JPH0223309Y2 - - Google Patents

Info

Publication number
JPH0223309Y2
JPH0223309Y2 JP11676587U JP11676587U JPH0223309Y2 JP H0223309 Y2 JPH0223309 Y2 JP H0223309Y2 JP 11676587 U JP11676587 U JP 11676587U JP 11676587 U JP11676587 U JP 11676587U JP H0223309 Y2 JPH0223309 Y2 JP H0223309Y2
Authority
JP
Japan
Prior art keywords
blood
heat exchange
circulation space
tube
blood circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11676587U
Other languages
Japanese (ja)
Other versions
JPS6422355U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11676587U priority Critical patent/JPH0223309Y2/ja
Priority to EP88401641A priority patent/EP0297970B1/en
Priority to EP92116352A priority patent/EP0524662B1/en
Priority to AU18442/88A priority patent/AU607778B2/en
Priority to KR1019880007847A priority patent/KR910003359B1/en
Publication of JPS6422355U publication Critical patent/JPS6422355U/ja
Application granted granted Critical
Publication of JPH0223309Y2 publication Critical patent/JPH0223309Y2/ja
Priority to US07/876,899 priority patent/US5294397A/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は医療用熱交換器に関するものである。
詳しく述べると本考案は、体外循環において体外
へ導出された血液を所望の温度に維持するために
用いられる医療用熱交換器に関するものである。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention relates to a medical heat exchanger.
Specifically, the present invention relates to a medical heat exchanger used to maintain blood discharged outside the body at a desired temperature during extracorporeal circulation.

(従来の技術) 体外循環は、一般に心臓手術、特に開心術の補
助的手段として用いられている。開心術の補助的
手段としての体外循環においては、体内より脱血
された血液が人工肺へと送られ酸素加されて再び
体内へと返還されるが、例えば、小児の複雑心奇
形や成人での大動脈瘤手術においては、超低体温
体外循環もしくは中等度体温体外循環法などが採
用されており、体外へと導き出された血液を冷却
することが行なわれていた。このように体外循環
においては、体外に導出された血液を一定温度に
保持する、あるいは冷却ないしは加温することが
必要とされ、この目的のため従来より体外循環回
路中には熱交換器が設けられている。
BACKGROUND OF THE INVENTION Extracorporeal circulation is commonly used as an adjunct to cardiac surgery, particularly open heart surgery. In extracorporeal circulation, which is used as an auxiliary method for open heart surgery, blood is removed from the body, sent to an oxygenator, oxygenated, and returned to the body. In aortic aneurysm surgery, ultra-hypothermic extracorporeal circulation or moderate-thermal extracorporeal circulation was used to cool the blood drawn outside the body. In this way, in extracorporeal circulation, it is necessary to maintain the blood discharged outside the body at a constant temperature, or to cool or heat it, and for this purpose, heat exchangers have traditionally been installed in the extracorporeal circulation circuit. It is being

体外循環回路に用いられる熱交換器101とし
ては、各種のタイプのものが開発されているが、
例えば、第6〜7図に示すように、第1流体流通
空間102内に該第1流体流通空間102とは液
密に区画された第2流体流通空間となる内部空間
103を有する多数の熱交換用管体104が該第
1流体流通空間102の長手方向に沿つて配置さ
れてなる多管型熱交換器は、熱交換効率が高く非
常にコンパクトなものに設計可能であるため医療
用熱交換器として有望なものである。なお第1流
体流通空間102が円筒状のものとなされた場
合、第1流体流通空間102に第1流体を導入す
る第1流体導入管105および第1流体流通空間
102より第1流体を導出する第1流体導出管1
06は、第6〜7図に示すように、第1流体流通
空間102の軸直角断面の中心部を通る直線にほ
ぼ沿つて外部よりそれぞれ延長されて第1流体流
通空間102に連通されているものとされてい
る。
Various types of heat exchangers 101 have been developed for use in extracorporeal circulation circuits.
For example, as shown in FIGS. 6 and 7, the first fluid circulation space 102 has a large number of heat exchangers, each having an internal space 103 that becomes a second fluid circulation space that is liquid-tightly partitioned from the first fluid circulation space 102. The multi-tubular heat exchanger in which the exchange tubes 104 are arranged along the longitudinal direction of the first fluid circulation space 102 has high heat exchange efficiency and can be designed to be very compact, so it is suitable for medical heat. It is promising as an exchanger. Note that when the first fluid circulation space 102 is cylindrical, the first fluid is led out from the first fluid introduction pipe 105 that introduces the first fluid into the first fluid circulation space 102 and the first fluid circulation space 102. First fluid outlet pipe 1
06 are extended from the outside and communicated with the first fluid circulation space 102 approximately along a straight line passing through the center of the cross section perpendicular to the axis of the first fluid circulation space 102, as shown in FIGS. It is considered a thing.

このような多管型熱交換器101を用いて血液
と熱交換媒体との間で熱交換を行なう際、第1流
体流通空間102に熱交換媒体を流通し、第2流
体流通空間、すなわち、熱交換用管体104の内
部空間103に血液を流通させると、血液を熱交
換媒体に対して比較的均一に分布させかつ比較的
一定の接触時間を保ち得るために全ての血液に対
しほぼ均等な熱交換を行なうことができるが、血
液導入における圧力損失が高くまた体外循環が長
時間にわたる場合においては熱交換用管体104
の内部空間103で血液の凝固が生じ熱交換用管
体103の閉塞ないしは狭窄の恐れも高いものと
なつてしまうものであつた。これとは逆に、第1
流体流通空間102に血液を流通させ、第2流体
流通空間、すなわち、熱交換用管体104の内部
空間103に熱交換媒体を流通させると、前記し
たような血液流路の閉塞ないしは狭窄の問題は実
質的に生じずまた血液導入による圧力損失も比較
的小さいものとすることができるが、前記したよ
うに第1流体導入管105および第1流体導出管
106が第1流体流通空間102の軸直角断面の
中心部を通る直線にほぼ沿つて外部より延長され
第1流体流通空間102に連通する構成を有する
ために血液は主として第1流体流通空間102の
中心部へと向い、第1流体流通空間102内にお
ける血液流が均一とならず局部的に異なるものと
なり、このため、比較的血液流の高い部位におい
ては内部空間103に熱交換媒体の流通する熱交
換用管体104との血液の接触は充分とならず熱
交換が過少に行なわれ、一方、比較的血液流の低
い部位においては熱交換用管体104との血液の
接触が必要以上のものとなり熱交換が過大に行な
われることとなる。このように熱交換器を通過さ
れる全ての血液に対し均等な熱交換ができない
と、血液の温度分布にばらつきが生じさらに血液
に対して熱交換が過大もしくは過少に行なわれる
ことにより血液成分への悪影響を及ぼす恐れがあ
り好ましいものとは言い難かつた。
When heat exchange is performed between blood and a heat exchange medium using such a multi-tubular heat exchanger 101, the heat exchange medium is passed through the first fluid circulation space 102, and the second fluid circulation space, that is, When blood flows through the internal space 103 of the heat exchange tube 104, the blood is distributed almost evenly to the heat exchange medium in order to maintain a relatively constant contact time. However, when the pressure loss during blood introduction is high and the extracorporeal circulation takes a long time, the heat exchange tube 104
Blood coagulation occurs in the internal space 103 of the heat exchange tube 103, and there is a high possibility that the heat exchange tube 103 will be blocked or constricted. On the contrary, the first
When blood flows through the fluid circulation space 102 and a heat exchange medium flows through the second fluid circulation space, that is, the internal space 103 of the heat exchange tube 104, the problem of blockage or narrowing of the blood flow path as described above occurs. However, as described above, the first fluid inlet pipe 105 and the first fluid outlet pipe 106 are connected to the axis of the first fluid circulation space 102. Since it has a configuration in which it extends from the outside and communicates with the first fluid circulation space 102 almost along a straight line passing through the center of the right-angled cross section, blood mainly flows toward the center of the first fluid circulation space 102 and the first fluid circulation The blood flow within the space 102 is not uniform and differs locally. Therefore, in areas where the blood flow is relatively high, blood flow between the heat exchange tube 104 through which the heat exchange medium flows in the internal space 103 is reduced. Contact is not sufficient and heat exchange is insufficiently performed, while in areas where the blood flow is relatively low, blood contacts with the heat exchange tube 104 is more than necessary and heat exchange is excessively performed. becomes. In this way, if all the blood passing through the heat exchanger is not able to exchange heat evenly, the temperature distribution of the blood will vary, and heat exchange will be too much or too little for the blood, which will cause damage to blood components. It was difficult to say that this was a desirable option as it could have an adverse effect on the environment.

