JPH049598B2 - - Google Patents

Info

Publication number
JPH049598B2
JPH049598B2 JP61128363A JP12836386A JPH049598B2 JP H049598 B2 JPH049598 B2 JP H049598B2 JP 61128363 A JP61128363 A JP 61128363A JP 12836386 A JP12836386 A JP 12836386A JP H049598 B2 JPH049598 B2 JP H049598B2
Authority
JP
Japan
Prior art keywords
ammonia
treated
zeolite
phosphorus
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61128363A
Other languages
Japanese (ja)
Other versions
JPS62286589A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12836386A priority Critical patent/JPS62286589A/en
Publication of JPS62286589A publication Critical patent/JPS62286589A/en
Publication of JPH049598B2 publication Critical patent/JPH049598B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術の分野〕 本発明は、リン、アンモニアの同時除去方法に
関する。更に詳しくは、リン酸塩と難溶性塩を生
成し得る特定の金属塩を担持またはイオン交換処
理させたゼオライトを用いて原水すなわちリン酸
塩及びアンモニアを低濃度で含む水を処理する該
除去方法に関する。 〔従来の技術〕 近年各地の湖沼で、流入水等に起因するリン酸
塩とアンモニアによる湖沼水の富栄養化とその進
行が著しく問題視されている。かかる富栄養化し
た湖沼水からリン酸塩およびアンモニアを除去す
る方法としては、前者に対しては、凝集沈殿法、
生物処理および晶析法が、後者に対しては生物処
理、ゼオライトその他の陽イオン交換剤処理およ
び、ストリツピング法が一般的に用いられてい
る。しかし、これ等の公知方法には、次のような
問題点がある。すなわち、除去設備が大規模とな
ること、原水が低濃度の場合は除去効率が低い、
処理に際してスラツジが発生する、およびリン除
去とアンモニア除去とで夫々別個のプラントを必
要とするなどである。 〔発明の目的〕 本発明者等は、上述の問題点を解決すべく研究
の結果、ゼオライトに特定の金属塩を担持または
イオン交換処理により保持せしめたゼオライトを
用いて原水を処理すると、上述の4つの問題点が
凡て解決できることを知つて本発明を完成した。
すなわち、本発明の目的は、小規模のかつ単一の
設備であつても、原水からリンとアンモニアを同
時に除去できる方法を提供することである。 〔発明の構成・効果〕 本発明は、下記(1)の主要構成と(2)〜(3)の実施態
様的構成を有する。 (1) リン酸と難溶性塩を生成する硝酸(第一、第
二)鉄、硫酸(第一、第二)鉄、過塩素酸(第
一、第二)鉄、臭化鉄または、ニツケル、カル
シウム、アルミニウムおよび銀から選ばれたい
づれか一以上の塩を用いてゼオライトを担持ま
たはイオン交換処理して、処理体を得、該処理
体で低濃度のリンとアンモニアを含有する原水
を処理することにより、リンとアンモニアを同
時除去することを特徴とするリン、アンモニア
の同時除去方法。 (2) 原水をPH3〜13で処理することを特徴とする
前記第1項に記載の方法。 (3) 処理体中の被担持物又は被イオン交換処理物
の濃度を被処理原水中のリンおよびアンモニア
の濃度に適合する如くゼオライトを担持処理ま
たはイオン交換処理した処理体を用いる前記第
1項に記載の方法。 本発明の構成と効果につき以下に詳述する。 本発明に使用する担持体またはイオン交換処理
体(以下両者を担持・処理体と総称することがあ
る)は、ゼオライト(担持)を特定の金属塩すな
わちリン酸と難溶性塩を生成し得る金属化合物
(FeCl2、FeCl3を除く)を用いて担持処理または
イオン交換処理して製造する。 上述の担持・処理体を製造するためのゼオライ
トの種類、形状は限定されない。ゼオライトの種
類としては、例えばゼオライトX、ゼオライト
A、モルデナイト、クリプチロライトを挙げるこ
とができる。また、その形状は微粒品、粒品、ペ
レツト又はビーズのいづれでもよい。 本発明に使用するリン酸と難溶性塩を生成しう
る金属化合物としては、鉄(FeCl2、FeCl3を除
く)、ニツケル、カルシウム、アルミニウムおよ
び銀の塩をあげることができる。塩の種類は限定
されないが、ゼオライトを処理するためには溶解
度の大きいものが好ましく、ハロゲン塩(特に塩
化物)、硝酸塩などが推奨される。該塩の具体例
としては、銀塩の場合は、過塩素酸銀、硝酸郡お
よびふつ化銀であり、アルミニウム塩の場合は、
硫酸アルミニウム、硝酸アルミニウムおよび塩化
アルミニウムであり、カルシウム塩の場合は、臭
化カルシウム、塩化カルシウム、過塩素酸カルシ
ウム、塩素酸カルシウム、ヨウ化カルシウム、亜
硝酸カルシウムおよび硝酸カルシウムであり、ニ
ツケル塩の場合は、臭化ニツケル、塩化ニツケ
ル、過塩素酸ニツケル、硝酸ニツケルおよび硫酸
ニツケルを挙げることができる。 本発明に係るイオン交換処理はつぎのように行
う。すなわち、上述の金属塩を水に溶解すること
により得られる金属イオンを含む溶液
(0.001mol/以上)に所定量のゼオライトを添
加し、室温〜150℃で0.5〜200時間、好ましくは
1〜100時間処理する。処理後は水溶液を濾別し、
必要な乾燥を行つてイオン交換処理体を得る。 また、本発明に係る担持処理はつぎのように行
う。すなわち、上述の金属イオンを含む溶液にア
ルカリ物質を溶解させ、この溶液にゼオライトの
所定量を添加して以後上述のイオン交換処理と同
様に行う。 本発明に係る担持・処理体が、原水(被処理
水)のリンとアンモニアを同時に除去できるの
は、前者(リン)については、被担持物(金属イ
オン)によるのであり、後者(アンモニア)につ
いては、ゼオライト本来の除去能力によるのであ
る。したがつて、ゼオライトを特定の金属イオン
処理することにより、ゼオライト本来のアンモニ
ア除去能が喪失し若しくは減退しないようにする
ことが大切である。本発明に係る金属化合物は、
この目的に合致するよう研究された結果見出され
たものであつて、リン酸と難溶性塩を形成しうる
