JPH11556A - Chitosan-zeolite composite and its production - Google Patents
Chitosan-zeolite composite and its productionInfo
- Publication number
- JPH11556A JPH11556A JP17306897A JP17306897A JPH11556A JP H11556 A JPH11556 A JP H11556A JP 17306897 A JP17306897 A JP 17306897A JP 17306897 A JP17306897 A JP 17306897A JP H11556 A JPH11556 A JP H11556A
- Authority
- JP
- Japan
- Prior art keywords
- chitosan
- zeolite
- particles
- lead
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Removal Of Specific Substances (AREA)
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、鉛イオン錯体を効
率よく吸着する特性を持つキトサン−ゼオライト複合粒
子及びその製造方法に関するものである。The present invention relates to a chitosan-zeolite composite particle having a property of efficiently adsorbing a lead ion complex and a method for producing the same.
【0002】[0002]
【従来の技術】キトサンは重金属イオンを選択的、効率
的に配位結合して捕集する作用を有しており、また、ゼ
オライトもイオン交換特性により重金属イオンを吸着す
る作用を有している。これらの性質は重金属イオンの処
理材、分離用吸着材などに利用されている。しかし、錯
体を形成している鉛イオンに対する吸着効率は低く、半
田めっき廃水に含まれるフェノールスルホン酸鉛やアル
カノールスルホン酸鉛などのように錯体を形成している
鉛イオンは除去が困難であった。2. Description of the Related Art Chitosan has a function of selectively and efficiently coordinating and trapping heavy metal ions, and zeolite has a function of adsorbing heavy metal ions due to ion exchange characteristics. . These properties are used as a treatment material for heavy metal ions, an adsorbent for separation, and the like. However, adsorption efficiency for lead ions forming a complex is low, and it is difficult to remove lead ions forming a complex such as lead phenolsulfonate and lead alkanolsulfonate contained in solder plating wastewater. .
【0003】また、他のイオン交換法や酸化・還元法な
どによる鉛イオン処理方法も錯体を形成している鉛イオ
ンの処理には効果がなく、鉛イオン錯体を含むめっき廃
水などは、所定濃度以下になるように希釈して処理され
ているのが現状である。Further, other methods of treating lead ions, such as ion exchange methods and oxidation / reduction methods, have no effect on the treatment of lead ions forming a complex, and plating wastewater containing a lead ion complex has a predetermined concentration. At present, it is diluted and processed as follows.
【0004】[0004]
【発明が解決しようとする課題】本発明が解決しようと
する課題は、鉛イオン錯体吸着特性を有する新規なキト
サン系複合体を提供しようとするものである。The problem to be solved by the present invention is to provide a novel chitosan-based composite having a lead ion complex adsorption property.
【0005】[0005]
【課題を解決するための手段】本発明者らは、優れた鉛
イオン錯体吸着特性を持ち、含鉛イオン錯体廃水処理材
として有用新規な吸着材を開発するために種々研究を重
ねた結果、鉛イオンなどの重金属イオンを選択的に、か
つ、効率よく配位結合して捕集する能力を有する架橋化
キトサン粒状体中に、イオン交換特性により鉛イオンな
どの重金属イオンを吸着する特性を有するゼオライト微
粒子を複数個内包させることにより、前記課題を解決す
ることを見い出した。Means for Solving the Problems The present inventors have conducted various studies to develop a novel adsorbent having excellent lead ion complex adsorption properties and useful as a lead-containing ion complex wastewater treatment material. It has the property of adsorbing heavy metal ions such as lead ions by ion exchange properties in crosslinked chitosan granules that have the ability to selectively and efficiently coordinate and capture heavy metal ions such as lead ions It has been found that the above-mentioned problem can be solved by enclosing a plurality of zeolite fine particles.
