JPH049544B2 - - Google Patents

Info

Publication number
JPH049544B2
JPH049544B2 JP63045856A JP4585688A JPH049544B2 JP H049544 B2 JPH049544 B2 JP H049544B2 JP 63045856 A JP63045856 A JP 63045856A JP 4585688 A JP4585688 A JP 4585688A JP H049544 B2 JPH049544 B2 JP H049544B2
Authority
JP
Japan
Prior art keywords
fluid
housing
blood
hollow fiber
fiber membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63045856A
Other languages
Japanese (ja)
Other versions
JPH01221167A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4585688A priority Critical patent/JPH01221167A/en
Publication of JPH01221167A publication Critical patent/JPH01221167A/en
Publication of JPH049544B2 publication Critical patent/JPH049544B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、人工肺、人工腎臓等の中空糸膜型流
体処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hollow fiber membrane type fluid treatment device such as an artificial lung or an artificial kidney.

[従来の技術] 一般に、胸部手術等を行なう時、人工肺を用い
て体外血液循環回路を構成し、人工肺によつて血
液に対する二酸化炭素と酸素とのガス交換を行な
う。また、腎機能の低下時、人工腎臓を用いて透
析回路を構成し、人工腎臓によつて血液のろ過を
行なう。
[Prior Art] Generally, when performing thoracic surgery, etc., an extracorporeal blood circulation circuit is constructed using an artificial lung, and gas exchange of carbon dioxide and oxygen with the blood is performed by the artificial lung. Furthermore, when renal function declines, a dialysis circuit is constructed using an artificial kidney, and blood is filtered by the artificial kidney.

従来、上記人工肺、人工腎臓等として、「膜の
内側を第一の流体(例えば酸素を含むガス)の流
路とし、外側を第二の流体(例えば血液)の流路
とし、膜を介して流体の処理を行なう中空糸膜が
複数本束ねられてなる中空糸膜束と、該中空糸膜
束を収納した筒状のハウジングと、前記第一の流
体流路の上流側及び下流側にそれぞれ設けられた
第一の流体流入口ならびに第一の流体流出口と、
前記第二の流体流路の上流側及び下流側にそれぞ
れ設けられた第二の流体流入口ならびに第二の流
体流出口とを備えてなる中空糸膜型流体処理装
置」が提案されている。
Conventionally, the above-mentioned artificial lungs, artificial kidneys, etc. have been constructed using a method in which the inside of the membrane is a flow path for a first fluid (e.g., gas containing oxygen), the outside is a flow path for a second fluid (e.g., blood), and the membrane is used as a flow path for a second fluid (e.g., blood). a hollow fiber membrane bundle formed by bundling a plurality of hollow fiber membranes for processing fluid; a cylindrical housing housing the hollow fiber membrane bundle; a first fluid inlet and a first fluid outlet, each provided with a first fluid inlet and a first fluid outlet;
A hollow fiber membrane type fluid treatment device comprising a second fluid inlet and a second fluid outlet provided on the upstream and downstream sides of the second fluid flow path has been proposed.

[発明が解決しようとする問題点] ところで、上記中空糸膜型流体処理装置にあつ
ては、中空糸膜束の外側を流れる第二の流体の
ハウジング内での圧力損失を低下させること、
上記第二の流体のハウジング内での流れの状態を
該ハウジングの全域において均一化することが望
まれる。この理由は以下のとおりである。
[Problems to be Solved by the Invention] By the way, in the hollow fiber membrane type fluid treatment device described above, it is possible to reduce the pressure loss within the housing of the second fluid flowing outside the hollow fiber membrane bundle;
It is desirable to equalize the flow state of the second fluid within the housing over the entire area of the housing. The reason for this is as follows.

第二の流体のハウジング内での圧力損失が大
きいと、ハウジング内に第二の流体を送り込む
ための第二の流体の供給圧力が過大となり、
装置の接合部等の破損、第二の流体の成分
(例えば血球)の損傷をともなうおそれがある。
また、第二の流体を患者と装置との落差のみ
にて供給する落差潅流が適用できず、装置の上
流側にポンプを設置する必要を生ずるため、装
置の下流側に拍動流ポンプを設置して生体に対
し安定した返血を確保できず、また第二の流体
に装置内で気泡を巻込むおそれがある。
If the pressure loss of the second fluid within the housing is large, the supply pressure of the second fluid for feeding the second fluid into the housing becomes excessive.
This may cause damage to the joints of the device and damage to components of the second fluid (for example, blood cells).
In addition, head perfusion, which supplies the second fluid only through the head difference between the patient and the device, cannot be applied, and it is necessary to install a pump upstream of the device, so a pulsatile flow pump is installed downstream of the device. Therefore, stable blood return to the living body cannot be ensured, and there is a risk that air bubbles may be drawn into the second fluid within the device.

第二の流体のハウジング内での流れ状態(流
量、流速)が、中空糸膜束のまわり、その軸方
向にて不均一であると、第二の流体が中空糸膜
を介して第一の流体と接触するチヤンスがハウ
ジング内の各所において不均一となり、酸素加
能等の流体処理能が低下する。
If the flow condition (flow rate, flow velocity) of the second fluid in the housing is non-uniform around the hollow fiber membrane bundle in its axial direction, the second fluid flows through the hollow fiber membranes to the first fluid. The chances of contact with the fluid become non-uniform at various locations within the housing, resulting in a decrease in fluid processing performance such as oxygen addition.