という物性からのみでは予測できるものではな
い。 本発明の対象物である低濃度のリンとアンモニ
アを含有する原水(以下単に原水という)は、実
用的見地からは、農業用廃水又は都市下水(生活
廃水)若しくはそれらの流入した河川水である
が、これ等以外の原水であつてもリンおよびアン
モニアの除去を必要とする限り対象となる。原水
と処理剤すなわち本発明に係る担持・処理体との
接触方法は公知方法と同様であり、原水と該担
持・処理体とを除去プラント中で必要かつ十分な
程度(温度、時間)に接触せしめる。本発明の方
法の処理対象となる低濃度のリンとアンモニアを
含有する原水中における該リンとアンモニアの濃
度は、それぞれ0.5〜100mg/好ましくは1〜10
mg/ならびに0.1〜200mg/好ましくは0.1〜
10mg/である。 本発明の方法によれば、原水からリン、アンモ
ニアを除去することに関し、次の効果がある。 処理体の除去能力が大きいので、従来のもの
と比較して小規模の設備で比較的大量の原水を
処理することができる。 原水中のリン又はアンモニアの濃度が低濃度
(例えば10mg/程度)であつても良好な除去
率(例えば80〜90%)を達成できる。 処理によつてスラツジが発生することがな
い。 リンの除去とアンモニアの除去を同一の設備
で行うことができるので、設備の維持、管理及
び償却の面で経済的である。 以下試験例および実施例によつて本発明を説明
する。 試験例 1 (イオン交換処理、担持処理) 4種の金属塩および4種のゼオライトを用い、
本発明に使用する担持・処理体を製造した。製造
条件(温度、時間)と結果(担持量、陽イオン交
換容量[Cation Exchange Capacity:CEC])
を表−1に示す。
[Field of Technology] The present invention relates to a method for simultaneously removing phosphorus and ammonia. More specifically, the removal method involves treating raw water, that is, water containing low concentrations of phosphate and ammonia, using zeolite that supports or undergoes ion exchange treatment with a specific metal salt that can generate phosphate and poorly soluble salts. Regarding. [Prior Art] In recent years, eutrophication of lake waters due to phosphates and ammonia caused by inflow water and the like has become a serious problem in lakes and marshes throughout the country. Methods for removing phosphates and ammonia from such eutrophic lake water include coagulation-sedimentation method,
Biological treatment and crystallization methods are commonly used for the latter, biological treatment, treatment with zeolites and other cation exchange agents, and stripping methods. However, these known methods have the following problems. In other words, the removal equipment will be large-scale, and if the raw water has a low concentration, the removal efficiency will be low.
Sludge is generated during processing, and separate plants are required for phosphorus removal and ammonia removal. [Purpose of the Invention] As a result of research to solve the above-mentioned problems, the present inventors have found that when raw water is treated with zeolite in which a specific metal salt is supported or retained through ion exchange treatment, the above-mentioned problems occur. The present invention was completed knowing that all four problems could be solved.
That is, an object of the present invention is to provide a method that can simultaneously remove phosphorus and ammonia from raw water even if it is small-scale and uses a single facility. [Configuration/Effects of the Invention] The present invention has the following main configuration (1) and embodiment configurations (2) to (3). (1) Ferrous (ferrous or ferric) nitrate, iron (ferrous or ferric) sulfate, iron (ferrous or ferric) perchlorate, iron bromide or nickel, which form poorly soluble salts with phosphoric acid. A treated body is obtained by supporting or ion-exchanging zeolite using one or more salts selected