(考案が解決しようとする問題点) したがつて本考案は改良された医療用熱交換器
を提供することを目的とする。本考案はまた、体
外循環において体外へ導出された血液を所望の温
度に維持することのできる医療用熱交換器を提供
することを目的とする。本考案はさらに、血液と
熱交換媒体との熱交換を均一に行なうことがで
き、かつ血液に対する損傷の少ない医療用熱交換
器を提供することを目的とする。本考案はさらに
また、血液導入における圧力損失が低くかつ非常
にコンパクトな医療用熱交換器を提供することを
目的とする。本考案はさらに、人工肺との一体化
が可能である医療用熱交換器を提供することを目
的とする。
(Problems to be Solved by the Invention) Therefore, it is an object of the present invention to provide an improved medical heat exchanger. Another object of the present invention is to provide a medical heat exchanger that can maintain blood discharged outside the body during extracorporeal circulation at a desired temperature. A further object of the present invention is to provide a medical heat exchanger that can uniformly exchange heat between blood and a heat exchange medium and causes little damage to the blood. A further object of the present invention is to provide a medical heat exchanger that has a low pressure drop during blood introduction and is very compact. A further object of the present invention is to provide a medical heat exchanger that can be integrated with an oxygenator.

(問題点を解決するための手段) 上記諸目的は、円筒状の血液流通空間内に、該
血液流通空間とは液密に区画された内部空間を有
する多数の熱交換用管体が該血液流通空間の長手
方向に沿つて配置されてなり、該熱交換用管体の
管壁を介して血液流通空間を流通する血液と熱交
換用管体の内部空間を流通する熱交換媒体との熱
交換を行なう医療用熱交換器において、前記血液
流通空間内に血液を導入する血液導入管および前
記血液流通空間内から血液を導出する血液導出管
が、血液流通空間の長手方向に垂直でかつ血液流
通空間の周面に接する直線にほぼ沿つて外部より
それぞれ延長されて血液流通空間に連通されてい
ることを特徴とする医療用熱交換器により達成さ
れる。
(Means for Solving the Problems) The above objectives are such that a large number of heat exchange tubes each having an internal space that is fluid-tightly partitioned from the blood circulation space are arranged in a cylindrical blood circulation space to absorb the blood. The blood flowing through the blood circulation space is arranged along the longitudinal direction of the heat exchange tube through the tube wall of the heat exchange tube, and the heat exchange medium flowing through the internal space of the heat exchange tube generates heat. In a medical heat exchanger that performs blood exchange, a blood introduction tube that introduces blood into the blood circulation space and a blood outlet tube that draws blood out of the blood circulation space are perpendicular to the longitudinal direction of the blood circulation space and This is achieved by a medical heat exchanger characterized in that each of the medical heat exchangers extends from the outside along a straight line that is in contact with the circumferential surface of the blood circulation space and communicates with the blood circulation space.

本発明はまた、両端の閉塞された円筒状のハウ
ジング内に、多数の熱交換用管体をハウジングの
長手方向に沿つて相互に離間配置し、この複数の
熱交換用管体の両端部に設けた隔壁によりそれぞ
れの熱交換用管体の開口を閉塞することなく該熱
交換用管体をハウジング側壁に液密に保持すると
共にハウジング内部を3つの空間に区画してな
り、この両隔壁とハウジング側壁と熱交換用管体
外壁とでハウジング中央部位に形成される血液流
通空間に、ハウジングの長手方向に垂直でかつハ
ウジングの周面に接する直線にほぼ沿つて外部よ
り延長された血液導入管および血液導出管をそれ
ぞれ連通させ、また前記血液流通空間と液密に区
画され熱交換用管体の内部空間に連通するハウジ
ング端部位に形成される2つの熱交換媒体流通空
間の一方に熱交換媒体流入管を他方に熱交換媒体
流出管をそれぞれ連通してなる医療用熱交換器を
示すものである。本考案はまた血液導入管が一方
の隔壁の近傍より血液流通空間に連通し、また血
液導出管が他方の隔壁の近傍より血液流通空間に
連通するものである医療用熱交換器を示すもので
ある。本考案はさらに血液導入管と血液導出管と
は、血液流通空間の周面において約180゜回転させ
た位置関係にあることを特徴とする医療用熱交換
器を示すものである。
The present invention also provides a cylindrical housing with both ends closed, in which a plurality of heat exchange tubes are arranged spaced apart from each other along the longitudinal direction of the housing, and both ends of the plurality of heat exchange tubes are The heat exchange tubes are held liquid-tightly on the side wall of the housing without blocking the openings of the respective heat exchange tubes by the provided partition walls, and the inside of the housing is divided into three spaces, and both of the partition walls and A blood introduction tube extending from the outside substantially along a straight line perpendicular to the longitudinal direction of the housing and in contact with the circumferential surface of the housing, into the blood circulation space formed in the center of the housing by the housing side wall and the outer wall of the heat exchange tube. and a blood outlet tube, respectively, and are fluid-tightly partitioned from the blood circulation space and communicated with the internal space of the heat exchange tube body. This figure shows a medical heat exchanger in which a medium inlet pipe and a heat exchange medium outlet pipe are connected to each other. The present invention also provides a medical heat exchanger in which a blood inlet tube communicates with the blood circulation space near one partition wall, and a blood outlet tube communicates with the blood circulation space near the other partition wall. be. The present invention further provides a medical heat exchanger characterized in that the blood inlet tube and the blood outlet tube are rotated approximately 180 degrees around the circumferential surface of the blood circulation space.