【0006】[0006]
【発明の実施の形態】本発明は、架橋化キトサン粒状体
とその中に内包された複数のゼオライト微粒子とから成
る鉛イオン錯体吸着特性を有するキトサン−ゼオライト
複合粒子を提供するものであって、このようなキトサン
−ゼオライト複合粒子は、キトサンの酸性溶液中にゼオ
ライト微粒子を分散させたのち、次にこの溶液を中性ま
たは弱塩基性に変えるか、あるいは、この溶液を塩基性
溶液中に滴下しかきまぜることにより、複数のゼオライ
ト粒子を内包したキトサン粒状体を生成させ、次いでキ
トサンの架橋化を行うことにより製造することができ
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention provides chitosan-zeolite composite particles having a lead ion complex adsorption property comprising crosslinked chitosan granules and a plurality of zeolite fine particles encapsulated therein. Such chitosan-zeolite composite particles are prepared by dispersing zeolite fine particles in an acidic solution of chitosan and then changing the solution to neutral or weakly basic, or dropping the solution into a basic solution. By stirring, chitosan granules containing a plurality of zeolite particles can be produced, and then the chitosan can be produced by crosslinking.
【0007】キトサンは特に制限されず、通常キチンを
脱アセチル化して得られ、その反応条件によって得られ
るキトサンの性質は異なるが、いずれのものでもよい。
ゼオライトは特に制限されず、例えばクリノプチロライ
トやモルデナイトなどの天然ゼオライト、あるいは、A
型、X型、Y型などの合成ゼオライトが用いられる。そ
の粒径は通常100μm以下である。このゼオライト含
有割合は、使用するキトサンの種類、濃度、分散状態等
によって適宜選択される。[0007] Chitosan is not particularly limited, and is usually obtained by deacetylating chitin, and the properties of the obtained chitosan vary depending on the reaction conditions, but any may be used.
The zeolite is not particularly limited. For example, natural zeolites such as clinoptilolite and mordenite, or A
Synthetic zeolites of type, X type and Y type are used. The particle size is usually 100 μm or less. This zeolite content ratio is appropriately selected depending on the type, concentration, dispersion state, etc. of the chitosan used.
【0008】本発明のキトサン−ゼオライト複合粒子を
製造するには、キトサンを塩酸のような無機酸、スルフ
ァミン酸、ギ酸、酢酸、乳酸、リンゴ酸のような有機酸
などの酸性物質の単独または混合物を水性媒体、好まし
くは水より成る溶液に溶解し、キトサン酸性溶液を調製
する。キトサンの濃度はその種類によって異なるが、通
常は3%以下である。このキトサン溶液にゼオライト微
粒子を分散させたのち、この溶液に塩基性物質を例えば
水溶液のような溶液として適当量添加して中性または、
弱塩基性に変えるか、あるいは、この塩基性物質を含む
溶液中に滴下しかきまぜることにより、複数のゼオライ
ト微粒子を内包したキトサン粒状体を生成させる。この
塩基性物質としては、例えば水酸化ナトリウム、水酸化
カリウム、炭酸ナトリウム、アンモニアなどを挙げるこ
とができる。ゼオライト微粒子はキトサン酸性溶液によ
く分散させた状態として、これに塩基性物質の溶液と接
触させることが好ましいので、キトサン酸性溶液中への
塩基性物質の添加あるいは塩基性物質溶液中へのキトサ
ン酸性溶液の滴下は通常かき混ぜや振りまぜしながら行
われる。In order to produce the chitosan-zeolite composite particles of the present invention, chitosan is used alone or as a mixture of an acidic substance such as an inorganic acid such as hydrochloric acid and an organic acid such as sulfamic acid, formic acid, acetic acid, lactic acid and malic acid. Is dissolved in an aqueous medium, preferably a solution comprising water, to prepare a chitosan acidic solution. The concentration of chitosan varies depending on the type, but is usually 3% or less. After dispersing zeolite fine particles in this chitosan solution, a basic substance is added to this solution as a solution such as an aqueous solution in an appropriate amount, for example, neutral or
The chitosan granules containing a plurality of zeolite fine particles are generated by changing to weak basicity or by dripping into a solution containing the basic substance. Examples of the basic substance include sodium hydroxide, potassium hydroxide, sodium carbonate, and ammonia. It is preferable that the zeolite fine particles are well dispersed in the chitosan acidic solution, and it is preferable that the zeolite particles be brought into contact with a solution of a basic substance, so that the addition of the basic substance to the chitosan acidic solution or the chitosan acidification into the basic substance solution The dropping of the solution is usually performed while stirring or shaking.