本発明は、中空糸膜束の外側を流れる第二の流
体のハウジング内での圧力損失を低下させ、かつ
該第二の流体のハウジング内での流れの状態を該
ハウジングの全域において均一化することを目的
とする。
The present invention reduces the pressure loss within the housing of the second fluid flowing outside the hollow fiber membrane bundle, and equalizes the flow condition of the second fluid within the housing over the entire area of the housing. The purpose is to

[問題点を解決するための手段] 本発明の中空糸膜型流体処理装置は、膜の内側
を第一の流体の流路とし、外側を第二の流体の流
路とし、膜を介して流体の処理を行なう中空糸膜
が複数本束ねられてなる中空糸膜束と、該中空糸
膜束を収納した筒状のハウジングと、前記第一の
流体流路の上流側及び下流側にそれぞれ設けられ
た第一の流体流入口ならびに第一の流体流出口
と、前記第二の流体流路の上流側及び下流側にそ
れぞれ設けられた第二の流体流入口ならびに第二
の流体流出口とを備え、第二の流体流入口は前記
ハウジングの壁面に、複数設けられ、該ハウジン
グの壁面に複数設けられる第二の流体流入口のそ
れぞれが、相互に、該ハウジングの軸方向の同一
直線上とならない位置でかつ該ハウジングの軸方
向に直交する同一面内に設けられるようにしたも
のである。
[Means for Solving the Problems] The hollow fiber membrane type fluid treatment device of the present invention uses the inside of the membrane as a first fluid flow path, the outside as a second fluid flow path, and A hollow fiber membrane bundle formed by bundling a plurality of hollow fiber membranes for processing fluid, a cylindrical housing housing the hollow fiber membrane bundle, and a hollow fiber membrane bundle on the upstream and downstream sides of the first fluid flow path, respectively. A first fluid inlet and a first fluid outlet provided, and a second fluid inlet and a second fluid outlet provided on the upstream and downstream sides of the second fluid flow path, respectively. A plurality of second fluid inlets are provided on the wall of the housing, and each of the plurality of second fluid inlets provided on the wall of the housing is on the same straight line in the axial direction of the housing. The housing is provided in a position that is not in the same position as the housing and in the same plane perpendicular to the axial direction of the housing.

[作 用] 本発明によれば、ハウジングの壁面の複数の
位置のそれぞれに第二の流体流入口が設けられ
るから、第二の流体の処理流量が同じであれ
ば、各流体流入口が分担する流入流量を少なく
することができる。したがつて、ハウジング内
における中空糸膜束の周辺に形成される第二の
流体流路の面積が同じであれば、各流体流入口
から流体流路に流入する該第二の流体の上記流
体流路における流量も少なくなる。ハウジング
内の圧力損失は、流体流路における流量とほぼ
比例関係にあるから、流量の少ないほど圧力損
失を低下させることができる。
[Function] According to the present invention, since the second fluid inlet is provided at each of a plurality of positions on the wall surface of the housing, if the processing flow rate of the second fluid is the same, each fluid inlet will share the load. The inflow flow rate can be reduced. Therefore, if the area of the second fluid flow path formed around the hollow fiber membrane bundle in the housing is the same, the above-mentioned fluid of the second fluid flowing into the fluid flow path from each fluid inlet The flow rate in the channel also decreases. Since the pressure loss within the housing is approximately proportional to the flow rate in the fluid flow path, the lower the flow rate, the lower the pressure loss can be.

上記の如く、第二の流体のハウジング内での
圧力損失を低下させることができるため、ハウ
ジング内に第二の流体を送り込むための第二の
流体の供給圧力を小とすることができ、装置
の接合部等の破損、第二の流体の成分(例え
ば血球)の損傷をともなうおそれを解消でき
る。また、第二の流体を患者と装置との落差
のみにて供給する落差潅流が適用できることと
なり、装置の上流側にポンプを設置する必要が
なくなり、装置の下流側に拍動流ポンプを設置
して生体に対し安定した返血を確保でき、また
第二の流体の装置内で気泡を巻込むおそれも解
消できる。
As described above, since the pressure loss of the second fluid within the housing can be reduced, the supply pressure of the second fluid for feeding the second fluid into the housing can be reduced, and the device It is possible to eliminate the risk of damage to the joints, etc. of the fluid, and damage to components of the second fluid (for example, blood cells). In addition, head perfusion can be applied in which the second fluid is supplied only through the head difference between the patient and the device, eliminating the need to install a pump upstream of the device, and allowing a pulsatile flow pump to be installed downstream of the device. This makes it possible to ensure stable blood return to the living body, and also to eliminate the risk of air bubbles being drawn into the second fluid device.

また、本発明によれば、複数の第二の流体流
入口のそれぞれが分担する流入流量を前述の如
く少なくすることができるため、単一の流体流
入口から多量の第二の流体を集中的に流入せし
める場合に比して、中空糸膜束内に入り込む量
が低減してハウジング内での第二の流体の偏流
傾向を抑制できる。このため、第二の流体のハ
ウジング内での流れの状態を該ハウジングの全
域において均一化できる。
Further, according to the present invention, the inflow flow rate shared by each of the plurality of second fluid inlets can be reduced as described above, so that a large amount of the second fluid can be concentrated from a single fluid inlet. Compared to the case where the second fluid flows into the hollow fiber membrane bundle, the amount of the second fluid flowing into the hollow fiber membrane bundle is reduced, and the tendency of the second fluid to flow unevenly within the housing can be suppressed. Therefore, the state of the flow of the second fluid within the housing can be made uniform over the entire area of the housing.

上記の如く、第二の流体のハウジング内での
流れ状態(流量、流速)が、中空糸膜束のまわ
り、その軸方向にて均一化することができるた
め、第二の流体が中空糸膜を介して第一の流体
と接触するチヤンスがハウジング内の各所にお
いて相互に均一となり、酸素加能等の流体処理
能が向上する。
As described above, the flow state (flow rate, flow velocity) of the second fluid within the housing can be made uniform around the hollow fiber membrane bundle in its axial direction, so that the second fluid flows through the hollow fiber membrane. The chances of contact with the first fluid through the housing become uniform throughout the housing, improving fluid processing performance such as oxygen addition.