(作用) しかして本考案の医療用熱交換器1は、第1〜
3図に示すように、円筒状の血液流通空間2内
に、該血液流通空間2とは液密に区画された内部
空間3を有する多数の熱交換用管体4が該血液流
通空間2の長手方向に沿つて配置されてなり、該
熱交換用管体4の管壁を介して血液流通空間2を
流通する血液と熱交換用管体4の内部空間3を流
通する熱交換媒体との熱交換を行なう医療用熱交
換器1において、血液流通空間2内に血液を導入
する血液導入管5および血液流通空間2から血液
を導出する血液導出管6が、血液流通空間2の長
手方向に垂直でかつ血液流通空間2の周面に接す
る直線のほぼ沿つて外部よりそれぞれ延長されて
血液流通空間2に連通されていることを最大の特
徴とするものである。
(Function) However, the medical heat exchanger 1 of the present invention has the first to
As shown in FIG. 3, in a cylindrical blood circulation space 2, a large number of heat exchange tubes 4 having an internal space 3 that is fluid-tightly partitioned from the blood circulation space 2 are connected to the blood circulation space 2. The blood flowing through the blood circulation space 2 through the tube wall of the heat exchange tube 4 and the heat exchange medium flowing through the internal space 3 of the heat exchange tube 4 are arranged along the longitudinal direction. In a medical heat exchanger 1 that performs heat exchange, a blood introduction tube 5 that introduces blood into the blood circulation space 2 and a blood outlet tube 6 that draws blood out of the blood circulation space 2 are arranged in the longitudinal direction of the blood circulation space 2. The main feature is that they are extended from the outside substantially along a straight line that is perpendicular to the circumferential surface of the blood circulation space 2 and communicated with the blood circulation space 2 .

このように血液導入管5および血液導出管6を
血液流通空間2の長手方向に垂直でかつ血液流通
空間2の周面に接する直線にほぼ沿つて外部より
それぞれ延長して血液流通空間2に連通すると、
血液導入管5より導入される血液には血液流通空
間2の周面に沿い血液流通空間2を旋回しようと
する流れが生じ、血液流通空間2内を流通する血
液は、血液流通空間2の中央部、すなわち、血液
導入管5の連通口と血液導出管6の連通口とを結
ぶ略直線上に位置する特定の熱交換用管体4群に
のみに主として接触することなく血液流通空間2
内に配置された熱交換用管体4のほぼ全体にわた
り均等に接することとなるので、血液流通空間2
内で局部的に熱交換が過大もしくは過少となるこ
となく均一な熱交換を行なうことができる。さら
に本考案の熱交換器においては、血液が熱交換用
管体4の外部を流通するものであるので、血液は
血液流通空間2内に導入される際に流路を制限さ
れることもないので圧力損失も大きくなり、また
血液成分の損傷も少ないものである。
In this way, the blood inlet tube 5 and the blood outlet tube 6 are extended from the outside substantially along a straight line perpendicular to the longitudinal direction of the blood circulation space 2 and in contact with the circumferential surface of the blood circulation space 2 to communicate with the blood circulation space 2. Then,
Blood introduced from the blood introduction tube 5 generates a flow that tries to swirl around the blood circulation space 2 along the circumferential surface of the blood circulation space 2, and the blood flowing inside the blood circulation space 2 flows toward the center of the blood circulation space 2. In other words, the blood circulation space 2 does not primarily contact only a specific group of heat exchange tubes 4 located on a substantially straight line connecting the communication port of the blood introduction tube 5 and the communication port of the blood discharge tube 6.
The blood circulation space 2 is in even contact with almost the entire heat exchange tube 4 disposed within the blood circulation space 2.
Uniform heat exchange can be performed without locally excessive or insufficient heat exchange. Furthermore, in the heat exchanger of the present invention, since the blood flows outside the heat exchange tube 4, the blood flow path is not restricted when the blood is introduced into the blood circulation space 2. Therefore, pressure loss is large and damage to blood components is also small.

(実施例) 以下、本考案を実施例に基づきより詳細に説明
する。
(Examples) Hereinafter, the present invention will be explained in more detail based on Examples.

第1図は本考案の医療用熱交換器の一実施例の
構造を示す一部断面斜視図であり、第2図は同実
施例の軸直角断面図であり、また第3図は同実施
例の軸方向断面図である。
FIG. 1 is a partially sectional perspective view showing the structure of an embodiment of the medical heat exchanger of the present invention, FIG. 2 is an axis-perpendicular sectional view of the embodiment, and FIG. FIG. 3 is an example axial cross-sectional view.

本実施例の医療用熱交換器においては、第1〜
3図に示すようにハウジング本体7とその両解放
端部を閉鎖する端板8a,8bにより構成される
両端の閉塞された円筒状のハウジング9内に、多
数の熱交換用管体4をハウジング9の長手方向に
沿つて相互に離間配置し、この複数の熱交換用管
体4の両端部に設けた隔壁10a,10bにより
それぞれの熱交換用管体4の開口を閉塞すること
なく該熱交換用管体4をハウジング9側壁に液密
に保持している。同時にこの隔壁10a,10b
はハウジング9内部を3つの空間に区画してお
り、この両隔壁10a,10bとハウジング9側
壁と熱交換用管体4外壁とで囲まれたハウジング
9の中央部位が血液流通空間2に、またこの血液
流通空間2と液密に区画された、一方の隔壁10
aまたは10bとハウジング9端部壁および側壁
とで囲まれたハウジング端部位が2つの熱交換媒
体流通空間11a,11bになる。この2つの熱
交換媒体流通空間11a,11bは共に、血液流
通空間2とは液密に区画された熱交換用管体4の
内部空間3に連通している。そしてこのように形
成される血液流通空間2には血液導入管5および
血液導出管6が連通され、また一方の熱交換媒体
流通空間11aには熱交換媒体流出管12が、他
方の熱交換媒体流通空間11bには熱交換媒体流
入管13がそれぞれ連通されている。
In the medical heat exchanger of this embodiment, the first to
As shown in FIG. 3, a large number of heat exchange tubes 4 are housed in a cylindrical housing 9 with both ends closed and constituted by a housing body 7 and end plates 8a and 8b that close both open ends of the housing body 7. The partition walls 10a and 10b provided at both ends of the plurality of heat exchange tubes 4 are spaced apart from each other along the longitudinal direction of the heat exchange tubes 4, and the heat can be removed without blocking the openings of the respective heat exchange tubes 4. The replacement tubular body 4 is held liquid-tightly on the side wall of the housing 9. At the same time, these partition walls 10a, 10b
The inside of the housing 9 is divided into three spaces, and the central part of the housing 9 surrounded by the partition walls 10a and 10b, the side wall of the housing 9, and the outer wall of the heat exchange tube 4 is connected to the blood circulation space 2, and One partition wall 10 is fluid-tightly partitioned from this blood circulation space 2.
The end portion of the housing surrounded by a or 10b and the end wall and side wall of the housing 9 becomes two heat exchange medium circulation spaces 11a and 11b. Both of these two heat exchange medium circulation spaces 11a and 11b communicate with the internal space 3 of the heat exchange tube body 4, which is separated from the blood circulation space 2 in a fluid-tight manner. A blood inlet pipe 5 and a blood outlet pipe 6 are connected to the blood circulation space 2 formed in this way, and a heat exchange medium outflow pipe 12 is connected to one heat exchange medium circulation space 11a, and a heat exchange medium outflow pipe 12 is connected to the other heat exchange medium circulation space 11a. Heat exchange medium inflow pipes 13 are communicated with each of the circulation spaces 11b.

