JPH04946B2 - - Google Patents

Info

Publication number
JPH04946B2
JPH04946B2 JP60220994A JP22099485A JPH04946B2 JP H04946 B2 JPH04946 B2 JP H04946B2 JP 60220994 A JP60220994 A JP 60220994A JP 22099485 A JP22099485 A JP 22099485A JP H04946 B2 JPH04946 B2 JP H04946B2
Authority
JP
Japan
Prior art keywords
silicon carbide
weight
firing
parts
carbide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60220994A
Other languages
Japanese (ja)
Other versions
JPS6283371A (en
Inventor
Hideo Saito
Osamu Yamakawa
Hiroshi Shirakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENU JII KEI ADORETSUKU KK
NIPPON GAISHI KK
Original Assignee
ENU JII KEI ADORETSUKU KK
NIPPON GAISHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENU JII KEI ADORETSUKU KK, NIPPON GAISHI KK filed Critical ENU JII KEI ADORETSUKU KK
Priority to JP60220994A priority Critical patent/JPS6283371A/en
Publication of JPS6283371A publication Critical patent/JPS6283371A/en
Publication of JPH04946B2 publication Critical patent/JPH04946B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の技術分野] 本発明は高温特性の向上を図つた炭化珪素耐火
物の製造方法に関する。 [従来技術とその問題点] 炭化珪素耐火物は優れた耐火性から工業上重要
な地位を占めている。従来の炭化珪素耐火物の製
造方法としては、炭化珪素粒子に10%近い粘土を
混合して混練・成形・焼成し、珪酸塩鉱物例えば
粘土鉱物により炭化珪素粒子を結合させるものが
一般的である。ところが、このようにして製造し
た炭化珪素耐火物は耐火度が低い粘土鉱物を結合
組織としているため、高温での軟化変形や炭化珪
素粒の酸化を促進させ易いという欠点がある。そ
こで、近年、炭化珪素粒子を微量の金属酸化物等
と共に混練・成形して酸化性雰囲気中で焼成する
ことにより、炭化珪素粒子を部分的に酸化させ、
その部分酸化により生成した二酸化珪素と添加金
属酸化物との反応生成物によつて炭化珪素粒子を
結合させる製造方法が注目されている。このよう
に製造した炭化珪素耐火物は、粘土鉱物結合の炭
化珪素耐火物に比べて高い高温強度を有するとい
う優れた特性を備えるものである。 しかしながら、従来の二酸化珪素で結合をした
炭化珪素耐火物の製造方法は、結合組織の組成に
ついて十分な考慮を払わず、しかも単に最高焼成
温度まで一貫して大気雰囲気中で焼成するという
ものに過ぎなかつた。このため、炭化珪素の部分
酸化量を最適な値にしてち密で強固な結合組織を
生成できず、従つて高温での耐軟化変形性及び耐
酸化性等の高温特性を未だ十分に向上させること
ができない上に、品質のばらつきも大きいという
問題があつた。 [問題点を解決するための手段とその作用] 本発明は、上記問題点を解決するために、
500μ以上が30〜60重量%、500μ〜100μが7〜35
重量%、100μ以下が30〜60重量%の粒度分布を
有する炭化珪素粒子100重量部に対し、珪酸塩鉱
物を0.1〜3.0重量部、バナジウムとカルシウムと
の元素比が1:0.1〜1:1.0であるバナジウム化
合物及びカルシウム化合物を0.2〜2.0重量部添加
して水及び有機バインダーと共に混練し、成形
後、焼成雰囲気を焼成初期は酸化性とし、その後
中性ないし弱酸化性雰囲気中で焼成するところに
特徴を有するものである。 一般に、二酸化珪素それ自体は1713℃という高
い融点を有していて荷重軟化温度が高く、且つ炭
化珪素と高温でも反応しにくい性質を有する。一
方、炭化珪素粒子の酸化により生成する二酸化珪
素は、炭化珪素粒子表面を覆うように形成されて
高純度である上に、比較的粗な組織状態にあるの
で、このままでは互いの焼結は進まない。即ち、
炭化珪素粒子の酸化は表面反応であり、粒表層に
形成される二酸化珪素の量は、粒子の大きさおよ
び粒子と雰囲気との接触を支配する充填性に強く
影響される。また、粒度構成に依存する充填性は
粒子相互の焼結にも強く影響される。 したがつて、適切に充填されてた粒度構成で、
適切な補助成分が介在すれば、炭化珪素粒子表面
に制御されて酸化生成した二酸化珪素は互いに反
応焼結して炭化珪素粒子間の係合組織をち密かつ
強固に形成する。この結合組織の高温特性は、組
成と炭化珪素の酸化に由来する二酸化珪素の量に
大きく影響を受ける。 本発明者らは種々の実験・研究の結果、所定の
粒度分布の炭化珪素粒子100重量部に対し、珪酸
塩鉱物を0.1〜3.0重量部、バナジウムとカルシウ
ムとの元素比が1:0.1〜1:1.0であるバナジウ
ム化合物及びカルシウム化合物を0.2〜2.0重量部
添加し、焼成雰囲気を焼成初期例えば1000℃まで
は酸化性とし、その後中性ないし弱酸化性雰囲気
中で焼成すると、ち密で高温特性に優れた強固な
結合組織を生成させ得ることを究明いた。即ち、
酸化性雰囲気中における焼成により、粒度制御し
た耐火物組織内の炭化珪素粒子が適度な酸化を受
けて適度な量の二酸化珪素が生成され、その二酸
化珪素が珪酸塩鉱物中の成分であるAl2O3
SiO2、Fe2O3、CaO、MgO、Na2O、K2O及び別
に添加したたとえばバナジン酸アンモニウムなど
のバナジウム化合物や例えば酸化カルシウムなど
のカルシウム化合物の存在下でち密で強固な焼結
状態を呈する。これは、炭化珪素の部分酸化によ
り生成した二酸化珪素が約2倍の体積増加を伴う
ことから、これにより耐火物組織内の微細気孔が
充填されると共に、上述の各補助成分が二酸化珪
素相互の焼結反応を促進するためと考えられる。
この様にち密で炭化珪素粒子相互を強固に結合し
た結合組織が生成されるため、炭化珪素耐火物の
高温特性が著しく改善された。この高温特性の改
善にアルカリ成分が果している役割もまた重要で
あり、添加した珪酸塩鉱物等の補助成分中の
Na2OとK2Oの合量が炭化珪素粒子への添加物総
量の0.5重量%以下含有していることが好ましい。 酸化性雰囲気中での焼成後は、焼成雰囲気を中
性ないし弱酸化性とすることが必要である。従来
のように一貫して大気雰囲気中で焼成すると、炭
化珪素の部分酸化が進み過ぎて過剰の二酸化珪素
が生成され、焼結反応が進まずかえつて結合組織
のち密化と強固化を阻害し高温特性が低下する。