from calcium, aluminum, and silver, and raw water containing low concentrations of phosphorus and ammonia is treated with the treated body. A method for simultaneously removing phosphorus and ammonia, characterized by simultaneously removing phosphorus and ammonia. (2) The method according to item 1 above, wherein the raw water is treated at a pH of 3 to 13. (3) Using a treated body that has been subjected to zeolite support treatment or ion exchange treatment so that the concentration of the supported substance or ion exchange treated substance in the treated body matches the concentration of phosphorus and ammonia in the raw water to be treated. The method described in. The configuration and effects of the present invention will be explained in detail below. The support or ion-exchange treated body (hereinafter both may be collectively referred to as the supported/treated body) used in the present invention is a zeolite (supported) with a specific metal salt, that is, a metal that can form a poorly soluble salt with phosphoric acid. Manufactured by supporting treatment or ion exchange treatment using compounds (excluding FeCl 2 and FeCl 3 ). The type and shape of the zeolite for producing the above-mentioned supported/treated body are not limited. Examples of the types of zeolite include zeolite X, zeolite A, mordenite, and cryptilolite. Further, the shape thereof may be any of fine particles, grains, pellets, or beads. Examples of metal compounds that can form poorly soluble salts with phosphoric acid used in the present invention include salts of iron (excluding FeCl 2 and FeCl 3 ), nickel, calcium, aluminum, and silver. Although the type of salt is not limited, salts with high solubility are preferred for treating zeolite, and halogen salts (especially chlorides), nitrates, etc. are recommended. Specific examples of the salt include silver perchlorate, nitrate, and silver fluoride, and aluminum salts include:
Aluminum sulfate, aluminum nitrate and aluminum chloride; for calcium salts, calcium bromide, calcium chloride, calcium perchlorate, calcium chlorate, calcium iodide, calcium nitrite and calcium nitrate; for nickel salts may include nickel bromide, nickel chloride, nickel perchlorate, nickel nitrate and nickel sulfate. The ion exchange treatment according to the present invention is performed as follows. That is, a predetermined amount of zeolite is added to a solution containing metal ions (0.001 mol/or more) obtained by dissolving the above-mentioned metal salt in water, and the mixture is heated at room temperature to 150°C for 0.5 to 200 hours, preferably 1 to 100 mol/min. Process time. After treatment, the aqueous solution is filtered,