しかして本実施例の医療用熱交換器1において
は、前記血液導入管5および血液導出管6は、ハ
ウジング9の長手方向に垂直でかつハウジング9
の周面に接する直線にほぼ沿つて外部より延長さ
れて、すなわち、血液流通空間2の長手方向に垂
直でかつ血液流通空間2の周面に接する直線にほ
ぼ沿つて外部よりそれぞれ延長されて血液流通空
間2に連通されている。なお、血液導入管5およ
び血液導出管6は血液流通空間2の長手方向に垂
直でかつ血液流通空間2の周面に接する直線に厳
密に沿つて外部より延長されている必要はなく、
血液流通空間2を流通する血液に血液流通空間2
の周面に沿うような流れを有効に与えることがで
きるものであればある程度該直線よりずれるもの
であつてもよい。また血液導入管5および血液導
出管6は、少なくとも血液流通空間2に連通する
直前の部位において、血液流通空間2の長手方向
に垂直でかつ血液流通空間2の周面に接する直線
にほぼ沿うものであればよく、それより後方の部
位の方向性は任意である。さらにこれらの血液導
入管5および血液導出管6の配置位置は特に限定
されるものではないが、血液流通空間2内に挿通
された熱交換用管体4の内部空間を流通する熱交
換媒体と血液流通空間2内を流通する血液との有
効な熱交換を行なうために、血液流通空間2に互
いに離れた位置から連通されることが必要であ
り、好ましくは、第1図および第3図に示すよう
に血液導入管5が一方の隔壁10aまたは10b
の近傍より血液流通空間2に連通し、また血液導
出管6が他方の隔壁10bまたは10aの近傍よ
り血液流通空間2に連通するものであることが望
ましく、さらに第1図および第2図に示すように
血液導入管5と血液導出管6とは、血液流通空間
2の周面において約180゜回転させた位置関係にあ
ることが望ましい。
In the medical heat exchanger 1 of this embodiment, the blood inlet tube 5 and the blood outlet tube 6 are perpendicular to the longitudinal direction of the housing 9 and
Blood circulation space 2 extends from the outside approximately along a straight line that touches the circumferential surface of the blood circulation space 2, that is, extends from the outside approximately along a straight line that is perpendicular to the longitudinal direction of the blood circulation space 2 and touches the circumference of the blood circulation space 2. It is communicated with the circulation space 2. Note that the blood inlet tube 5 and the blood outlet tube 6 do not need to extend from the outside strictly along a straight line perpendicular to the longitudinal direction of the blood circulation space 2 and in contact with the circumferential surface of the blood circulation space 2.
The blood flowing through the blood circulation space 2
It may deviate from the straight line to some extent as long as it can effectively provide a flow along the circumferential surface of the straight line. Moreover, the blood introduction tube 5 and the blood outlet tube 6 are those that, at least in a portion immediately before communicating with the blood circulation space 2, are substantially along a straight line that is perpendicular to the longitudinal direction of the blood circulation space 2 and that is in contact with the circumferential surface of the blood circulation space 2. The directionality of the region behind it is arbitrary. Furthermore, the positions of these blood introduction tubes 5 and blood outlet tubes 6 are not particularly limited, but they can be used as a heat exchange medium flowing through the internal space of the heat exchange tube 4 inserted into the blood circulation space 2. In order to perform effective heat exchange with the blood flowing in the blood circulation space 2, it is necessary to communicate with the blood circulation space 2 from positions separated from each other, and preferably, as shown in FIGS. As shown, the blood introduction tube 5 is connected to one partition wall 10a or 10b.
It is desirable that the blood outlet tube 6 communicates with the blood circulation space 2 from the vicinity of the other partition wall 10b or 10a, and further, as shown in FIGS. 1 and 2. As such, it is desirable that the blood introduction tube 5 and the blood outlet tube 6 be in a positional relationship rotated by approximately 180 degrees on the circumferential surface of the blood circulation space 2.

このような構成を有する本考案の医療用熱交換
器1は、各種の体外循環回路中に好適に組入られ
使用されるが、非常にコンパクトでかつ高い性能
を有するために、例えば第4図および第5図に示
すように人工肺および貯血槽と一体化された人工
肺装置となされることにより好適に用いられる。
The medical heat exchanger 1 of the present invention having such a configuration is suitably incorporated and used in various extracorporeal circulation circuits. As shown in FIG. 5, it is preferably used as an artificial lung device that is integrated with an artificial lung and a blood reservoir.

第4図および第5図に示す態様例において、人
工肺21は、円筒状のハウジング本体22とその
両解放端部を閉鎖する取付けカバー23a,23
bとからなるハウジングを具備してなり、ハウジ
ング内には全体に広がつて多数の中空糸膜24が
ハウジングの長手方向に沿つて並列的に相互に離
間配置されている。そしてこの中空糸膜24の両
端部はそれぞれの開口が閉塞されない状態で隔壁
25a,25bによりハウジング本体22に液密
に保持されている。また、一方の取付けカバー2
3aとハウジング本体22と隔壁25aとで形成
される中空糸膜の内部空間に連通するガス流入空
間26にはガス流入ポート27が、他方の取付け
カバー23bとハウジング本体22と隔壁25b
とで形成される中空糸膜の内部空間に連通するガ
ス流通空間28にはガス流通ポート29がそれぞ
れ連通して設けられている。さらに、ハウジング
本体22内壁と両隔壁25a,25bと中空糸膜
24外壁とで構成される血液室30には血液流入
管31および血液流出管32が連通して設けられ
ている。
In the embodiment shown in FIGS. 4 and 5, the oxygenator 21 includes a cylindrical housing body 22 and mounting covers 23a and 23 that close both open ends of the housing body 22.
A plurality of hollow fiber membranes 24 are arranged in parallel and spaced apart from each other along the longitudinal direction of the housing, extending throughout the housing. Both ends of the hollow fiber membrane 24 are fluid-tightly held in the housing body 22 by partition walls 25a and 25b, with the respective openings not being closed. Also, one mounting cover 2
A gas inflow port 27 is provided in a gas inflow space 26 that communicates with the internal space of the hollow fiber membrane formed by the housing body 3a, the housing body 22, and the partition wall 25a;
Gas flow ports 29 are provided in communication with the gas flow spaces 28 that communicate with the inner space of the hollow fiber membrane formed by the above. Further, a blood inflow pipe 31 and a blood outflow pipe 32 are provided in communication with the blood chamber 30, which is constituted by the inner wall of the housing body 22, the partition walls 25a and 25b, and the outer wall of the hollow fiber membrane 24.