本発明者の実験結果から焼成時の炭化珪素の部分
酸化は、5〜17重量%の二酸化珪素が生成するよ
うにすることが耐火物の高温における耐軟化変形
性、機械的強度、耐酸化性等を向上させる上で最
も好ましいることが判明した。炭化珪素耐火物の
高温における耐軟化変形性、機械的強度、耐酸化
性等は、残留SiC量、酸化生成SiO2量、添加補助
成分の寿類と添加量、製造条件等の相乗操作によ
つて決定されるが、耐火物の特性は結合部の組成
に支配されるため、粘土等で結合部を構成しない
高品位炭化珪素火物では炭化珪素粒子の酸化によ
つて生成するSiO2量は結合組織の主成分を構成
するものであり、重要な役割をなすものである。 結合組織中のFe2O3、バナジウム化合物、カル
シウム化合物等の補助成分は実用時の耐火物中の
炭化珪素粒子の酸化反応を効果的に抑制すること
ができる。これにより、高温における炭化珪素耐
火物の耐酸化性は著しく改善される。耐酸化性に
最も大きな影響を与えるのは、バナジウムとカル
シウムとの元素比であり、これは1:01〜1:
1.0であることが必要である。従来のようにバナ
ジウム化合物やカルシウム化合物を添加しない場
合には、強度特性のみならず特に耐酸化性が大幅
に劣り、添加しても添加量が上述の範囲から離れ
るにつれ高温変形性や機械的強度等の他の特性が
低下する。 また、炭化珪素の粒度分布は機械的強度や耐酸
化性等の諸特性に影響を及ぼす充填性の点から、
500μ以上が30〜60重量%、500μ〜100μが7〜35
重量%、100μ以下が30〜60重量%であることが
必要である。一方、珪酸塩鉱物の添加は、適切な
補助成分の供給をするために、炭化珪素粒子100
重量部に対し0.1〜3.0重量部添加することが必要
で、これが過剰である場合には高温特性が低下す
る。有機バインダーの添加は混練後の成形性と素
地強度の点から必要とされ、メチルセルロース、
デキストリン等の一般的な種類のもので良いが、
その添加量は炭化珪素粒子100重量部に対し0.1〜
1.0重量部であることが好ましい。 [実施例] 次に本発明をいくつかの実施例により例証す
る。 実施例1乃至実施例5では、炭化珪素粒子の粒
度分布及び補助成分の添加量は、次表に示す通
り、特許請求の範囲に記載した数値の範囲内であ
る。これに対し、比較例1乃至比較例5では、こ
れらの数値が珪酸塩鉱物、バナジウム化合物、カ
ルシウム化合物等の添加量及び炭化珪素粒子の粒
度分布において異なる。尚、次表中、珪酸塩鉱
物、カルシウム化合物、バナジウム化合物、有機
バインダーの欄の数値は、炭化珪素粒子100重量
部に対する重量部を示す。
[Industrial Technical Field] The present invention relates to a method for manufacturing a silicon carbide refractory with improved high-temperature properties. [Prior art and its problems] Silicon carbide refractories occupy an important position in industry because of their excellent fire resistance. The conventional manufacturing method for silicon carbide refractories is to mix nearly 10% clay with silicon carbide particles, knead, mold, and sinter the mixture, and then bond the silicon carbide particles with a silicate mineral, such as a clay mineral. . However, since the silicon carbide refractories produced in this way have a connective tissue made of clay minerals with low refractory properties, they have the drawback of easily promoting softening deformation and oxidation of silicon carbide particles at high temperatures. Therefore, in recent years, silicon carbide particles are partially oxidized by kneading and molding them with trace amounts of metal oxides, etc., and firing them in an oxidizing atmosphere.
A manufacturing method in which silicon carbide particles are bonded by a reaction product of silicon dioxide produced by the partial oxidation and an additive metal oxide is attracting attention. The silicon carbide refractories produced in this manner have excellent properties such as higher high-temperature strength than clay-mineral bonded silicon carbide refractories. However, the conventional manufacturing method of silicon carbide refractories bonded with silicon dioxide does not give sufficient consideration to the composition of the connective tissue, and is simply fired in an atmospheric atmosphere up to the maximum firing temperature. Nakatsuta. For this reason, it is not possible to optimize the amount of partial oxidation of silicon carbide to generate a dense and strong connective tissue, and therefore it is still difficult to sufficiently improve high-temperature properties such as softening deformation resistance and oxidation resistance at high temperatures. There was a problem that not only was it not possible to do this, but the quality also varied greatly. [Means for solving the problems and their effects] In order to solve the above problems, the present invention has the following features:
500μ or more is 30~60% by weight, 500μ~100μ is 7~35%
For 100 parts by weight of silicon carbide particles having a particle size distribution of 30 to 60% by weight of 100 μ or less, 0.1 to 3.0 parts by weight of silicate mineral, and an elemental ratio of vanadium to calcium of 1:0.1 to 1:1.0. 0.2 to 2.0 parts by weight of a vanadium compound and a calcium compound are added and kneaded with water and an organic binder, and after molding, the firing atmosphere is made oxidizing at the beginning of firing, and then fired in a neutral or weakly oxidizing atmosphere. It has the following characteristics. Generally, silicon dioxide itself has a high melting point of 1713° C., a high softening temperature under load, and has the property of not easily reacting with silicon carbide even at high temperatures. On the other hand, silicon dioxide produced by oxidation of silicon carbide particles is formed to cover the surface of silicon carbide particles and has a high purity, and has a relatively coarse structure, so sintering with each other will not proceed if this state continues. do not have. That is,
Oxidation of silicon carbide particles is a surface reaction, and the amount of silicon dioxide formed on the surface layer of the particles is strongly influenced by the size of the particles and the packing property that governs the contact between the particles and the atmosphere. In addition, the filling property, which depends on the particle size structure, is strongly influenced by mutual sintering of particles. Therefore, with an appropriately packed particle size composition,
If an appropriate auxiliary component is present, silicon dioxide produced by controlled oxidation on the surface of silicon carbide particles reacts and sinters with each other to form a dense and strong interlocking structure between silicon carbide particles. The high temperature properties of this connective tissue are greatly influenced by its composition and the amount of silicon dioxide derived from the oxidation of silicon carbide. As a result of various experiments and research, the present inventors found that 0.1 to 3.0 parts by weight of silicate minerals were added to 100 parts by weight of silicon carbide particles with a predetermined particle size distribution, and the elemental ratio of vanadium and calcium was 1:0.1 to 1. : Adding 0.2 to 2.0 parts by weight of a vanadium compound and a calcium compound of 1.0 to make the firing atmosphere oxidizing at the initial stage of firing, e.g. up to 1000°C, and then firing in a neutral or weakly oxidizing atmosphere will result in dense and high-temperature properties. We have discovered that it is possible to generate excellent and strong connective tissue. That is,
By firing in an oxidizing atmosphere, the silicon carbide particles in the refractory structure whose particle size is controlled undergo moderate oxidation and a moderate amount of silicon dioxide is produced, and the silicon dioxide is a component of Al 2 in silicate minerals. O3 ,