【0009】次に、このようにして得られるゼオライト
微粒子内包キトサン粒状体を架橋化させるが、この反応
は、通常は架橋剤を用いて行われる。この際に用いられ
る架橋剤としては、例えばグルタールアルデヒド、エピ
クロロヒドリン、ヘキサメチレンジイソシアネートなど
を挙げることができる。架橋剤の使用量は、通常はキト
サンのグルコサミン残基1モルに対し、0.5〜10モ
ルの範囲で選ばれる。架橋化反応後、その生成物は、溶
媒等を分離して洗浄を繰り返して精製し、乾燥して所望
濃度のキトサン−ゼオライト複合粒子を得ることができ
る。Next, the thus obtained chitosan granules enclosing zeolite fine particles are crosslinked, and this reaction is usually carried out using a crosslinking agent. Examples of the crosslinking agent used at this time include glutaraldehyde, epichlorohydrin, hexamethylene diisocyanate and the like. The amount of the crosslinking agent to be used is usually selected in the range of 0.5 to 10 mol per mol of glucosamine residue of chitosan. After the cross-linking reaction, the product can be purified by repeating washing, separating the solvent and the like, and dried to obtain a desired concentration of chitosan-zeolite composite particles.
【0010】[0010]
実施例1 架橋化キトサン−ゼオライト複合体の作製 脱アセチル化度94%のキトサン200g を0.005
規定塩酸2000mlに溶解し、平均粒径35μm、陽イ
オン交換容量160meq /100g の天然ゼオライト
(秋田県二ツ井産)50g を加え分散させたのち、30
0rpm でよくかき混ぜながら1規定NaOH 30mlを
徐々に滴下し、キトサンを凝集沈降させた。さらにグル
タールアルデヒド0.8g を加えて5時間撹拌した。生
成物をろ過後、脱イオン水でよく洗浄し、乾燥して架橋
化キトサン−ゼオライト複合体507g (収率96%)
を得た。顕微鏡観察により、複合体はゼオライト微粒子
が架橋化キトサン中に内包された構造を有することが確
認された。Example 1 Preparation of crosslinked chitosan-zeolite complex 200 g of chitosan having a degree of deacetylation of 94% was 0.005.
Dissolve in 2,000 ml of normal hydrochloric acid, add 50 g of natural zeolite (Futtsui, Akita) having an average particle size of 35 μm and a cation exchange capacity of 160 meq / 100 g, and disperse.
While stirring well at 0 rpm, 30 ml of 1N NaOH was gradually added dropwise to coagulate and sediment the chitosan. Further, 0.8 g of glutaraldehyde was added and stirred for 5 hours. The product is filtered, washed well with deionized water, dried and 507 g of a crosslinked chitosan-zeolite complex (96% yield).
I got Microscopic observation confirmed that the composite had a structure in which zeolite fine particles were included in crosslinked chitosan.
【0011】実施例2 鉛イオン錯体に対する吸着特性 半田めっき用フェノールスルホン酸鉛(鉛錯イオン20
00ppm 含有)を脱イオン水で希釈し、鉛錯イオンを1
0、30、50ppm 含むモデル廃水を調整した。それぞ
れのモデル廃水50ml に実施例1で作製した複合体1
00g を加え、3時間撹拌後複合体をろ別し、ろ液をそ
のままあるいは希釈し、残存鉛イオン濃度を原子吸光分
析装置で測定した。比較のため、実施例1で用いたキト
サンと天然ゼオライトそれぞれについても同様の吸着実
験を行った。結果を図1に示す。天然ゼオライト及びキ
トサンそれぞれ単独では鉛錯イオンの吸着率は90%止
まりであるのに対しゼオライト−キトサン複合体はほぼ
100%の吸着率を示した。Example 2 Adsorption characteristics for lead ion complex Lead phenolsulfonate for solder plating (lead complex ion 20
(Containing 100 ppm) with deionized water to remove 1
Model wastewater containing 0, 30, and 50 ppm was prepared. Complex 1 prepared in Example 1 was added to 50 ml of each model wastewater.