この態様例において示される人工肺21は、中
空糸膜24の内部空間に空気等の酸素含有ガスを
吹送し中空糸膜14の外側に血液を流してガス交
換を行なうタイプのものであるが、この他の中空
糸膜も内部空間に血液を流し中空糸膜の外側に酸
素含有ガスを流してガス交換を行なうタイプのも
のあるいはガス交換膜が平膜型のタイプのものな
どの人工肺も用いられる。このような人工肺のう
ち好ましくは、本態様例において示されるような
中空糸膜の外側に血液を流すタイプのものであ
り、このタイプの人工肺を用いれば、圧力損失が
少ないため循環回路中の人工肺の前に送血ポンプ
を設ける必要はなく、人体からの落差のみによる
脱血にて血液を人工肺にさらには貯血槽に送るこ
とが可能となる。
The oxygenator 21 shown in this embodiment is of a type that performs gas exchange by blowing oxygen-containing gas such as air into the internal space of the hollow fiber membrane 24 and causing blood to flow outside the hollow fiber membrane 14. Other hollow fiber membranes are also used, such as those that perform gas exchange by flowing blood into the internal space and flowing oxygen-containing gas outside the hollow fiber membrane, or those that have a flat membrane type gas exchange membrane. It will be done. Among such oxygenators, it is preferable to use a type that allows blood to flow outside the hollow fiber membrane as shown in this embodiment, and if this type of oxygenator is used, there is less pressure loss, so blood can flow through the circulation circuit. There is no need to provide a blood pump in front of the oxygenator, and blood can be sent to the oxygenator and further to the blood reservoir by removing blood only by the drop from the human body.

そして、この人工肺21の血液流入管31には
第5図に示すように医療用熱交換器1の血液導出
管6が接続管33を介在して液密に連通されてい
る。接続管33と人工肺21の血液流入管31お
よび医療用熱交換器1の血液導出管6との液密な
接続は、例えば、ねじ嵌合、テーパー嵌合、Oリ
ングを介しての嵌合などの液密な嵌合あるいは、
超音波ないしは高周波接着、接着剤を介しての接
着などの液密な接着などにより行なわれるが、も
ちろん同様な接続手段により人工肺21の血液流
入管31と医療用熱交換器1の血液導出管6とを
直接液密に接続してもよい。なお本態様例の医療
用熱交換器1は、第1〜3図に示される実施例の
医療用熱交換器1と血液導入管5および血液導出
管の配置位置に若干の異なりはあるものの実質的
には同一のものである。さらに本態様例の医療用
熱交換器1の血液導入管5には体外循環回路に接
続される血液入口ポート34の他に、手術中に出
血した血液を体外循環回路中に導入するためのカ
ーデイオトミー入口ポート35が設けられてお
り、さらに血液導入管5には温度測定用プローブ
挿入口36が設けられている。また熱交換媒体流
入管13および熱交換媒体流出管12には、先端
部に水入口ポート(図示せず)または水出口ポー
ト37を備えた可撓性を有する延長管38がそれ
ぞれ接続されている。
As shown in FIG. 5, the blood inlet tube 31 of the artificial lung 21 is fluid-tightly connected to the blood outlet tube 6 of the medical heat exchanger 1 via a connecting tube 33. The liquid-tight connection between the connecting tube 33 and the blood inflow tube 31 of the oxygenator 21 and the blood outlet tube 6 of the medical heat exchanger 1 can be achieved by, for example, threaded fitting, tapered fitting, or fitting via an O-ring. liquid-tight fit such as
This is done by liquid-tight bonding such as ultrasonic or high-frequency bonding or bonding through adhesive, but of course the blood inflow tube 31 of the oxygenator 21 and the blood outlet tube of the medical heat exchanger 1 are connected by similar connection means. 6 may be directly liquid-tightly connected. Although the medical heat exchanger 1 of this embodiment is slightly different from the medical heat exchanger 1 of the embodiment shown in FIGS. 1 to 3 in the arrangement positions of the blood inlet tube 5 and the blood outlet tube, They are essentially the same. Furthermore, in addition to the blood inlet port 34 connected to the extracorporeal circulation circuit, the blood introduction tube 5 of the medical heat exchanger 1 of this embodiment has a card for introducing blood bled during surgery into the extracorporeal circulation circuit. An ionotomy inlet port 35 is provided, and the blood introduction tube 5 is further provided with a probe insertion port 36 for temperature measurement. Furthermore, flexible extension pipes 38 each having a water inlet port (not shown) or a water outlet port 37 at the tip are connected to the heat exchange medium inflow pipe 13 and the heat exchange medium outflow pipe 12. .

一方、人工肺21の血液流出管32には貯血槽
41の血液導入口42が接続管39を介して液密
に接続されている。接続管39と人工肺21の血
液流出管32および貯血槽41の血液導入口42
との液密な接続は、接続管33と人工肺21の血
液流入管31および医療用熱交換器1の血液導出
管6との液密な接続の場合と同様にして行なわれ
る。人工肺21に接続されるこの貯血槽41は、
血液導入口42、該血液導入口42に連通しかつ
血液導入口42とほぼ落差のない底面を有する血
液流入部43、該血液流入部43に連通し血液流
入部43より漸次下垂する底面を有する貯血部4
4および該貯血部44の下部に設けられた血液導
出口45を有する硬質部材より形成されるハウジ
ング46内に該血液流入部43の血液流路を全幅
域にわたつて横切る消泡部材47を設けてなるも
のである。またこの貯血槽41には、体外循環回
路に接続される血液導出口45のほかに、心臓静
脈に送血する回路へと接続されるカーデイオプレ
ギアポート48が貯血部44の下部に連通して設
けられており、さらに貯血槽41内の血液の温度
を測定するための温度測定用プローブ挿入口49
も設けられている。
On the other hand, a blood inlet 42 of a blood reservoir 41 is fluid-tightly connected to a blood outflow pipe 32 of the artificial lung 21 via a connecting pipe 39. Connecting pipe 39, blood outflow pipe 32 of artificial lung 21, and blood inlet 42 of blood storage tank 41
The liquid-tight connection between the connecting tube 33 and the blood inlet tube 31 of the artificial lung 21 and the blood outlet tube 6 of the medical heat exchanger 1 is made in the same manner as in the case of the liquid-tight connection between the connecting tube 33 and the blood inlet tube 31 of the artificial lung 21 and the blood outlet tube 6 of the medical heat exchanger 1. This blood reservoir 41 connected to the oxygenator 21 is
A blood inlet 42 , a blood inlet 43 that communicates with the blood inlet 42 and has a bottom with almost no height difference from the blood inlet 42 , and a bottom that communicates with the blood inlet 43 and gradually descends from the blood inlet 43 . Blood storage part 4
4 and a defoaming member 47 that traverses the entire width of the blood flow path of the blood inflow portion 43 is provided in a housing 46 formed of a hard member having a blood outlet 45 provided at the lower part of the blood storage portion 44. That's what happens. In addition to the blood outlet port 45 connected to the extracorporeal circulation circuit, this blood storage tank 41 also has a cardioplegia port 48 connected to a circuit for sending blood to the cardiac veins, which communicates with the lower part of the blood storage section 44. Furthermore, a temperature measurement probe insertion port 49 for measuring the temperature of blood in the blood storage tank 41 is provided.
Also provided.

