像
は重なるため、該光源1,2を交互に点滅させて
も像の位置は動かない。しかし眼7が近視または
遠視の場合には網膜7b上のターゲツト4の像は
2つにずれる。このため網膜7bから反射した光
が前述の光学系を通つて検知器13のセンサ部に
結ぶ像は、第4図に示すように中心がずれた2つ
の円4c,4dとなる。検知器13のセンサ部は
中心線13aを境にして上下別体で構成されてい
るので、光源1,2を交互に点滅させると、セン
サ部の上下部で交互に受光光量が増減するので、
この受光光量の差を電気信号に変えて図示せぬ制
御装置を介して、ターゲツト4の2つの像4c,
4dが一致する眼7の合焦位置まで該ターゲツト
4を自動的に移動させ、この移動量を測定するこ
とによつて眼屈折度を測定するようになつてい
る。
When attempting to measure the eye refraction of a subject using the eye refraction measuring device configured as described above,
The subject's eyes are directed toward the image 15a of the fixation target 15 to align the line of sight with the optical axis 8, and the light sources 1 and 2 are alternately flashed to form an image 4 of the target 4 on the retina 7b.
The reflected light b is imaged on the sensor section of the detector 13. At this time, since the fixation target 15 is fogged, no temporary changes such as mechanical myopia occur in the subject's eyes, and measurement can be performed in a natural, unaccommodated state. When the position of the target 4 is set to the focal position of the lens 5, if the eye 7 is emmetropic, the images of the target 4 on the retina 7b from the light sources 1 and 2 will overlap, so the light sources 1 and 2 are alternately set. The position of the image does not move even if it blinks. However, if the eye 7 is myopic or farsighted, the image of the target 4 on the retina 7b is shifted into two. Therefore, the images that the light reflected from the retina 7b forms on the sensor section of the detector 13 through the aforementioned optical system become two circles 4c and 4d whose centers are shifted, as shown in FIG. The sensor section of the detector 13 is composed of upper and lower parts separated by the center line 13a, so when the light sources 1 and 2 are alternately blinked, the amount of received light alternately increases and decreases at the upper and lower parts of the sensor section.
The difference in the amount of received light is converted into an electric signal and transmitted through a control device (not shown) into two images 4c and 4c of the target 4.
The eye refractive power is measured by automatically moving the target 4 to the focal position of the eye 7 where the angles 4d and 4d coincide, and measuring the amount of this movement.

上述のような眼屈折度測定装置を用いて眼屈折
度を測定するときに、眼7の角膜7aの中心の頂
点は正しく光軸8上になければならず、しかも角
膜7a上で光源1,2の像1a,2aが合焦して
いなければならない。このための手段として従来
は第3図に示すように、レンズ5とビームスプリ
ツタ6との間に近赤外光により点光源17を設
け、この点光源17から発する光を反射鏡18に
よりほぼ直角に反射させ、さらにハーフミラー2
0によつて光軸8の方向に反射させてレンズ19
により角膜7aの表面中心にある頂点上に前記点
光源17の像17aを結像させ、この像17aの
角膜7aからの反射光をビームスプリツタ6に形
成された反射面6aによりほぼ直角方向に反射さ
せ、さらに前記反射鏡9をハーフミラーとして前
記反射光を透過直進させ、レンズ21により反射
鏡22上に集束させ、この集束された光を該反射
鏡22によつてほぼ直角に反射させて、近赤外光
に感じる撮像管23に結像させる。該撮像管23
が検知した点光源17の像17bはモニタテレビ
で観察されるようになつている。一方別の可視光
による光源24から発した光は、ターゲツト25
に形成された丸孔25aを通つて可視光を反射し
近赤外光を透過する反射鏡27によりほぼ直角に
反射され、レンズ26によつて前記ターゲツト2
5に形成された丸孔25aの像25bを撮像管2
3に入射する。このとき丸孔25aの位置は前記
点光源17の像が正しく角膜7aの頂点上に結像
しているときに、この丸孔25aの撮像管23上
の像25bの中心に点光源17の像がくるように
調整されている。従つてこの点光源17の像17
bが丸孔25aの像25bの中心にないときは、
測定装置全体を、被検者の眼7に対して、上下左
右に動かして、点光源17の像17bが丸孔25
aの像25bの中心に位置するように調整すれば
よい。また点光源17の像がぼけているときは測
定装置全体を被検者の眼7に対して光軸8の方向
に前後に動かして合焦する位置を決めればよい。
When measuring the eye refraction using the eye refraction measuring device as described above, the central vertex of the cornea 7a of the eye 7 must be correctly on the optical axis 8, and the light source 1, 2 images 1a and 2a must be in focus. Conventionally, as a means for this purpose, as shown in FIG. Reflect at right angle, and then add half mirror 2
0 in the direction of the optical axis 8 and the lens 19
An image 17a of the point light source 17 is formed on the apex at the center of the surface of the cornea 7a, and the reflected light from the cornea 7a of this image 17a is directed approximately at right angles by a reflecting surface 6a formed on the beam splitter 6. The reflected light is reflected by using the reflecting mirror 9 as a half mirror, and the reflected light is transmitted straight, and is focused onto the reflecting mirror 22 by the lens 21, and the focused light is reflected by the reflecting mirror 22 at an approximately right angle. , an image is formed on the imaging tube 23 which senses near-infrared light. The image pickup tube 23
The image 17b of the point light source 17 detected by the point light source 17 can be observed on a monitor television. On the other hand, the light emitted from another visible light source 24 is directed toward the target 25.
Visible light is reflected through a circular hole 25a formed in the target 2 by a reflecting mirror 27 that reflects near-infrared light and near-infrared light is transmitted.
The image 25b of the round hole 25a formed in the image pickup tube 2
3. At this time, the position of the round hole 25a is such that when the image of the point light source 17 is correctly formed on the vertex of the cornea 7a, the image of the point light source 17 is located at the center of the image 25b of the round hole 25a on the imaging tube 23. It is adjusted so that Therefore, the image 17 of this point light source 17
When b is not at the center of the image 25b of the round hole 25a,
The entire measuring device is moved vertically and horizontally with respect to the subject's eye 7, so that the image 17b of the point light source 17 is aligned with the round hole 25.
What is necessary is to adjust it so that it is located at the center of the image 25b of a. Furthermore, when the image of the point light source 17 is blurred, the entire measuring device may be moved back and forth in the direction of the optical axis 8 with respect to the subject's eye 7 to determine the focusing position.