また、本発明によれば、上記複数の第二の流
体流入口のそれぞれが、該ハウジングの軸方向
の同一直線上とならない位置に設けられるか
ら、各流体流入口からハウジング内に流入して
中空糸膜束の周囲にまわり込む第二の流体の流
れが、ハウジングの軸まわりに関して相互にず
れることとなる。これにより、各流体流入口か
らハウジング内に供給された第二の流体の流れ
の、該ハウジングの軸方向での重なりが減少せ
しめられ、前述のの圧力損失低下作用を確
実化でき、かつ第二の流体の中空糸膜束まわ
りへの分配をより促進化し、前述のの流れの
均一化作用を確実化できる。
Further, according to the present invention, each of the plurality of second fluid inlets is provided at a position that is not on the same straight line in the axial direction of the housing, so that the fluid flows into the housing from each fluid inlet and becomes hollow. The flows of the second fluid surrounding the thread bundle are offset from each other about the axis of the housing. As a result, the overlap of the second fluid flows supplied into the housing from each fluid inlet in the axial direction of the housing is reduced, the aforementioned pressure loss reduction effect can be ensured, and the second The distribution of the fluid around the hollow fiber membrane bundle can be further promoted, and the above-mentioned flow uniformity effect can be ensured.

また、本発明によれば、上記複数の第二の流
体流入口のそれぞれが、該ハウジングの軸方向
に直交する同一面内に設けられるから、中空糸
膜束の周辺に形成される第二の流体のための環
状の流路をその周方向においてそれら複数の流
体流入口のそれぞれにて区分使用する如くにな
る。このため、流体流入口1本あたりの流路長
さが短くなり、流体に及ぶ流路抵抗の低減に
より前述のの圧力損失低下作用を確実化で
き、かつ各流体流入口の近傍と遠いところで
の流体の流速差が小さくなり前述のの流れの
均一化作用を確実化できる。
Further, according to the present invention, since each of the plurality of second fluid inlets is provided in the same plane perpendicular to the axial direction of the housing, the second fluid inlet formed around the hollow fiber membrane bundle is The annular flow path for fluid is divided in the circumferential direction at each of the plurality of fluid inlets. Therefore, the length of the flow path per fluid inlet is shortened, and by reducing the flow path resistance to the fluid, the aforementioned pressure loss reduction effect can be ensured, and the distance between the near and far side of each fluid inlet can be ensured. The difference in flow velocity of the fluid is reduced, and the above-mentioned flow uniformity effect can be ensured.

[実施例] 第1図は本発明の一実施例に係る中空糸膜型人
工肺を示す半断面図、第2図は第1図の−線
に沿う断面図、第3図は第1図の人工肺を備えた
体外血液循環装置を示す断面図、第4図は第3図
の斜視図である。
[Example] Fig. 1 is a half-sectional view showing a hollow fiber membrane oxygenator according to an embodiment of the present invention, Fig. 2 is a sectional view taken along the - line of Fig. 1, and Fig. 3 is a cross-sectional view of Fig. 1. FIG. 4 is a cross-sectional view showing an extracorporeal blood circulation apparatus equipped with an artificial lung, and FIG. 4 is a perspective view of FIG. 3.

体外血液循環装置10は、第3図、第4図に示
す如く、人工肺11と熱交換器12と貯血槽13
の3者を集約して一体的に構成している。熱交換
器12は、人工肺11の上流側に設置され、2本
の接続管路12A,12Bを介して人工肺11に
接続されている。貯血槽13は、人工肺11の下
流側に設置され、2本の接続管路13A,13B
を介して人工肺11に接続されている。
As shown in FIGS. 3 and 4, the extracorporeal blood circulation device 10 includes an artificial lung 11, a heat exchanger 12, and a blood storage tank 13.
It is an integrated structure that integrates the three parties. The heat exchanger 12 is installed upstream of the oxygenator 11, and is connected to the oxygenator 11 via two connecting pipes 12A and 12B. The blood storage tank 13 is installed downstream of the oxygenator 11, and has two connecting pipes 13A and 13B.
It is connected to the artificial lung 11 via.

人工肺11は、第1図に示すように構成され
る。すなわち、筒状ハウジング15の内部空間に
は、中空糸膜16が複数本束ねられてなる中空糸
膜束17が収納されている。中空糸膜16の両端
部は、該両端部を開口させた状態で隔壁18,1
9を介してハウジング15に液密に保持されてい
る。ハウジング15の両端部には、ヘツダー2
0,21が接合されている。ヘツダー20の内面
と隔壁18とは、中空糸膜16の内部空間(第一
の流体流路)に連通するガス流入室22を画成
し、ヘツダー20には酸素を含むガス(第一の流
体)のガス流入ポート23(第一の流体流入口)
が形成されている。ヘツダー21の内面と隔壁1
9とは、中空糸膜16の内部空間に連通するガス
流出室24を画成し、ヘツダー21には酸素を含
んでいたガスのガス流出ポート25(第一の流体
流出口)が形成されている。すなわち、人工肺1
1にあつてはガス流入ポート23から供給される
酸素、空気等のガスを中空糸膜16内に流通可能
としている。なお、上記ヘツダー21は特に設け
ず、ガス流出室24及びガス流出ポート25を形
成することなく、中空糸膜16から流出するガス
を大気中に直接的に放出せしめても良い。
The artificial lung 11 is constructed as shown in FIG. That is, a hollow fiber membrane bundle 17 formed by bundling a plurality of hollow fiber membranes 16 is housed in the internal space of the cylindrical housing 15 . Both ends of the hollow fiber membrane 16 are connected to partition walls 18 and 1 with both ends opened.
The housing 15 is fluid-tightly held via the housing 9. Headers 2 are provided at both ends of the housing 15.
0 and 21 are joined. The inner surface of the header 20 and the partition wall 18 define a gas inflow chamber 22 that communicates with the internal space (first fluid flow path) of the hollow fiber membrane 16. ) gas inlet port 23 (first fluid inlet)
is formed. Inner surface of header 21 and partition wall 1
9 defines a gas outflow chamber 24 communicating with the internal space of the hollow fiber membrane 16, and the header 21 is formed with a gas outflow port 25 (first fluid outflow port) for gas containing oxygen. There is. That is, artificial lung 1
1, gases such as oxygen and air supplied from the gas inflow port 23 are allowed to flow into the hollow fiber membrane 16. Note that the header 21 may not be particularly provided, and the gas flowing out from the hollow fiber membrane 16 may be directly released into the atmosphere without forming the gas outflow chamber 24 and the gas outflow port 25.