このように医療用熱交換器1および貯血槽41
を人工肺21と一体化した人工肺装置において、
人体より脱血された血液はまず、医療用熱交換器
1内へ血液導入管5より流入する。前記したよう
に血液導入管5および血液導出管6を血液流通空
間2の長手方向に垂直でかつ血液流通空間2の周
面に接する直線にほぼ沿つて外部よりそれぞれ延
長して血液流通空間2に連通しているため、血液
導入管5より血液流通空間2に導入される血液に
は血液流通空間2の周面に沿い血液流通空間2を
旋回しようとする流れが生じ、血液流通空間2内
を流通する血液は、血液流通空間2の中央部、す
なわち、血液導入管5の連通口と血液導出管6の
連通口とを結ぶ略直線上に位置する特定の熱交換
用管体4群にのみに主として接触することなく血
液流通空間2内に配置された熱交換用管体4のほ
ぼ全体にわたり均等に接することとなる。従つ
て、熱交換媒体流入管13より熱交換媒体流通空
間11aへ流入され連通する熱交換用管体4の内
部空間3を通り熱交換媒体流通空間11bへ至り
熱交換媒体流出管12より流出される熱交換媒体
である水との、血液流通空間2内における熱交換
用管体4の管壁を介しての熱交換は効率よくかつ
均一に行なわれ、所望の温度に加温または冷却さ
れた血液は血液導出管6より熱交換器1外部へと
導出され、血液導出管6と液密に連通された人工
肺21の血液流入管31より人工肺21へと送ら
れる。そして人工肺21の血液流入管31より流
入した血液は血液室30を通る間に中空糸膜24
を介して中空糸膜24の内部を流通する酸素含有
ガスとガス交換を行ない、血液中の過剰な二酸化
炭素が除去され消費された酸素が添加される。酸
素を添加された血液は、人工肺21の血液流出管
32から流出し、連通する貯血槽41の血液導入
口42から貯血槽41内に流入する。血液導入口
42から連通する血液流入部43に流れ、血液流
入部43の途中に設けられた消泡部材47に至つ
た血液は、該消泡部材47を通過する間に血液中
に含まれている気泡が消泡部材47の発泡体のセ
ルに接触し複数の気泡が合体して成長し血液中よ
り貯血槽41内部の上方空間へと移動することに
より、脱泡され、さらに連通する貯血部44へと
移動し、一時的に貯血部44に貯溜されたのち、
貯血部44の下部に設けられた血液導出口45よ
り導出され人体へと送血される。
In this way, the medical heat exchanger 1 and the blood storage tank 41
In an artificial lung device that is integrated with an artificial lung 21,
Blood removed from the human body first flows into the medical heat exchanger 1 through the blood introduction tube 5. As described above, the blood inlet tube 5 and the blood outlet tube 6 are extended from the outside along a straight line perpendicular to the longitudinal direction of the blood circulation space 2 and in contact with the circumferential surface of the blood circulation space 2 to enter the blood circulation space 2. Because of the communication, the blood introduced from the blood introduction tube 5 into the blood circulation space 2 generates a flow that tries to swirl around the blood circulation space 2 along the circumferential surface of the blood circulation space 2. The circulating blood is distributed only to a specific group of 4 heat exchange tubes located in the center of the blood circulation space 2, that is, on a substantially straight line connecting the communication port of the blood introduction tube 5 and the communication port of the blood discharge tube 6. The heat exchange tube body 4 disposed in the blood circulation space 2 is almost entirely in contact with the heat exchange tube body 4 evenly, without being primarily in contact with the heat exchange tube body 4 . Therefore, the heat exchange medium flows into the heat exchange medium circulation space 11a from the heat exchange medium inflow pipe 13, passes through the internal space 3 of the communicating heat exchange tube 4, reaches the heat exchange medium circulation space 11b, and flows out from the heat exchange medium outflow pipe 12. Heat exchange with water, which is a heat exchange medium, through the tube wall of the heat exchange tube 4 in the blood circulation space 2 is performed efficiently and uniformly, and the blood is heated or cooled to a desired temperature. Blood is led out of the heat exchanger 1 through the blood lead-out pipe 6, and is sent to the oxygenator 21 through the blood inflow pipe 31 of the oxygenator 21, which is in fluid-tight communication with the blood lead-out pipe 6. The blood flowing in from the blood inflow pipe 31 of the artificial lung 21 passes through the hollow fiber membrane 24 while passing through the blood chamber 30.
Gas exchange is performed with the oxygen-containing gas flowing inside the hollow fiber membrane 24 through the hollow fiber membrane 24, and excess carbon dioxide in the blood is removed and consumed oxygen is added. The oxygenated blood flows out from the blood outflow pipe 32 of the artificial lung 21 and flows into the blood storage tank 41 through the blood inlet port 42 of the blood storage tank 41 that communicates with the oxygenated blood. The blood that flows from the blood inlet port 42 to the blood inflow section 43 communicating with the blood inflow section 43 and reaches the defoaming member 47 provided midway through the blood inflow section 43 contains water contained in the blood while passing through the defoaming member 47. The bubbles in the foam contact the cells of the foam of the defoaming member 47, and the plurality of bubbles coalesce and grow, moving from the blood to the upper space inside the blood reservoir 41, whereby the bubbles are defoamed and the blood reservoir is further communicated. 44 and temporarily stored in the blood storage section 44,
Blood is drawn out from a blood outlet 45 provided at the lower part of the blood storage section 44 and sent to the human body.