上述の通り構成された従来の眼屈折度測定装置
においては、点光源17から発する近赤外光を角
膜7a上に放射する光学系が独立しており、反射
鏡18,20及びレンズ19を別に設けなければ
ならず、機構が複雑になりコスト高になるととも
に光量の損失を生ずるという問題があつた。
In the conventional eye refractometer configured as described above, the optical system for emitting near-infrared light emitted from the point light source 17 onto the cornea 7a is independent, and the reflecting mirrors 18, 20 and lens 19 are separately provided. However, there were problems in that the mechanism was complicated, the cost increased, and the amount of light was lost.

(考案が解決しようとする問題点) 本考案は上記事情に鑑みてなされたもので、そ
の目的とするところは、簡単な光学系で眼の角膜
上の正しい位置に測定用の光源の像を容易に結像
させることのできる眼屈折度測定装置を提供する
にある。
(Problems to be solved by the invention) The present invention was made in view of the above circumstances, and its purpose is to place the image of the light source for measurement at the correct position on the cornea of the eye using a simple optical system. An object of the present invention is to provide an eye refraction measuring device that can easily form an image.

(問題点を解決するための手段) 本考案は光軸上に近接して設けられた第1およ
び第2の2つの光源からの光を第1の光学系によ
つて被検者の眼の角膜上に結像させ、別に前記光
軸上に設けられたターゲツトによつて形成された
パターンの像を、前記第1の光学系によつて被検
者の眼の網膜上に結像させ、この網膜上に結像さ
れた前記パターンの像を第2の光学系によつて検
知器に集束させ、別に第3の光源及び第3、第4
の光学系を設けて前記第1および第2の光源から
の光を正しく前記角膜上に結像させるようにした
眼屈折度測定装置において、前記第3の光源を前
記第1および第2の光源のほぼ中間の光軸上に配
設し、前記第3の光源からの光を角膜上に結像さ
せる第3の光学系を前記第1の光学系と共用させ
るようにしたものである。
(Means for Solving the Problems) The present invention aims to direct light from two light sources, a first and a second light source, which are provided close to each other on the optical axis, into the eye of a subject using a first optical system. forming an image on the cornea, and forming an image of a pattern formed by a target separately provided on the optical axis on the retina of the subject's eye by the first optical system; The image of the pattern formed on the retina is focused on a detector by a second optical system, and separately a third light source and third and fourth
In the ocular refractometer, the third light source is provided as an optical system to accurately image the light from the first and second light sources on the cornea. A third optical system is disposed on the optical axis approximately in the middle of the cornea, and is used in common with the first optical system to form an image of the light from the third light source on the cornea.

(作用) 上記構成により、従来の第3の光学系は不要と
なり、前記第3の光源の像は前記第1の光学系に
よつて角膜上に結像される。
(Function) With the above configuration, the conventional third optical system is not required, and the image of the third light source is formed on the cornea by the first optical system.

(実施例) 以下、本考案の一実施例を図面に基づいて説明
する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings.