After stirring for 3 hours, the complex was filtered off, and the filtrate was directly or diluted, and the concentration of residual lead ions was measured with an atomic absorption spectrometer. For comparison, the same adsorption experiment was performed for each of chitosan and natural zeolite used in Example 1. The results are shown in FIG. The natural zeolite and chitosan alone had an adsorption rate of lead complex ions of only 90%, whereas the zeolite-chitosan composite showed an adsorption rate of almost 100%.
【0012】実施例3 カラム処理による鉛錯イオンの
吸着 実施例2で用いた半田めっき用フエノールスルホン酸鉛
(鉛錯イオン2000ppm 含有)を脱イオン水で200
倍に希釈し、鉛錯イオンを10ppm 含むモデル廃水を調
整した。カラム管にキトサン−ゼオライト複合体を充填
し、モデル廃水を適当な流量で通過させた。それぞれの
流量ごとに流出液の残存鉛イオン濃度を原子吸光分析装
置で測定した。比較のため、実施例1で用いたキトサン
と天然ゼオライトそれぞれについても同様の吸着実験を
行った。結果を図2に示す。天然ゼオライトは、バッチ
処理(実施例2)では高い吸着能を示したが連続処理で
はわずかな流量でも吸着性能が落ちる。これに対して、
キトサン−ゼオライト複合体の鉛イオン吸着能力は非常
に高く、1kgの複合体で1時間当たり100m3 以上
の廃水を処理する能力を示した。Example 3 Adsorption of Lead Complex Ion by Column Treatment The lead phenolsulfonate for solder plating (containing 2000 ppm of lead complex ion) used in Example 2 was deionized with 200 parts of deionized water.
It was diluted by a factor of two to prepare a model wastewater containing 10 ppm of lead complex ions. The column tube was filled with the chitosan-zeolite complex, and the model wastewater was passed at an appropriate flow rate. The residual lead ion concentration of the effluent was measured by an atomic absorption spectrometer at each flow rate. For comparison, similar adsorption experiments were performed on each of chitosan and natural zeolite used in Example 1. The results are shown in FIG. Natural zeolite showed high adsorption capacity in batch processing (Example 2), but in continuous processing, adsorption performance was reduced even at a small flow rate. On the contrary,
The lead ion adsorption capacity of the chitosan-zeolite composite was very high, demonstrating the ability to treat over 100 m 3 of wastewater per hour with 1 kg of the composite.
【0013】[0013]
【発明の効果】本発明のキトサン−ゼオライト複合粒子
は、従来処理不可能だった錯体を形成している鉛イオン
の処理を可能にするので、半田めっき廃水のような鉛イ
オン錯体を含む廃水の効果的な処理が可能となる。更
に、鉛イオン錯体に対する吸着速度が速く、連続処理な
どの効率的な処理ができるという効果がある。Industrial Applicability The chitosan-zeolite composite particles of the present invention enable the treatment of a lead ion which forms a complex which could not be conventionally treated, so that waste water containing a lead ion complex such as solder plating waste water can be treated. Effective processing becomes possible. Further, there is an effect that the adsorption speed for the lead ion complex is high and efficient treatment such as continuous treatment can be performed.
【図1】鉛錯イオン濃度と吸着率との関係を示す。FIG. 1 shows the relationship between lead complex ion concentration and adsorption rate.
【図2】カラム処理における流量と鉛錯イオン処理量と
の関係を示す。FIG. 2 shows the relationship between the flow rate in column processing and the amount of lead complex ion processed.
なし。 None.