(発明の効果) 以上述べたように本考案の医療用熱交換器は、
円筒状の血液流通空間内に、該血液流通空間とは
液密に区画された内部空間を有する多数の熱交換
用管体が該血液流通空間の長手方向に沿つて配置
されてなり、該熱交換用管体の管壁を介して血液
流通空間を流通する血液と熱交換用管体の内部空
間を流通する熱交換媒体との熱交換を行なう医療
用熱交換器において、前記血液流通空間内に血液
を導入する血液導入管および前記血液流通空間内
から血液を導出する血液導出管が、血液流通空間
の長手方向に垂直でかつ血液流通空間の周面に接
する直線にほぼ沿つて外部よりそれぞれ延長され
て血液流通空間に連通されていることを特徴とす
るものであるから、血液流通空間内を流通する血
液を血液流通空間内に均等に分布させることがで
き、これにより熱交換器を通過される全ての血液
に対し均等な熱交換を行なうことができ、さらに
血液の温度分布にばらつきが生じて血液に対して
熱交換が過大もしくは過少に行なわれることによ
り血液成分への悪影響を及ぼすこともなく、安定
した性能を示すものである。
(Effects of the invention) As described above, the medical heat exchanger of the present invention has
In a cylindrical blood circulation space, a large number of heat exchange tubes each having an internal space partitioned fluid-tight from the blood circulation space are arranged along the longitudinal direction of the blood circulation space, and the heat exchanger In a medical heat exchanger that performs heat exchange between blood flowing through a blood circulation space through a tube wall of an exchange tube and a heat exchange medium flowing through an internal space of a heat exchange tube, A blood introduction tube that introduces blood into the blood circulation space and a blood outlet tube that draws blood out of the blood circulation space are connected to each other from the outside along a straight line that is perpendicular to the longitudinal direction of the blood circulation space and that is in contact with the circumferential surface of the blood circulation space. Since it is characterized by being extended and communicating with the blood circulation space, blood flowing in the blood circulation space can be evenly distributed within the blood circulation space. It is possible to perform uniform heat exchange to all the blood being treated, and furthermore, there is no possibility that the temperature distribution of the blood will vary and heat exchange will be too much or too little for the blood, which will have an adverse effect on the blood components. This shows stable performance.

さらに本考案の医療用熱交換器が、両端の閉塞
された円筒状のハウジング内に、多数の熱交換用
管体をハウジングの長手方向に沿つて相互に離間
配置し、この複数の熱交換用管体の両端部に設け
た隔壁によりそれぞれの熱交換用管体の開口を閉
塞することなく該熱交換用管体をハウジング側壁
に液密に保持すると共にハウジング内部を3つの
空間に区画してなり、この両隔壁とハウジング側
壁と熱交換用管体外壁とでハウジング中央部位に
形成される血液流通空間に、ハウジングの長手方
向に垂直でかつハウジングの周面に接する直線に
ほぼ沿つて外部より延長された血液導入管および
血液導出管をそれぞれ連通させ、また前記血液流
通空間と液密に区画され熱交換用管体の内部空間
に連通するハウジング端部位に形成される2つの
熱交換媒体流通空間の一方に熱交換媒体流入管を
他方に熱交換媒体流出管をそれぞれ連通してなる
ものであると、コンパクトな要領で高い性能を有
するものとすることができることから、例えば人
工肺と一体化されて好適に用いられることがで
き、また血液導入管が一方の隔壁の近傍より血液
流通空間に連通し、また血液導出管が他方の隔壁
の近傍より血液流通空間に連通するものであり、
さらに血液導入管と血液導出管とは、血液流通空
間の周面において約180゜回転させた位置関係にあ
るものであるとより効率のよい熱交換を行なえる
ものとなる。
Furthermore, the medical heat exchanger of the present invention has a plurality of heat exchange tubes spaced apart from each other along the longitudinal direction of the housing in a cylindrical housing with both ends closed. Partition walls provided at both ends of the tubes hold the heat exchange tubes liquid-tightly against the housing side wall without blocking the openings of the respective heat exchange tubes, and divide the inside of the housing into three spaces. The blood circulation space formed in the center of the housing by these partition walls, the housing side wall, and the outer wall of the heat exchange tube is penetrated from the outside along a straight line perpendicular to the longitudinal direction of the housing and in contact with the circumferential surface of the housing. Two heat exchange medium flow paths formed at the end portions of the housing that connect the extended blood introduction tube and the blood discharge tube, and are fluid-tightly partitioned from the blood flow space and communicated with the internal space of the heat exchange tube. If the heat exchange medium inflow pipe is connected to one side of the space and the heat exchange medium outflow pipe is connected to the other side, it can be made compact and have high performance, so it can be integrated with an oxygenator, for example. The blood inlet tube communicates with the blood circulation space from the vicinity of one partition wall, and the blood outlet tube communicates with the blood circulation space from the vicinity of the other partition wall,
Furthermore, if the blood inlet tube and the blood outlet tube are rotated by about 180 degrees on the circumferential surface of the blood circulation space, more efficient heat exchange can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の医療用熱交換器の一実施例の
構造を示す一部断面斜視図、第2図は同実施例の
軸直角断面図、第3図は同実施例の軸方向断面
図、第4図は本考案の医療用熱交換器の別の実施
例を組入れた人工肺装置の一部断面正面図、第5
図は同人工肺装置における医療用熱交換器と人工
肺の斜視図、第6図は従来の熱交換器の構造を示
す軸直角断面図であり、また第7図は同従来例の
軸方向断面図である。 1……医療用熱交換器、2……血液流通空間、
3……内部空間、4……熱交換用管体、5……血
液導入管、6……血液導出管、7……ハウジング
本体、8a,8b……端板、9……ハウジング、
10a,10b……隔壁、11a,11b……熱
交換媒体流通空間、12……熱交換媒体流出管、
13……熱交換媒体流入管、21……人工肺、4
1……貯血槽。
Fig. 1 is a partially sectional perspective view showing the structure of an embodiment of the medical heat exchanger of the present invention, Fig. 2 is an axis-perpendicular sectional view of the same embodiment, and Fig. 3 is an axial cross-section of the same embodiment. Figure 4 is a partially sectional front view of an artificial lung device incorporating another embodiment of the medical heat exchanger of the present invention, and Figure 5 is
The figure is a perspective view of a medical heat exchanger and an oxygenator in the same oxygenator, FIG. 6 is an axis-perpendicular cross-sectional view showing the structure of a conventional heat exchanger, and FIG. 7 is an axial direction view of the conventional example. FIG. 1...Medical heat exchanger, 2...Blood circulation space,
3... Internal space, 4... Heat exchange tube, 5... Blood introduction tube, 6... Blood outlet tube, 7... Housing main body, 8a, 8b... End plate, 9... Housing,
10a, 10b... partition wall, 11a, 11b... heat exchange medium circulation space, 12... heat exchange medium outflow pipe,
13... Heat exchange medium inflow pipe, 21... Artificial lung, 4
1...Blood reservoir.