A dense and strong sintered state in the presence of SiO 2 , Fe 2 O 3 , CaO, MgO, Na 2 O, K 2 O and separately added vanadium compounds such as ammonium vanadate or calcium compounds such as calcium oxide. exhibits. This is because the volume of silicon dioxide generated by partial oxidation of silicon carbide increases approximately twice, which fills the fine pores in the refractory structure and allows each of the above-mentioned auxiliary components to interact with each other. This is thought to be to promote the sintering reaction.
Since such a dense connective tissue that firmly bonds the silicon carbide particles to each other is generated, the high-temperature properties of the silicon carbide refractory are significantly improved. The role of alkaline components in improving this high-temperature property is also important, and the role of alkaline components in auxiliary components such as added silicate minerals is also important.
It is preferable that the total amount of Na 2 O and K 2 O is 0.5% by weight or less of the total amount of additives to the silicon carbide particles. After firing in an oxidizing atmosphere, it is necessary to make the firing atmosphere neutral or weakly oxidizing. If sintering is performed consistently in the air as in the past, partial oxidation of silicon carbide progresses too much and excessive silicon dioxide is produced, preventing the sintering reaction from proceeding and instead inhibiting the densification and hardening of the connective tissue. High temperature properties deteriorate.
The inventor's experimental results show that the partial oxidation of silicon carbide during firing is such that 5 to 17% by weight of silicon dioxide is produced. It has been found that this is the most preferable method for improving the The softening deformation resistance, mechanical strength, oxidation resistance, etc. of silicon carbide refractories at high temperatures are determined by the synergistic operation of the amount of residual SiC, the amount of SiO 2 produced by oxidation, the age and amount of added auxiliary components, and manufacturing conditions. However, since the properties of refractories are controlled by the composition of the joints, in high-grade silicon carbide refractories whose joints are not made of clay or the like, the amount of SiO 2 produced by oxidation of silicon carbide particles is It constitutes the main component of connective tissue and plays an important role. Auxiliary components such as Fe 2 O 3 , vanadium compounds, and calcium compounds in the connective tissue can effectively suppress the oxidation reaction of silicon carbide particles in the refractory during practical use. This significantly improves the oxidation resistance of the silicon carbide refractory at high temperatures. The elemental ratio between vanadium and calcium has the greatest effect on oxidation resistance, which is between 1:01 and 1:0.
Must be 1.0. If vanadium compounds and calcium compounds are not added as in the past, not only the strength properties but also the oxidation resistance in particular will be significantly inferior. Other characteristics such as In addition, the particle size distribution of silicon carbide is determined from the viewpoint of filling properties, which affect various properties such as mechanical strength and oxidation resistance.