また、隔壁18,19、ハウジング15の内面
及び中空糸膜16の外面とは血液室26(第二の
流体流路)を画成し、ハウジング15の両端側に
は、それぞれ血液室26に連通する、前記接続管
路12A,12Bに連なる2本の血液流入ポート
27A,27B(第二の流体流入口)、及び前記接
続管路13A,13Bに連なる2本の血液流出ポ
ート28A,28B(第二の流体流出口)が形成
されている。すなわち、人工肺11にあつては、
血液(第二の流体)を血液室26において中空糸
膜16の周囲を乱流状態で流通可能としている。
Furthermore, the partition walls 18 and 19, the inner surface of the housing 15, and the outer surface of the hollow fiber membrane 16 define a blood chamber 26 (second fluid flow path), and both ends of the housing 15 are connected to the blood chamber 26, respectively. , two blood inflow ports 27A, 27B (second fluid inlet) connected to the connecting conduits 12A, 12B, and two blood outflow ports 28A, 28B (second fluid inlet) connected to the connecting conduits 13A, 13B. A second fluid outlet) is formed. That is, in the case of the artificial lung 11,
Blood (second fluid) is allowed to flow around the hollow fiber membrane 16 in the blood chamber 26 in a turbulent state.

ここで、上記ハウジング15の血液流入ポート
27A,27Bが設けられている部分の内面は、
ハウジング15の軸方向中間部分の内面より外方
に拡張した内面であつて、中空糸膜16の中空糸
膜束17の外周部との間に、第2図に示すような
環状の血液流路29を形成し、血液流路29が臨
む中空糸膜束17の全周囲から各中空糸膜16に
血液を円滑に分配可能としている。また、上記ハ
ウジング15の拡張された内面は、中空糸膜束1
7に対して血液流入ポート27A,27Bを含む
方向に偏心配置され、血液流入ポート27A,2
7Bを臨む血液流路29の流路面積がより大とさ
れている。すなわち、上記血液流路29の流路面
積を血液流入ポート27A,27Bから遠ざかる
に従つて漸減し、血液流路29からの血液の分配
量を中空糸膜束17の周方向において均一化し、
血液室26内においてハウジング15の軸方向に
向かう血液の流量を、中空糸膜束17の周方向に
関して均一化可能としている。
Here, the inner surface of the portion of the housing 15 where the blood inflow ports 27A, 27B are provided is as follows:
An annular blood flow path as shown in FIG. 2 is provided between the inner surface of the housing 15 extending outward from the inner surface of the axially intermediate portion and the outer circumference of the hollow fiber membrane bundle 17 of the hollow fiber membrane 16. 29, so that blood can be smoothly distributed to each hollow fiber membrane 16 from the entire periphery of the hollow fiber membrane bundle 17 facing the blood flow path 29. Further, the expanded inner surface of the housing 15 is connected to the hollow fiber membrane bundle 1.
7, the blood inflow ports 27A, 2 are eccentrically arranged in a direction including the blood inflow ports 27A, 27B.
The flow path area of the blood flow path 29 facing 7B is larger. That is, the flow area of the blood flow path 29 is gradually decreased as it moves away from the blood inflow ports 27A, 27B, and the amount of blood distributed from the blood flow path 29 is made uniform in the circumferential direction of the hollow fiber membrane bundle 17.
The flow rate of blood in the axial direction of the housing 15 within the blood chamber 26 can be made uniform in the circumferential direction of the hollow fiber membrane bundle 17.

また、上記ハウジング15に設けられる2本の
血液流入ポート27A,27Bのそれぞれは、そ
れらの流線が前記中空糸膜束17の外周面の法線
上に位置することのないように開口されている
(第2図参照)。これにより、各血液流入ポート2
7A,27Bから血液室26に流れ込む血液の流
線が中空糸膜束17の外周面に直交する状態で衝
突するのを回避し、結果として血液が中空糸膜束
17に選択的に集中して流れ込むことなく、該血
液を中空糸膜束17の外面の血液流路29の周方
向に均一に流れ込ませることを可能としている。
Further, each of the two blood inflow ports 27A and 27B provided in the housing 15 is opened so that the streamlines thereof are not located on the normal line of the outer peripheral surface of the hollow fiber membrane bundle 17. (See Figure 2). This allows each blood inflow port 2
The streamlines of blood flowing into the blood chamber 26 from 7A and 27B are prevented from colliding perpendicularly with the outer peripheral surface of the hollow fiber membrane bundle 17, and as a result, the blood is selectively concentrated on the hollow fiber membrane bundle 17. This allows the blood to flow uniformly in the circumferential direction of the blood flow path 29 on the outer surface of the hollow fiber membrane bundle 17 without flowing.