フロントページの続き (51)Int.Cl.6 識別記号 FI // C07F 7/24 C07F 7/24 (72)発明者 工藤 素 秋田県秋田市新屋町字砂奴寄4番地の11 秋田県工業技術センター内Continuation of the front page (51) Int.Cl. 6 Identification symbol FI // C07F 7/24 C07F 7/24 (72) Inventor Motoshi Kudo 4-11, Sanya-cho, Shinyacho, Akita City, Akita Prefecture 11 Akita Industrial Technology In the center
Claims (3)
ト微粒子を内包し鉛イオン錯体吸着特性を有するキトサ
ン−ゼオライト複合粒子。1. Chitosan-zeolite composite particles having a plurality of zeolite fine particles encapsulated in a crosslinked chitosan granule and having lead ion complex adsorption characteristics.
子を分散させたのち、この溶液を中性または弱塩基性に
変えることにより複数のゼオライト微粒子を内包したキ
トサン粒状体を生成させ、次いでキトサンの架橋化を行
うことを特徴とする請求項1記載のキトサン−ゼオライ
ト複合粒子の製造方法。2. Dispersing zeolite fine particles in an acidic solution of chitosan, changing the solution to neutral or weakly basic to produce chitosan granules containing a plurality of zeolite fine particles, and then cross-linking the chitosan The method for producing chitosan-zeolite composite particles according to claim 1, wherein
子を分散させたのち、この溶液を塩基性溶液中に滴下
し、かき混ぜることにより複数のゼオライト微粒子を内
包したキトサン粒状体を生成させ、次いでキトサンの架
橋化を行うことを特徴とする請求項1記載のキトサン−
ゼオライト複合粒子の製造方法。3. After dispersing the zeolite fine particles in an acidic solution of chitosan, the solution is dropped into a basic solution and stirred to form chitosan granules containing a plurality of zeolite fine particles, and then the chitosan is dispersed. The chitosan according to claim 1, wherein crosslinking is performed.
A method for producing zeolite composite particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17306897A JPH11556A (en) | 1997-06-12 | 1997-06-12 | Chitosan-zeolite composite and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17306897A JPH11556A (en) | 1997-06-12 | 1997-06-12 | Chitosan-zeolite composite and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11556A true JPH11556A (en) | 1999-01-06 |
Family
ID=15953623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17306897A Pending JPH11556A (en) | 1997-06-12 | 1997-06-12 | Chitosan-zeolite composite and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11556A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004110619A1 (en) * | 2003-06-19 | 2004-12-23 | Sogang University Corporation | Process for preparing porous hybrid comprising zeolite and chitosan and porous hybrid prepared thereby |
CN104971701A (en) * | 2014-04-01 | 2015-10-14 | 上海工程技术大学 | Polysaccharide modified natural zeolite suspension solution as well as preparation method and application thereof |
CN110833135A (en) * | 2019-11-04 | 2020-02-25 | 大连海洋大学 | Method for removing heavy metals in shellfish enzymolysis liquid |
CN114716016A (en) * | 2022-03-31 | 2022-07-08 | 杭州珊瑚环境科技有限公司 | Water body sediment remediation method and water body purification ecological material adopted by same |
JP2022130894A (en) * | 2021-02-26 | 2022-09-07 | 熊本県 | Composite particle, method for producing the same, polishing material, and polishing liquid |
-
1997
- 1997-06-12 JP JP17306897A patent/JPH11556A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004110619A1 (en) * | 2003-06-19 | 2004-12-23 | Sogang University Corporation | Process for preparing porous hybrid comprising zeolite and chitosan and porous hybrid prepared thereby |
GB2419588A (en) * | 2003-06-19 | 2006-05-03 | Univ Sogang Corp | Process for preparing porous hybrid comprising zeolite and chitosan and porous hybrid prepared thereby |
JP2007528334A (en) * | 2003-06-19 | 2007-10-11 | インダストリー−ユニバーシティ コオペレーション ファウンデーション ソギャン ユニバーシティ | Method for producing porous hybrid in which zeolite and chitosan are chemically bonded, and porous hybrid produced thereby |