Perform necessary drying to obtain an ion exchange treated body. Further, the supporting treatment according to the present invention is performed as follows. That is, an alkaline substance is dissolved in a solution containing the metal ions described above, a predetermined amount of zeolite is added to this solution, and the subsequent ion exchange treatment is carried out in the same manner as the ion exchange treatment described above. The reason why the supporting/processing body according to the present invention can simultaneously remove phosphorus and ammonia from raw water (water to be treated) is that the former (phosphorus) depends on the supported material (metal ions), and the latter (ammonia) This is due to the inherent removal ability of zeolite. Therefore, it is important to treat zeolite with specific metal ions so that the inherent ammonia removal ability of zeolite is not lost or diminished. The metal compound according to the present invention is
This was discovered as a result of research to meet this objective, and it cannot be predicted solely from the physical property that it can form a sparingly soluble salt with phosphoric acid. From a practical standpoint, raw water containing low concentrations of phosphorus and ammonia (hereinafter simply referred to as raw water), which is the object of the present invention, is agricultural wastewater, urban sewage (domestic wastewater), or river water into which they flow. However, raw water other than these is also covered as long as it requires removal of phosphorus and ammonia. The method of contacting the raw water with the treatment agent, that is, the supported/treated body according to the present invention, is the same as the known method, and the raw water and the supported/treated body are brought into contact with each other to a necessary and sufficient degree (temperature, time) in the removal plant. urge The concentrations of phosphorus and ammonia in the raw water containing low concentrations of phosphorus and ammonia to be treated by the method of the present invention are each 0.5 to 100 mg/preferably 1 to 10 mg.
mg/and 0.1~200mg/preferably 0.1~
It is 10mg/. According to the method of the present invention, the following effects are achieved regarding the removal of phosphorus and ammonia from raw water. Since the removal capacity of the treatment body is large, a relatively large amount of raw water can be treated with a small-scale facility compared to conventional ones. A good removal rate (for example, 80 to 90%) can be achieved even if the concentration of phosphorus or ammonia in the raw water is low (for example, about 10 mg/). No sludge is generated during processing. Since phosphorus removal and ammonia removal can be performed with the same equipment, it is economical in terms of equipment maintenance, management, and depreciation. The present invention will be explained below using test examples and examples. Test example 1 (ion exchange treatment, support treatment) Using 4 types of metal salts and 4 types of zeolites,
A supporting/processing body used in the present invention was manufactured. Manufacturing conditions (temperature, time) and results (supported amount, cation exchange capacity [CEC])
are shown in Table-1.