また、上記ハウジング15の血液流出ポート2
8A,28Bが設けられている部分の内面は、ハ
ウジング15の中間部分の内面より外方に拡張し
た内面であつて、中空糸膜16の中空糸膜束17
の外周部との間に、環状の血液流路30を形成
し、各中空糸膜16のまわりの血液を、血液流路
30が臨む中空糸膜束17の全周囲から、円滑に
血液流出ポート28A,28Bに向けて導入可能
としている。また、上記ハウジング15の拡張さ
れた内面は、中空糸膜束17に対して、第2図の
血液流入ポート27A,27Bの側におけると同
様にして、血液流出ポート28A,28Bを含む
方向に偏心配置され、血液流出ポート28A,2
8Bを臨む血液流路30の流路面積をより大とし
ている。すなわち、血液流路30の流路面積を血
液流出ポート28A,28Bに向けて漸増するこ
とにより、ハウジング15の容積を過大として生
体からの体外血液循環量(プライミング容積)を
過多とすることなく、生体の安全を確保する状態
下で、血液流路30への血液の導入量を中空糸膜
束17の周方向において均一化し、血液室26内
においてハウジング15の軸方向に向かう血液の
流量を中空糸膜束17の周方向に関して均一化可
能としている。
In addition, the blood outflow port 2 of the housing 15
The inner surface of the portion where 8A and 28B are provided is an inner surface that expands outward from the inner surface of the intermediate portion of the housing 15, and is the inner surface of the hollow fiber membrane bundle 17 of the hollow fiber membrane 16.
An annular blood flow path 30 is formed between the outer periphery of the hollow fiber membrane 16 and the blood around each hollow fiber membrane 16 is smoothly transferred from the entire periphery of the hollow fiber membrane bundle 17 facing the blood flow path 30 to the blood outflow port. It is possible to introduce it towards 28A and 28B. Further, the expanded inner surface of the housing 15 is eccentric in a direction including the blood outflow ports 28A and 28B with respect to the hollow fiber membrane bundle 17 in the same manner as on the blood inflow ports 27A and 27B side in FIG. blood outflow port 28A, 2
The flow path area of the blood flow path 30 facing 8B is made larger. That is, by gradually increasing the flow path area of the blood flow path 30 toward the blood outflow ports 28A and 28B, the volume of the housing 15 is not made excessive and the extracorporeal blood circulation amount (priming volume) from the living body is not made excessive. Under conditions that ensure the safety of the living body, the amount of blood introduced into the blood flow path 30 is made uniform in the circumferential direction of the hollow fiber membrane bundle 17, and the flow rate of blood in the axial direction of the housing 15 in the blood chamber 26 is made uniform in the circumferential direction of the hollow fiber membrane bundle 17. It is possible to make the thread membrane bundle 17 uniform in the circumferential direction.

また、ハウジング15は、軸方向の中央部にお
ける内径を最小とし、その中央部から両端部にお
ける内径を除々に拡径するテーパ状とし、中空糸
膜束17の外径がハウジング15の内壁に沿つて
変化し、その軸方向の中央部において最も小さく
なるように絞つている。すなわち、人工肺11
は、ハウジング15が加える中空糸膜束17の絞
りにより、中空糸膜束17の横断面における血液
の流れを均一化するとともに、中空糸膜束17の
軸方向における血液の流速を変化させることによ
つて乱流状態の発生を促進し、ガス交換率を良好
化可能としている。
Furthermore, the housing 15 has a tapered shape in which the inner diameter at the center in the axial direction is the minimum, and the inner diameter gradually increases from the center to both ends, so that the outer diameter of the hollow fiber membrane bundle 17 extends along the inner wall of the housing 15. It is narrowed down to its smallest size at the center in the axial direction. That is, the artificial lung 11
By squeezing the hollow fiber membrane bundle 17 applied by the housing 15, the blood flow in the cross section of the hollow fiber membrane bundle 17 is made uniform, and the blood flow velocity in the axial direction of the hollow fiber membrane bundle 17 is changed. This promotes the generation of turbulent flow and makes it possible to improve the gas exchange rate.

ここで、中空糸膜16としてはマイクロポーラ
ス膜が用いられている。すなわち、中空糸膜16
は、多孔性ポリオレフイン系樹脂、例えばポリプ
ロピレン、ポリエチレンといつたものとからな
り、特にポリプロピレンが好適である。この中空
糸膜16は、壁の内部と外部を連通する多数の細
孔を有している。細孔の内径は約100〜1000μ、
肉厚は約10〜50μ、平均孔径は約200〜2000Åか
つ空孔率は20〜80%である。このマイクロポーラ
ス膜からなる中空糸膜16を用いる場合には、気
体の移動が体積流として行なわれるため、気体の
移動における膜抵抗が少なくなり、高いガス交換
性能を得ることが可能となる。なお、中空糸膜1
6は、必ずしもマイクロポーラス膜によらず、気
体の移動を溶解、拡散によつて行なうシリコーン
製膜等を用いるものであつても良い。
Here, a microporous membrane is used as the hollow fiber membrane 16. That is, the hollow fiber membrane 16
is made of a porous polyolefin resin such as polypropylene or polyethylene, with polypropylene being particularly preferred. This hollow fiber membrane 16 has a large number of pores that communicate between the inside and outside of the wall. The inner diameter of the pore is approximately 100-1000μ,
The wall thickness is about 10-50μ, the average pore diameter is about 200-2000Å, and the porosity is 20-80%. When using the hollow fiber membrane 16 made of this microporous membrane, gas movement is performed as a volumetric flow, so the membrane resistance in gas movement is reduced, making it possible to obtain high gas exchange performance. In addition, hollow fiber membrane 1
6 does not necessarily use a microporous membrane, but may use a silicone membrane or the like in which gas movement is performed by dissolution and diffusion.