第1図は本考案の一実施例を模式的に示したも
のである。該図において第3図に示す従来例と同
一または同等の部分は同一符号にて示す。測定装
置の構成及び作用は従来例とほぼ同様であるの
で、本考案の特徴である眼の角膜頂部に測定装置
の光軸を合焦して一致させる構成について説明す
る。近赤外光を放射する第3の光源17が眼屈折
度測定用の2つの近赤外光を放射する第1および
第2の光源1,2のほぼ中間の光軸8上に配設さ
れている。
FIG. 1 schematically shows an embodiment of the present invention. In this figure, parts that are the same as or equivalent to those of the conventional example shown in FIG. 3 are designated by the same reference numerals. Since the configuration and operation of the measuring device are almost the same as those of the conventional example, the configuration for focusing and aligning the optical axis of the measuring device with the corneal top of the eye, which is a feature of the present invention, will be explained. A third light source 17 that emits near-infrared light is disposed on the optical axis 8 approximately midway between the first and second light sources 1 and 2 that emit two near-infrared lights for eye refraction measurement. ing.

上記の構成によると、第3の光源17から放射
された光は、レンズ3、ターゲツト4、レンズ5
及びビームスプリツタ6からなる第1の光学系を
通つて、眼7の角膜7a上に到達し、第3の光源
17の像17aを結ぶ。この像17aは角膜7a
から反射して従来例と同様に、ビームスプリツタ
6に形成された反射面6a、ハーフミラー9、レ
ンズ21及び反射鏡22を介して近赤外光に感ず
る撮像管23に結像される。同時にターゲツト2
5に形成された丸孔25aの像が光源24から放
射された光により、レンズ26及び反射鏡27を
介して従来例と同様に撮像管23に結像される。
この撮像管23に結像された第3の光源17の像
17bとターゲツト25の丸孔25aの像25b
とは、第2図に示すようにテレビ画面28で遠隔
監視され、第3の光源17の像17bがターゲツ
ト25の丸孔25aの像25bの中心に合焦して
位置するように、装置全体を眼7に対して3次元
的に移動させればよい。上記位置調整が完了した
後に測定ボタンを押せば第3の光源17が消え
て、第1および第2の光源1,2が交互に発光し
て測定が開始される。
According to the above configuration, the light emitted from the third light source 17 is transmitted through the lens 3, the target 4, and the lens 5.
The light passes through a first optical system consisting of a beam splitter 6 and a beam splitter 6, reaches the cornea 7a of the eye 7, and forms an image 17a of the third light source 17. This image 17a is the cornea 7a
Similar to the conventional example, the light is reflected from the beam and forms an image on the imaging tube 23, which is sensitive to near-infrared light, via the reflecting surface 6a formed on the beam splitter 6, the half mirror 9, the lens 21, and the reflecting mirror 22. Target 2 at the same time
The image of the round hole 25a formed in the lens 5 is formed on the imaging tube 23 by the light emitted from the light source 24 via the lens 26 and the reflecting mirror 27, as in the conventional example.
An image 17b of the third light source 17 formed on this image pickup tube 23 and an image 25b of the round hole 25a of the target 25
This means that, as shown in FIG. may be moved three-dimensionally with respect to the eye 7. When the measurement button is pressed after the above position adjustment is completed, the third light source 17 is turned off, the first and second light sources 1 and 2 emit light alternately, and measurement is started.

上述の本実施例によれば、従来例のように第3
の光源17の像を眼7の角膜7a上に結像させる
ための反射鏡18、レンズ19及び反射鏡20が
不要となり、構成が簡単になる。
According to the present embodiment described above, unlike the conventional example, the third
The reflector 18, lens 19, and reflector 20 for forming the image of the light source 17 on the cornea 7a of the eye 7 are not required, and the configuration is simplified.

上記実施例において説明した眼屈折度測定装置
はこの形式に限定されるものでなく、他の形式の
眼屈折度装置にも本考案は有効に適用できる。
The eye refractive power measuring device described in the above embodiments is not limited to this type, and the present invention can be effectively applied to other types of eye refractive power devices.