【表】【table】

【表】 試験例 2 試験例1で得られた担持・処理体を用いてアン
モニアの除去処理を行つた。結果を図−1 1〜
4に示す。 各図は、夫々担体としてモルデナイト(Md)、
クリノプチロライト(Cp)、ゼオライトA(A)
およびゼオライトX(X)を用い、被担持物とし
てNiCl2(Ni)、CaCl2(Ca)、Fe(NO32、Fe
(NO33、Al(NO33およびAgNO3(Ag)を用い
ている。 各図から明らかなように、担持体モルデナイト
(Md)およびクリノプチロライト(Cp)の場合
は、処理によつてもアンモニアの除去能はかわら
ず、およそ100mep/100gであつた。またゼオラ
イトX、ゼオライトAの場合については、該担持
処理したものは処理前の原試料より除去能は低下
するものの、該低下後の除去能として上述のモル
デナイトやクリノプチロライトと同等の除去量を
示した。 以上の事実から、担体(ゼオライト)に本発明
に係る金属塩を担持せしめても、ゼオライトが本
来保有するアンモニアの除去能力は、有用な程度
に維持されていることがわかる。 試験例 3 試験例1で得られた担持・処理体を用いてリン
の除去処理を行つた。結果を図−2〜−6に示
す。 図−2は、上述の4種のゼオライトにつきPH3
〜13の範囲内でリンの吸着量(meq/100g)を
調べたものである。 その結果、ゼオライトAとゼオライトXとは、
どのPH条件においてもリンの除去能力を示さなか
つた。一方、モルデナイトとクリノプチロライト
とは、PH3で共に約5meq/100g、PH13でモルデ
ナイトは10meq/100gの除去を示した。 これらのゼオライトに上述の塩処理を行うと、
得られた担持・処理体は図−3〜−6のような結
果を示した。 図−3はゼオライトAとゼオライトXを処理し
たときのPHとリンの除去量の関係を示した。同図
において、銀で処理したゼオライトA、ゼオライ
トXはともにPH12で180meq/100g、カルシウム
で処理したものはPH13で200meq/100g(ゼオラ
イトXの場合)および150meq/100g(ゼオライ
トAの場合)の除去を示した。また、PH7におい
ても、ニツケル、アルミニウムおよび銀で処理し
たゼオライトXおよびゼオライトAは、ともに
50meq/100gの除去を示した。 図−4では、モルデナイトおよびクリノプチロ
ライトを処理したときのPHとリンの除去量の関係
を示す。特に銀で処理したものの除去量が多く、
PH12では、モルデナイト、クリノプチロライト共
に70meq/100gの除去を示し、PH7においても
クリノプチロライトは20meq/100gの除去を示
した。 図−5は、鉄でイオン交換処理した上述4種の
ゼオライトのPHとリン除去量の関係を、図−6
は、鉄で担持処理した上述4種のゼオライトのPH
とリン除去量の関係を示した。いづれの場合も原
試料(註、未処理ゼオライト)に比べ高い除去量
を示した。とくに担持処理したモルデナイトとク
リノプチロライトは、それぞれPH3で30meq/
100g、35meq/100gと高い除去量を示した。 実施例 以上の試験例2、3の結果にもとづき、試験例
1の被処理ゼオライト(下記5種)を用いて、PH
7でリンとアンモニアの同時除去を行つた。 原水に代える試験水としては、リン10mg/、
アンモニア10mg/の模擬水を用いた。 (被処理ゼオライトの種類) Fe−Cp−1:鉄で担持処理したクリノプチロラ
イト Fe−A−1:鉄で担持処理したゼオライトA Fe−Md−2:鉄でイオン交換処理したモルデナ
イト Al−Md:アルミニウムでイオン交換処理したモ
ルデナイト Ca−A:カルシウムでイオン交換処理したゼオ
ライトA Ni−X−1:ニツケルでイオン交換処理したゼ
オライトX 結果を図−7に示す。同図にあきらかなよう
に、鉄で担持処理したクリノプチロライトは、リ
ンを40%、アンモニアを85%除去した。ニツケル
でイオン交換処理したゼオライトXは、リンを
100%、アンモニアを45%除去した。このように
ゼオライトにイオン交換処理または担持処理を行
うことによつて、リンとアンモニアの同時除去が
可能になる。さらにこの同時除去を原水のPH調整
なしで行うことができる。 試験例 4 前述のように、イオン交換処理または担持処理
されたゼオライトによる被処理水からのリンおよ
びアンモニアの除去量は、該処理に係る鉄、ニツ
ケル、カルシウム、アルミニウムおよび銀の処理
量によつて定まる。該処理量は、リンの除去量と
比例し、アンモニア除去量と反比例する。この事
実を定量的に把握するために、前述表−1に示さ
れた鉄で処理された4種のゼオライトにおける鉄
含有量とリン、アンモニアの除去量の関係を該ゼ
オライトを用いて原水を処理することによつて求
めた。結果を表−2に示す。
[Table] Test Example 2 The supported and treated body obtained in Test Example 1 was used to perform ammonia removal treatment. The results are shown in Figure 1.
4. Each figure shows mordenite (Md) as the carrier,
Clinoptilolite (Cp), Zeolite A (A)
NiCl 2 (Ni), CaCl 2 (Ca), Fe(NO 3 ) 2 , Fe
(NO 3 ) 3 , Al(NO 3 ) 3 and AgNO 3 (Ag). As is clear from each figure, in the case of the supports mordenite (Md) and clinoptilolite (Cp), the ammonia removal ability remained unchanged regardless of the treatment, and was approximately 100 mep/100 g. In addition, in the case of zeolite showed that. From the above facts, it can be seen that even when the metal salt according to the present invention is supported on the carrier (zeolite), the ammonia removal ability originally possessed by the zeolite is maintained at a useful level. Test Example 3 The supported and treated body obtained in Test Example 1 was used to perform phosphorus removal treatment. The results are shown in Figures-2 to -6. Figure 2 shows the PH3 of the four types of zeolites mentioned above.
The adsorption amount of phosphorus (meq/100g) was investigated within the range of ~13. As a result, zeolite A and zeolite