Claims (1)

【実用新案登録請求の範囲】 (1) 円筒状の血液流通空間内に、該血液流通空間
とは液密に区画された内部空間を有する多数の
熱交換用管体が該血液流通空間の長手方向に沿
つて配置されてなり、該熱交換用管体の管壁を
介して血液流通空間を流通する血液と熱交換用
管体の内部空間を流通する熱交換媒体との熱交
換を行なう医療用熱交換器において、前記血液
流通空間内に血液を導入する血液導入管および
前記血液流通空間内から血液を導出する血液導
出管が、血液流通空間の長手方向に垂直でかつ
血液流通空間の周面に接する直線にほぼ沿つて
外部よりそれぞれ延長されて血液流通空間に連
通されていることを特徴とする医療用熱交換
器。 (2) 両端の閉塞された円筒状のハウジング内に、
多数の熱交換用管体をハウジングの長手方向に
沿つて相互に離間配置し、この複数の熱交換用
管体の両端部に設けた隔壁によりそれぞれの熱
交換用管体の開口を閉塞することなく該熱交換
用管体をハウジング側壁に液密に保持すると共
にハウジング内部を3つの空間に区画してな
り、この両隔壁とハウジング側壁と熱交換用管
体外壁とでハウジング中央部位に形成される血
液流通空間に、ハウジングの長手方向に垂直で
かつハウジングの周面に接する直線にほぼ沿つ
て外部より延長された血液導入管および血液導
出管をそれぞれ連通させ、また前記血液流通空
間と液密に区画され熱交換用管体の内部空間に
連通するハウジング端部位に形成される2つの
熱交換媒体流通空間の一方に熱交換媒体流入管
を他方に熱交換媒体流出管をそれぞれ連通して
なる実用新案登録請求の範囲第1項に記載の医
療用熱交換器。 (3) 血液導入管が一方の隔壁の近傍より血液流通
空間に連通し、また血液導出管が他方の隔壁の
近傍より血液流通空間に連通するものである実
用新案登録請求の範囲第2項に記載の医療用熱
交換器。 (4) 血液導入管と血液導出管とは、血液流通空間
の周面において約180゜回転させた位置関係にあ
ることを特徴とする実用新案登録請求の範囲第
1項〜第3項のいずれかに記載の医療用熱交換
器。
[Scope of Claim for Utility Model Registration] (1) A large number of heat exchange tubes each having an internal space that is fluid-tightly partitioned from the blood circulation space in a cylindrical blood circulation space along the longitudinal axis of the blood circulation space. A medical device that performs heat exchange between blood flowing through a blood circulation space through the tube wall of the heat exchange tube and a heat exchange medium flowing through the internal space of the heat exchange tube. In the blood circulation space heat exchanger, a blood introduction tube that introduces blood into the blood circulation space and a blood outlet tube that draws blood out of the blood circulation space are perpendicular to the longitudinal direction of the blood circulation space and arranged around the circumference of the blood circulation space. A medical heat exchanger characterized in that each of the medical heat exchangers is extended from the outside along a straight line tangent to a surface and communicated with a blood circulation space. (2) Inside a cylindrical housing with both ends closed,
A plurality of heat exchange tubes are arranged at a distance from each other along the longitudinal direction of the housing, and the opening of each heat exchange tube is closed by partition walls provided at both ends of the plurality of heat exchange tubes. The heat exchange tube is held liquid-tightly on the side wall of the housing, and the inside of the housing is divided into three spaces, and the partition wall, the side wall of the housing, and the outer wall of the heat exchange tube are formed in the center of the housing. A blood inlet tube and a blood outlet tube extending from the outside along a straight line perpendicular to the longitudinal direction of the housing and in contact with the circumferential surface of the housing are respectively communicated with the blood circulation space, and are fluid-tight with the blood circulation space. A heat exchange medium inflow pipe is connected to one of two heat exchange medium circulation spaces formed at the end portion of the housing which are divided into two and communicate with the internal space of the heat exchange tube, and a heat exchange medium outflow pipe is connected to the other. A medical heat exchanger according to claim 1 of the utility model registration claim. (3) According to the scope of claim 2 of the utility model registration, the blood inlet tube communicates with the blood circulation space from the vicinity of one partition wall, and the blood outlet tube communicates with the blood circulation space from the vicinity of the other partition wall. Medical heat exchanger as described. (4) Any of claims 1 to 3 of the utility model registration claim, characterized in that the blood introduction tube and the blood outlet tube are rotated approximately 180 degrees on the circumferential surface of the blood circulation space. A medical heat exchanger described in .
JP11676587U 1987-06-28 1987-07-31 Expired JPH0223309Y2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP11676587U JPH0223309Y2 (en) 1987-07-31 1987-07-31
EP88401641A EP0297970B1 (en) 1987-06-28 1988-06-27 Heat exchanger for medical treatment
EP92116352A EP0524662B1 (en) 1987-06-28 1988-06-27 Method for manufacturing a medical heat exchanger
AU18442/88A AU607778B2 (en) 1987-06-28 1988-06-28 Heat exchanger for medical treatment
KR1019880007847A KR910003359B1 (en) 1987-06-28 1988-06-28 Heat and material exchange
US07/876,899 US5294397A (en) 1987-06-28 1992-04-29 Heat exchanger for medical treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11676587U JPH0223309Y2 (en) 1987-07-31 1987-07-31

Publications (2)

Publication Number Publication Date
JPS6422355U JPS6422355U (en) 1989-02-06
JPH0223309Y2 true JPH0223309Y2 (en) 1990-06-25

Family

ID=31359600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11676587U Expired JPH0223309Y2 (en) 1987-06-28 1987-07-31

Country Status (1)

Country Link
JP (1) JPH0223309Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5333224B2 (en) * 2008-01-23 2013-11-06 株式会社ジェイ・エム・エス Medical heat exchanger, method for manufacturing the same, and oxygenator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5333224B2 (en) * 2008-01-23 2013-11-06 株式会社ジェイ・エム・エス Medical heat exchanger, method for manufacturing the same, and oxygenator

Also Published As

Publication number Publication date
JPS6422355U (en) 1989-02-06

Similar Documents

Publication Publication Date Title
EP0243796B1 (en) Hollow fiber-type artificial lung
US5084244A (en) Artificial lung assembly
EP0176651B1 (en) Heat exchanger and blood oxygenating device furnished therewith
US4138288A (en) Method and apparatus for oxygenating and regulating the temperature of blood
US4138464A (en) Blood oxygenator with integral heat exchanger
WO1989000056A1 (en) Blood storage tank
EP1557185B1 (en) Device for treating blood for extracorporeal circulation
US4585056A (en) Heat exchanger
US6001306A (en) Integrated oxygenator and heat exchanger
JPH0223309Y2 (en)
EP0524662B1 (en) Method for manufacturing a medical heat exchanger
GB1604956A (en) Heat exchangers for regulating the temperature of blood in an extracorporeal circuit
JPH0223310Y2 (en)
JPS63139562A (en) Hollow yarn type artificial lung
JPH044761Y2 (en)
JP4114020B2 (en) Extracorporeal blood circulation apparatus having gas heat exchange means
JPH037391B2 (en)
JPS5955256A (en) Hollow yarn type artificial lung
CA1134233A (en) Blood oxygenator with integral heat exchanger
JP2613217B2 (en) Hollow fiber type artificial lung
KR910005410B1 (en) Extracorporeal blood circulating apparatus
JP3597892B2 (en) Artificial lung and artificial lung with heat exchanger
JPS63212367A (en) Membrane type artificial lang apparatus
JPH042063B2 (en)
JPS6137251A (en) Heat exchanger built-in artificial lung