熱交換器12は、筒状ハウジング31に多数の
熱交換用管体32を収納しており、各管体32の
一方に温水または冷水の給水ポート33を連通
し、各管体32の他端に排水ポート34を連通し
ている。また、ハウジング31には血液供給ポー
ト35が設けられている。これにより、血液供給
ポート35より供給される血液は、管体32の周
囲を通過して所定温度に加温または冷却された
後、前述の接続管路12A,12Bを経て人工肺
11の血液流入ポート27A,27Bから血液流
路29に流れ込む。
The heat exchanger 12 houses a large number of heat exchange tubes 32 in a cylindrical housing 31. One end of each tube 32 is connected to a hot water or cold water supply port 33, and the other end of each tube 32 is connected to a water supply port 33 for hot water or cold water. A drainage port 34 is communicated with the drain port 34. Further, the housing 31 is provided with a blood supply port 35. As a result, the blood supplied from the blood supply port 35 passes around the tube body 32 and is heated or cooled to a predetermined temperature, and then flows into the oxygenator 11 via the aforementioned connection pipes 12A and 12B. It flows into the blood flow path 29 from ports 27A and 27B.

貯血槽13は、前述の接続管路13A,13B
が連なる血液流入ポート36A,36Bを備えて
人工肺11により酸素加された血液を貯血すると
ともに、貯血されていた血液を生体に送出する血
液流出ポート37を備える。なお、38はウレタ
ン消泡剤、39A,39Bは薬液混注口である。
The blood storage tank 13 is connected to the aforementioned connection pipes 13A and 13B.
It is provided with blood inflow ports 36A and 36B connected to each other to store blood that has been oxygenated by the oxygenator 11, and a blood outflow port 37 that sends out the stored blood to the living body. Note that 38 is a urethane antifoaming agent, and 39A and 39B are chemical solution mixing ports.

次に、上記実施例の作用について説明する。 Next, the operation of the above embodiment will be explained.

人工肺は、例えば開心術などにおいて使用され
るもので、血液循環回路の途中に設置される。な
お血液は通常4/minの流量で取り出される。
An artificial lung is used, for example, in open heart surgery, and is installed in the middle of a blood circulation circuit. Note that blood is usually taken out at a flow rate of 4/min.

体外血液循環装置10において、血液供給ポー
ト35から熱交換器12に供給された血液は、熱
交換用管体32の周囲を通つて所定温度に加温ま
たは冷却された後、接続管路12A,12Bを経
て人工肺11の血液流入ポート26A,26Bに
送り込まれる。人工肺11の血液流入ポート27
A,27Bに送り込まれた血液は、血液流路29
から血液室26における中空糸膜束17の周辺を
移動してガス交換され血液流路30を達した後、
血液流出ポート28A,28Bから接続管路13
A,13Bを経て貯血槽13の血液流入ポート3
7A,37Bに送り込まれる。人工肺11におけ
るガス交換にて酸素加された血液は、上記貯血槽
13に貯血され、血液流出ポート37に連なるポ
ンプの作用にて生体に送出される。
In the extracorporeal blood circulation apparatus 10, blood supplied from the blood supply port 35 to the heat exchanger 12 passes around the heat exchange tube body 32, is heated or cooled to a predetermined temperature, and then passes through the connection pipe 12A, The blood is sent to the blood inflow ports 26A and 26B of the oxygenator 11 via the oxygen pump 12B. Blood inflow port 27 of artificial lung 11
The blood sent to A and 27B flows through the blood flow path 29
After moving around the hollow fiber membrane bundle 17 in the blood chamber 26, undergoing gas exchange, and reaching the blood flow path 30,
Connecting conduit 13 from blood outflow ports 28A and 28B
Blood inflow port 3 of blood storage tank 13 via A and 13B
It is sent to 7A and 37B. Blood that has been oxygenated through gas exchange in the artificial lung 11 is stored in the blood storage tank 13, and is sent to the living body by the action of a pump connected to the blood outflow port 37.

しかして、上記実施例によれば、ハウジング
15の壁面の2つの位置のそれぞれに血液流入
ポート27A,27Bが設けられるから、血液
の処理流量が同じであれば、各血液流入ポート
27A,27Bが分担する流入流量を少なくす
ることができる。したがつて、ハウジング15
における中空糸膜束17の周辺に形成される流
体流路29の面積が同じであれば、各血液流入
ポート27A,27Bから流体流路29に流入
する血液の上記流体流路29における流量も少
なくなる。ハウジング15の圧力損失は、血液
流路29における流量とほぼ比例関係にあるか
ら、流量の少ないほど圧力損失を低下させるこ
とができる。
According to the above embodiment, since the blood inflow ports 27A and 27B are provided at two positions on the wall surface of the housing 15, if the blood processing flow rate is the same, each blood inflow port 27A and 27B is provided at two positions on the wall surface of the housing 15. The amount of inflow flow to be shared can be reduced. Therefore, the housing 15
If the area of the fluid flow path 29 formed around the hollow fiber membrane bundle 17 in is the same, the flow rate in the fluid flow path 29 of the blood flowing into the fluid flow path 29 from each blood inflow port 27A, 27B is also small. Become. Since the pressure loss of the housing 15 is approximately proportional to the flow rate in the blood flow path 29, the lower the flow rate, the lower the pressure loss can be.

上記の如く、血液のハウジング15での圧力
損失を低下させることができるため、ハウジン
グ15に血液を送り込むための血液供給圧力を
小とすることができ、装置10の接合部等の
破損、血液の成分(例えば血球)の損傷をと
もなうおそれを解消できる。また、血液を患
者と装置10との落差のみにて供給する落差潅
流が適用できることとなり、装置10の上流側
にポンプを設置する必要がなくなり、装置10
の下流側に拍動流ポンプを設置して生体に対し
安定した返血を確保でき、また血液に装置10
の内部での気泡を巻込むおそれも解消できる。
As described above, since the pressure loss of blood in the housing 15 can be reduced, the blood supply pressure for feeding blood into the housing 15 can be reduced, which can prevent damage to the joints of the device 10, etc. It is possible to eliminate the possibility of damage to components (for example, blood cells). In addition, head perfusion can be applied in which blood is supplied only through the head difference between the patient and the device 10, eliminating the need to install a pump upstream of the device 10.
A pulsatile flow pump can be installed downstream of the device 10 to ensure stable blood return to the living body.
It also eliminates the risk of air bubbles being trapped inside.