It did not show any ability to remove phosphorus under any PH conditions. On the other hand, mordenite and clinoptilolite both showed removal of about 5meq/100g at PH3, and mordenite showed removal of 10meq/100g at PH13. When these zeolites are subjected to the above salt treatment,
The obtained supported and treated bodies showed the results shown in Figures 3 to 6. Figure 3 shows the relationship between pH and the amount of phosphorus removed when zeolite A and zeolite X were treated. In the same figure, zeolite A and zeolite showed that. Also, at PH7, both zeolite X and zeolite A treated with nickel, aluminum and silver
It showed a removal of 50meq/100g. Figure 4 shows the relationship between PH and the amount of phosphorus removed when mordenite and clinoptilolite are treated. In particular, the removal amount of those treated with silver is large,
At PH12, mordenite and clinoptilolite both showed a removal of 70meq/100g, and even at PH7, clinoptilolite showed a removal of 20meq/100g. Figure 5 shows the relationship between the PH and the amount of phosphorus removed for the four types of zeolites mentioned above treated with iron ion exchange.
are the pH values of the above four types of zeolites supported with iron.
The relationship between the amount of phosphorus removed and the amount of phosphorus removed was shown. In all cases, the removal amount was higher than that of the original sample (note: untreated zeolite). In particular, supported mordenite and clinoptilolite each have 30 meq/clinoptilolite at PH3.
It showed a high removal amount of 100g and 35meq/100g. Example Based on the results of Test Examples 2 and 3 above, the PH
In step 7, phosphorus and ammonia were removed simultaneously. As test water to replace raw water, phosphorus 10mg/,
Simulated water containing 10 mg of ammonia was used. (Types of zeolite to be treated) Fe-Cp-1: Clinoptilolite supported with iron Fe-A-1: Zeolite A supported with iron Fe-Md-2: Mordenite Al- treated with ion exchange treatment with iron Md: Mordenite treated with ion exchange treatment with aluminum Ca-A: Zeolite A treated with ion exchange treatment with calcium Ni-X-1: Zeolite X treated with ion exchange treatment with nickel The results are shown in Figure 7. As is clear from the figure, iron-supported clinoptilolite removed 40% of phosphorus and 85% of ammonia. Zeolite
100% and 45% of ammonia removed. By subjecting zeolite to ion exchange treatment or support treatment in this manner, it becomes possible to simultaneously remove phosphorus and ammonia. Furthermore, this simultaneous removal can be performed without adjusting the pH of the raw water. Test Example 4 As mentioned above, the amount of phosphorus and ammonia removed from water to be treated by zeolite subjected to ion exchange treatment or support treatment depends on the amount of iron, nickel, calcium, aluminum and silver treated in the treatment. Determined. The amount of treatment is proportional to the amount of phosphorus removed and inversely proportional to the amount of ammonia removed. In order to quantitatively understand this fact, we investigated the relationship between the iron content and the amount of phosphorus and ammonia removed in the four types of zeolite treated with iron shown in Table 1 above, and examined the relationship between the iron content and the amount of phosphorus and ammonia removed when raw water was treated with the zeolite. It was found by doing. The results are shown in Table-2.