(考案の効果) 上述のとおり、本考案によれば、眼屈折度測定
装置に設けた近赤外光の第1および第2の2つの
光源の像を眼の角膜上に第1の光学系を通して正
しく結像させるための調整用の第3の光源を、前
記2つの光源のほぼ中間の光軸上に配設し、この
第3の光源からの光を角膜上に結像させる第3の
光学系を前記第1の光学系と共用させるようにし
たものであるから、構造が簡単になり装置のコス
トを低減させることができるとともに、光量損失
が減少し、製作時における調整も容易になる。
(Effect of the invention) As described above, according to the invention, images of the first and second light sources of near-infrared light provided in the eye refractometer are projected onto the cornea of the eye by the first optical system. A third light source for adjustment to correctly form an image through the cornea is disposed on the optical axis approximately midway between the two light sources, and a third light source for focusing the light from the third light source on the cornea. Since the optical system is shared with the first optical system, the structure is simplified and the cost of the device can be reduced, the loss of light quantity is reduced, and adjustment during manufacturing is also facilitated. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る眼屈折度測定装置の一実
施例を示す模式図、第2図はモニタテレビ画面の
正面図、第3図は従来の眼屈折度測定装置を示す
模式図、第4図は第3図の検知器を示す正面図で
ある。 1……第1の光源、2……第2の光源、4……
ターゲツト、4a……丸孔、7……眼、7a……
角膜、7b……網膜、8……光軸、13……第1
の検知器、17……第3の光源、23……第2の
検知器。
FIG. 1 is a schematic diagram showing an embodiment of the eye refraction measuring device according to the present invention, FIG. 2 is a front view of a monitor TV screen, and FIG. 3 is a schematic diagram showing a conventional eye refractive power measuring device. FIG. 4 is a front view of the detector shown in FIG. 3. 1...first light source, 2...second light source, 4...
Target, 4a... Round hole, 7... Eye, 7a...
Cornea, 7b... Retina, 8... Optical axis, 13... First
Detector, 17... third light source, 23... second detector.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 光軸上に近接して設けられた2つの光源からの
光を被検者の眼の角膜上に結像する第1の光学系
と、前記光軸上に設けられたターゲツトと、この
ターゲツトによつて形成された前記光のパターン
の前記被検者の眼の網膜上に結像された像の反射
光を第1の検知器に集束する第2の光学系と、前
記2つの光源からの光を正しく前記角膜上に結像
させるための第3の光源及び第3の光学系と、該
第3の光学系により角膜上に結像した前記第3の
光源の像の反射光を第2の検知器上に結像させる
第4の光学系を設けてなる眼屈折度測定装置にお
いて、前記第3の光源は前記2つの光源のほぼ中
間に配設され、前記第3の光学系を前記第1の光
学系により共用させたことを特徴とする眼屈折度
測定装置。
a first optical system that images light from two light sources disposed close to each other on the optical axis onto the cornea of the eye of the subject; a target disposed on the optical axis; a second optical system that focuses reflected light of an image of the light pattern formed on the retina of the subject's eye on the first detector; a third light source and a third optical system for correctly forming an image of light on the cornea; In the eye refractometer, the third light source is disposed approximately midway between the two light sources, and the third optical system is connected to the third optical system. An eye refraction measuring device characterized in that it is shared by a first optical system.
JP2176085U 1985-02-18 1985-02-18 Expired JPH02161Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2176085U JPH02161Y2 (en) 1985-02-18 1985-02-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2176085U JPH02161Y2 (en) 1985-02-18 1985-02-18

Publications (2)

Publication Number Publication Date
JPS61139201U JPS61139201U (en) 1986-08-29
JPH02161Y2 true JPH02161Y2 (en) 1990-01-05

Family

ID=30513448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2176085U Expired JPH02161Y2 (en) 1985-02-18 1985-02-18

Country Status (1)

Country Link
JP (1) JPH02161Y2 (en)

Also Published As

Publication number Publication date
JPS61139201U (en) 1986-08-29

Similar Documents

Publication Publication Date Title
JP4492847B2 (en) Eye refractive power measuring device
US5909268A (en) Alignment detecting apparatus
JP3636917B2 (en) Eye refractive power measurement device
US20050134798A1 (en) Device for measuring optical charateristic of eye
US5781275A (en) Eye refractometer and eye refractive power measuring apparatus for electro-optically measuring the refractive power of the eye
JPH10276985A (en) Inspection instrument for optical data of eyeball
JP2001340299A (en) Optical measuring device for eye
JP2812421B2 (en) Corneal cell imaging device
JPH02161Y2 (en)
JPS6352893B2 (en)
JPH0984760A (en) Positioning detection device for ophthalmic equipment
JPH0254B2 (en)
JP3004653B2 (en) Ophthalmic equipment
WO2023074579A1 (en) Eye refraction measurement device and eye refraction measurement program
JPH06233741A (en) Ophthalmologic instrument having automatic fogging device and ophthalmoscopic measuring method
JP2693772B2 (en) Ophthalmic equipment
JP2568586B2 (en) Air puff tonometer
JPH0554334B2 (en)
JPH0341683Y2 (en)
JP3510312B2 (en) Eye refractive power measuring device
JPS621723B2 (en)
JPS6134330B2 (en)
JPH0554326B2 (en)
JPH0554325B2 (en)
JP2916105B2 (en) Ophthalmic equipment