また、本発明によれば、2つの血液流入ポー
ト27A,27Bのそれぞれが分担する血液の
流入流路を前述の如く少なくすることができる
ため、単一の血液流入ポートから多量の血液を
集中的に流入せしめる場合に比して、中空糸膜
束17の内部に入り込む血液量が低減してハウ
ジング15の内部での血液の偏流傾向を抑制で
きる。このため、血液のハウジング内での流れ
状態を該ハウジング15の全体において均一化
することができる。
Further, according to the present invention, since the number of blood inflow channels shared by each of the two blood inflow ports 27A and 27B can be reduced as described above, a large amount of blood can be intensively injected from a single blood inflow port. Compared to the case where the blood flows into the hollow fiber membrane bundle 17, the amount of blood that enters the hollow fiber membrane bundle 17 is reduced, and the tendency of blood to drift inside the housing 15 can be suppressed. Therefore, the flow state of blood within the housing can be made uniform throughout the housing 15.

上記の如く、血液のハウジング15の内部で
の流れ状態(流量、流速)が、中空糸膜束17
のまわり及びその軸方向にて均一化できるか
ら、血液が中空糸膜16を介して酸素を含むガ
スと接触するチヤンスがハウジング15の内部
の各所において相互に均一となり、酸素加能を
向上できる。
As described above, the flow state (flow rate, flow velocity) of blood inside the housing 15 is controlled by the hollow fiber membrane bundle 17.
Since the blood can be made uniform around the housing 15 and in its axial direction, the chances of the blood coming into contact with the oxygen-containing gas through the hollow fiber membrane 16 are uniform throughout the interior of the housing 15, and oxygenation can be improved.

なお、上記実施例においては、2つの血液流
入ポート27A,27Bをハウジング15の軸
方向の同一直線上とならない位置に設けたの
で、各ポート27A,27Bからハウジング1
5の内部に流入して中空糸膜束17の周囲にま
わり込む血液の流れが、ハウジング15の軸ま
わりに関して相互にずれることとなる。これに
より、各ポート27A,27Bからハウジング
15の内部に供給された血液の流れの、該ハウ
ジング15の軸方向での重なりが減少せしめら
れ、前述のの圧力損失低下作用を確実化で
き、かつ血液の中空糸膜束17まわりへの分
配をより促進化し、前述のの流れの均一化作
用を確実化できる。
In the above embodiment, since the two blood inflow ports 27A and 27B are provided at positions that are not on the same straight line in the axial direction of the housing 15, the housing 1
Flows of blood flowing into the inside of the housing 15 and surrounding the hollow fiber membrane bundle 17 are shifted from each other about the axis of the housing 15. This reduces the overlapping of the blood flows supplied into the housing 15 from the respective ports 27A, 27B in the axial direction of the housing 15, ensuring the aforementioned pressure loss reduction effect, and The distribution around the hollow fiber membrane bundle 17 can be further promoted, and the above-mentioned flow uniformity effect can be ensured.

また、上記実施例においては、2つの血液流
入ポート27A,27Bがハウジング15の軸
方向に直交する同一面内に設けられるから、中
空糸膜束17の周辺に形成される環状の血液流
路29をその周方向においてそれら2つのポー
ト27A,27Bのそれぞれに区分使用する如
くになる。このため、各ポート27A,27B
の1本あたりの、血液流路29の流路長さが短
くなり、血液に及ぶ流路抵抗の低減により前
述のの圧力損失低下作用を確実化でき、かつ
各ポート27A,27Bの近傍と遠いところ
での血液の流速差が小さくなり前述のの流れ
の均一化作用を確実化できる。
Further, in the above embodiment, since the two blood inflow ports 27A and 27B are provided in the same plane perpendicular to the axial direction of the housing 15, the annular blood flow path 29 formed around the hollow fiber membrane bundle 17 are used separately for each of the two ports 27A and 27B in the circumferential direction. Therefore, each port 27A, 27B
The flow path length of each blood flow path 29 is shortened, and the above-mentioned pressure loss reduction effect can be ensured by reducing the flow path resistance to the blood. By the way, the difference in blood flow velocity is reduced, and the above-mentioned flow uniformity effect can be ensured.

[発明の効果] 本発明によれば、中空糸膜束の外側を流れる第
二の流体のハウジング内での圧力損失を低下さ
せ、かつ該第二の流体のハウジング内での流れの
状態を該ハウジングの全域において均一化するこ
とができる。
[Effects of the Invention] According to the present invention, the pressure loss within the housing of the second fluid flowing outside the hollow fiber membrane bundle is reduced, and the flow state of the second fluid within the housing is reduced. It can be made uniform over the entire area of the housing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る中空糸膜型人
工肺を示す半断面図、第2図は第1図の−線
に沿う断面図、第3図は第1図の人工肺を備えた
体外血液循環装置を示す断面図、第4図は第3図
の斜視図である。 11…人工肺、15…ハウジング、16…中空
糸膜、17…中空糸膜束、23…ガス流入ポート
(第一の流体流入口)、25…ガス流出ポート(第
一の流出流入口)、26…血液室(第二の流体流
路)、27A,27B…血液流入ポート(第二の
流体流入口)、28A,28B…血液流出ポート
(第二の流体流出口)。
FIG. 1 is a half-sectional view showing a hollow fiber membrane oxygenator according to an embodiment of the present invention, FIG. 2 is a sectional view taken along the - line in FIG. 1, and FIG. FIG. 4 is a cross-sectional view showing the extracorporeal blood circulation device provided, and FIG. 4 is a perspective view of FIG. 3. DESCRIPTION OF SYMBOLS 11... Oxygenator, 15... Housing, 16... Hollow fiber membrane, 17... Hollow fiber membrane bundle, 23... Gas inflow port (first fluid inlet), 25... Gas outflow port (first outflow/inflow port), 26... Blood chamber (second fluid flow path), 27A, 27B... Blood inflow port (second fluid inlet), 28A, 28B... Blood outflow port (second fluid outlet).