【表】 試験例4の結果からも明らかなように、処理対
象となる原水のPHやリンおよびアンモニアの濃度
に応じて、ゼオライトを本発明に係る適切な金属
塩溶液で処理することにより、該原水に適応した
除去性能の良好な処理体を設計できる。
[Table] As is clear from the results of Test Example 4, by treating zeolite with an appropriate metal salt solution according to the present invention, depending on the pH of the raw water to be treated and the concentrations of phosphorus and ammonia, It is possible to design a treatment body with good removal performance that is suitable for raw water.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜7図は、それぞれ本発明方法の実施態様
を示すための説明図である。
1 to 7 are explanatory diagrams each showing an embodiment of the method of the present invention.

Claims (1)

【特許請求の範囲】 1 リン酸と難溶性塩を生成する硝酸(第一、第
二)鉄、硫酸(第一、第二)鉄、過塩素酸、(第
一、第二)鉄、臭化鉄または、ニツケル、カルシ
ウム、アルミニウムおよび銀から選ばれたいづれ
か一以上の塩を用いてゼオライトを担持またはイ
オン交換処理して、処理体を得、該処理体で低濃
度のリンとアンモニアを含有する原水を処理する
ことにより、リンとアンモニアを同時除去するこ
とを特徴とするリン、アンモニアの同時除去方
法。 2 原水をPH3〜13で処理することを特徴とする
特許請求の範囲第1項に記載の方法。 3 処理体中の被担持物又は被イオン交換処理物
の濃度を被処理原水中のリンおよびアンモニアの
濃度に適合する如くゼオライトを担持処理または
イオン交換処理した処理体を用いる特許請求の範
囲第1項に記載の方法。
[Claims] 1. Iron (ferrous and ferric) nitrates, iron (ferrous and ferric) sulfates, perchloric acid, iron (ferrous and ferric), and odors that form poorly soluble salts with phosphoric acid. Zeolite is supported or ion-exchanged using iron chloride or one or more salts selected from nickel, calcium, aluminum, and silver to obtain a treated body, and the treated body contains low concentrations of phosphorus and ammonia. A method for simultaneously removing phosphorus and ammonia, characterized by simultaneously removing phosphorus and ammonia by treating raw water. 2. The method according to claim 1, characterized in that raw water is treated at a pH of 3 to 13. 3. Claim 1 using a treated body that has been subjected to zeolite carrying treatment or ion exchange treatment so that the concentration of the supported substance or ion-exchanged substance in the treated body matches the concentration of phosphorus and ammonia in the raw water to be treated. The method described in section.
JP12836386A 1986-06-03 1986-06-03 Simultaneous removal of phosphorus and ammonia Granted JPS62286589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12836386A JPS62286589A (en) 1986-06-03 1986-06-03 Simultaneous removal of phosphorus and ammonia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12836386A JPS62286589A (en) 1986-06-03 1986-06-03 Simultaneous removal of phosphorus and ammonia

Publications (2)

Publication Number Publication Date
JPS62286589A JPS62286589A (en) 1987-12-12
JPH049598B2 true JPH049598B2 (en) 1992-02-20

Family

ID=14982968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12836386A Granted JPS62286589A (en) 1986-06-03 1986-06-03 Simultaneous removal of phosphorus and ammonia

Country Status (1)

Country Link
JP (1) JPS62286589A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1001479C2 (en) * 1995-10-23 1997-04-25 Holding Company Belgie Nv Modified zeolite production
CN102658086A (en) * 2012-05-08 2012-09-12 北京大学 Modified clinoptilolite composite material and preparation method as well as application thereof
CN104230131A (en) * 2014-09-12 2014-12-24 哈尔滨工业大学深圳研究生院 Method for synchronously controlling release of nitrogen and phosphorus as well as smell-causing substances in polluted sediment
JP6674344B2 (en) * 2016-07-11 2020-04-01 太平洋セメント株式会社 Water treatment material and method for producing the same
JP7287813B2 (en) * 2019-03-27 2023-06-06 太平洋セメント株式会社 Water purification material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4964253A (en) * 1972-10-21 1974-06-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4964253A (en) * 1972-10-21 1974-06-21

Also Published As

Publication number Publication date
JPS62286589A (en) 1987-12-12

Similar Documents

Publication Publication Date Title
Da̧browski et al. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method
US4076622A (en) Microbiocidal macroreticular ion exchange resins, their method of preparation and use
US6200482B1 (en) Arsenic filtering media
US4479877A (en) Removal of nitrate from water supplies using a tributyl amine strong base anion exchange resin
US6514413B2 (en) Method of drinking water disinfection
US5464559A (en) Composition for treating water with resin bound ionic silver
US2004257A (en) Purification of water by zeolites
US20070056911A1 (en) Selective removal of toxic compounds like arsenic from drinking water using a polymeric ligand exchanger
US20160207797A1 (en) Ion exchange resin regeneration method
JPH049598B2 (en)
TWI672273B (en) Adsorption method
JPH02233503A (en) Purification of hydrochloric acid
JPH03167160A (en) Purification of aqueous solution of quaternary ammonium hydroxide
JPH1157695A (en) Treatment process for phosphorus-containing wastewaer
JP2004298738A (en) Boron-containing water treatment method
Loizidou Heavy metal removal using natural zeolite
US20030196962A1 (en) Process for selective removal of toxic ions from water
RU2746194C2 (en) Method of producing inorganic ferrocyanide sorbent (versions)
JP3390148B2 (en) Purification treatment method for salt water for electrolysis
RU2282906C2 (en) Method for decontaminating radioactive aqueous solutions
RU2213063C1 (en) Method for preparing bactericidal preparation
JP3586165B2 (en) Treatment of wastewater containing selenium
KR102204227B1 (en) Prussian blue immobilized porous polymer resin for removal of cesium ion and manufacturing method thereof
JP3245485B2 (en) Pretreatment of water for food production
JPH11556A (en) Chitosan-zeolite composite and its production