GB2419588B (en) * | 2003-06-19 | 2008-02-20 | Univ Sogang Corp | Process for preparing porous hybrid comprising zeolite and chitosan |
JP4818105B2 (en) * | 2003-06-19 | 2011-11-16 | インダストリー−ユニバーシティ コオペレーション ファウンデーション ソギャン ユニバーシティ | Method for producing porous hybrid in which zeolite and chitosan are chemically bonded, and porous hybrid produced thereby |
CN104971701A (en) * | 2014-04-01 | 2015-10-14 | 上海工程技术大学 | Polysaccharide modified natural zeolite suspension solution as well as preparation method and application thereof |
CN110833135A (en) * | 2019-11-04 | 2020-02-25 | 大连海洋大学 | Method for removing heavy metals in shellfish enzymolysis liquid |
CN110833135B (en) * | 2019-11-04 | 2023-07-07 | 大连海洋大学 | Method for removing heavy metals in shellfish enzymolysis liquid |
JP2022130894A (en) * | 2021-02-26 | 2022-09-07 | 熊本県 | Composite particle, method for producing the same, polishing material, and polishing liquid |
CN114716016A (en) * | 2022-03-31 | 2022-07-08 | 杭州珊瑚环境科技有限公司 | Water body sediment remediation method and water body purification ecological material adopted by same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107952416B (en) | Shell powder chitosan composite microsphere for adsorbing heavy metals and preparation method thereof | |
Schmuhl et al. | Adsorption of Cu (II) and Cr (VI) ions by chitosan: Kinetics and equilibrium studies | |
Kawamura et al. | Adsorption of metal ions on polyaminated highly porous chitosan chelating resin | |
US6200482B1 (en) | Arsenic filtering media | |
CN112236225A (en) | Modified polyamines grafted onto particulate solid supports as adsorbent materials for the removal of target substances from fluids | |
JPS6215252B2 (en) | ||
CN101347719A (en) | Chitosan/sheet silicate nano compound stephanoporate crosslinked microsphere sorbent and preparation method thereof | |
CN102350324A (en) | Multifunctional composite adsorbent, and preparation method and application thereof | |
Parhizgar et al. | Removing sodium dodecyl benzene sulfonate (SDBS) from aqueous solutions using chitosan | |
CN104707573B (en) | Preparation method of cadmium removal agent of thiolated chitosan microsphere | |
CN102078792B (en) | Synthesis method and application of nano-titanium dioxide for adsorption of heavy metals | |
JP6989930B2 (en) | Polyaniline Conductive polymer is doped with organic acids and metal ions in a certain order, a method for producing an antibacterial and heavy metal removing polyaniline composite, and a polyaniline composite produced by the method. | |
CN110564977A (en) | Method for recovering nickel resource from chemical nickel waste liquid | |
Karthika et al. | Removal of Hg (II) ions from aqueous solution by Acid Acrylic Resin: A Study through Adsorption isotherms Analysis | |
WO2022210847A1 (en) | Lithium-containing solution production method | |
CN107159157A (en) | Contain heavy metal ion blotting cross-linked chitosan nano fibrous membrane and preparation method thereof | |
JPH11556A (en) | Chitosan-zeolite composite and its production | |
TW201906790A (en) | Adsorption method | |
CN116832788A (en) | ZIF-67 loaded sulfhydryl modified chitosan gel adsorbent and preparation and application thereof | |
KR20200092080A (en) | Method for preparing a composition for adsorbing cesium using chitin | |
CN113578279A (en) | Wastewater treatment method based on beta-lactoglobulin | |
CN1251973C (en) | Method of treating reduction water of DSD acid producing process by ion exchange adsoption | |
JEON | Mercury ion removal using a packed-bed column with granular aminated chitosan | |
JP5142490B2 (en) | Water treatment method | |
CN112076730A (en) | Dye wastewater decolorizer and preparation method and application thereof |