Claims (1)

【特許請求の範囲】[Claims] 1 膜の内側を第一の流体の流路とし、外側を第
二の流体の流路とし、膜を介して流体の処理を行
なう中空糸膜が複数本束ねられてなる中空糸膜束
と、該中空糸膜束を収納した筒状のハウジング
と、前記第一の流体流路の上流側及び下流側にそ
れぞれ設けられた第一の流体流入口ならびに第一
の流体流出口と、前記第二の流体流路の上流側及
び下流側にそれぞれ設けられた第二の流体流入口
ならびに第二の流体流出口とを備え、第二の流体
流入口は前記ハウジングの壁面に、複数設けら
れ、該ハウジングの壁面に複数設けられる第二の
流体流入口のそれぞれが、相互に、該ハウジング
の軸方向の同一直線上とならない位置でかつ該ハ
ウジングの軸方向に直交する同一面内に設けられ
ることを特徴とする中空糸膜型流体処理装置。
1. A hollow fiber membrane bundle formed by bundling a plurality of hollow fiber membranes in which the inside of the membrane serves as a flow path for a first fluid, the outside serves as a flow path for a second fluid, and fluid is processed through the membrane; a cylindrical housing housing the hollow fiber membrane bundle; a first fluid inlet and a first fluid outlet provided on the upstream and downstream sides of the first fluid flow path; and the second fluid flow path. a second fluid inlet and a second fluid outlet provided on the upstream and downstream sides of the fluid flow path of the housing, a plurality of second fluid inlets are provided on the wall surface of the housing, and a plurality of second fluid inlets are provided on the wall surface of the housing; The plurality of second fluid inlets provided on the wall surface of the housing are provided at positions that are not on the same straight line in the axial direction of the housing and in the same plane perpendicular to the axial direction of the housing. Characteristic hollow fiber membrane fluid treatment device.
JP4585688A 1988-03-01 1988-03-01 Hollow fiber membrane type fluid treating device Granted JPH01221167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4585688A JPH01221167A (en) 1988-03-01 1988-03-01 Hollow fiber membrane type fluid treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4585688A JPH01221167A (en) 1988-03-01 1988-03-01 Hollow fiber membrane type fluid treating device

Publications (2)

Publication Number Publication Date
JPH01221167A JPH01221167A (en) 1989-09-04
JPH049544B2 true JPH049544B2 (en) 1992-02-20

Family

ID=12730849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4585688A Granted JPH01221167A (en) 1988-03-01 1988-03-01 Hollow fiber membrane type fluid treating device

Country Status (1)

Country Link
JP (1) JPH01221167A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256795A (en) * 1975-11-01 1977-05-10 Nippon Zeon Co Hollow yarn membrane moving device
JPS52125474A (en) * 1976-04-15 1977-10-21 Nippon Zeon Co Ltd Hollow fiber shape film carrying apparatus
JPS61247465A (en) * 1985-04-25 1986-11-04 三菱レイヨン株式会社 Hollow yarn membrane type artificial lung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256795A (en) * 1975-11-01 1977-05-10 Nippon Zeon Co Hollow yarn membrane moving device
JPS52125474A (en) * 1976-04-15 1977-10-21 Nippon Zeon Co Ltd Hollow fiber shape film carrying apparatus
JPS61247465A (en) * 1985-04-25 1986-11-04 三菱レイヨン株式会社 Hollow yarn membrane type artificial lung

Also Published As

Publication number Publication date
JPH01221167A (en) 1989-09-04

Similar Documents

Publication Publication Date Title
US20210346581A1 (en) Blood oxygenator
JP7393327B2 (en) Dual chamber gas exchanger for breathing assistance and how to use it
EP0176651B1 (en) Heat exchanger and blood oxygenating device furnished therewith
US5043140A (en) Blood oxygenator
US10610629B2 (en) Device with inlet portion for treating a biological liquid
US4354933A (en) Implantable artificial kidney
TWI815547B (en) Integrated membrane oxygenator
JPH049544B2 (en)
JPH0448065B2 (en)
JP2013202267A (en) Hollow-fiber membrane type oxygenator
JP4114020B2 (en) Extracorporeal blood circulation apparatus having gas heat exchange means
JPH0345735Y2 (en)
JPH0223309Y2 (en)
JP3497245B2 (en) Heat exchanger and heat exchange fluid supply device
US20220176024A1 (en) Oxygenator with pressure relief and sampling
JPS6243565Y2 (en)
JP2023552778A (en) membrane gas exchanger
WO2024159000A2 (en) Blood gas exchanger for multifunctional respiratory support
JPS63267367A (en) Hollow yarn type oxygenator
JPH08141074A (en) Artificial lung and artificial lung with heat exchanger
JPH0999065A (en) Artificial heart/lungs system and artificial lungs with blood tank
JPH0424064B2 (en)
JPH04129565A (en) Hollow yarn model oxygenator
JPH04114348U (en) Hollow fiber oxygenator
JPS63267366A (en) Hollow yarn type oxygenator