500μ or more is 30~60% by weight, 500μ~100μ is 7~35%
It is necessary that 30 to 60% by weight be 100μ or less. On the other hand, the addition of silicate minerals can be applied to silicon carbide particles 100
It is necessary to add 0.1 to 3.0 parts by weight per part by weight, and if this is excessive, the high temperature properties will deteriorate. The addition of an organic binder is necessary from the viewpoint of formability and base strength after kneading, and methyl cellulose,
General types such as dextrin are fine, but
The amount added is 0.1 to 100 parts by weight of silicon carbide particles.
Preferably, it is 1.0 part by weight. [Examples] The invention will now be illustrated by some examples. In Examples 1 to 5, the particle size distribution of silicon carbide particles and the amount of auxiliary components added are within the numerical ranges described in the claims, as shown in the following table. On the other hand, in Comparative Examples 1 to 5, these values differ in the amounts of silicate minerals, vanadium compounds, calcium compounds, etc. added and the particle size distribution of silicon carbide particles. In the following table, the values in the columns of silicate mineral, calcium compound, vanadium compound, and organic binder indicate parts by weight based on 100 parts by weight of silicon carbide particles.

【表】 上表から明らかなように、各実施例では各比較
例に比べ、カサ比重が大になり見掛気孔率が大き
く減少している。これはち密で強固な結合組織が
形成されたことを意味する。これに伴い、室温に
おける曲げ強度が50%程度向上し、また、高温時
(1400℃)における曲げ強度も珪酸塩鉱物例えば
粘土鉱物単味で結合させた従来の炭化珪素耐火物
に相当する比較例3及び4に比べ3倍以上の値と
なつている。しかも、高温特性を示す高温曲り変
形は大幅に低下し、酸化増加率も顕著な低下傾向
を示している。これらは、高温における優れた耐
軟化変形性及び耐酸化性を有することを意味す
る。尚、高温曲り変形は、テストピース寸法が
400×50×10mmで、スパン300mm、荷重15Kg、温度
1400℃、保持時間10時間の条件下で測定したもの
である。また、酸化増加率は、温度1150℃で90℃
飽和水蒸気中に、100c.c./minの酸素を供給し、
暴露200時間の条件下で測定したものである。 [発明の効果] 本発明は以上述べたように、所定粒度の炭化珪
素粒子に、微量の珪酸塩鉱物、バナジウム化合
物、カルシウム化合物を所定量添加すると共にバ
ナジウムとカルシウムとの元素比を所定範囲内に
調製し、焼成雰囲気を焼成初期は酸化性とし、そ
の後中性ないし弱酸化性雰囲気中で焼成するとこ
ろに特徴を有し、この結果、ち密で高強度の結合
組織が形成されるので、常温における機械的強度
は勿論のこと高温における耐軟化変形性及び耐酸
化性等の高温特性を大幅に向上させた炭化珪素耐
火物を提供することができるという優れた効果を
奏するものである。
[Table] As is clear from the above table, in each Example, the bulk specific gravity is larger and the apparent porosity is significantly reduced compared to each Comparative Example. This means that a dense and strong connective tissue has been formed. As a result, the bending strength at room temperature has improved by about 50%, and the bending strength at high temperatures (1400°C) has also improved compared to conventional silicon carbide refractories that are bonded with silicate minerals, such as clay minerals. The value is more than three times that of 3 and 4. Moreover, the high-temperature bending deformation, which indicates high-temperature properties, has been significantly reduced, and the oxidation increase rate has also shown a remarkable decreasing trend. These are meant to have excellent softening deformation resistance and oxidation resistance at high temperatures. In addition, for high temperature bending deformation, the test piece dimensions are
400×50×10mm, span 300mm, load 15Kg, temperature
This was measured under the conditions of 1400°C and a holding time of 10 hours. In addition, the oxidation increase rate is 90℃ at a temperature of 1150℃
Supplying 100c.c./min of oxygen into saturated steam,
Measured under conditions of 200 hours of exposure. [Effects of the Invention] As described above, the present invention includes adding a trace amount of a silicate mineral, a vanadium compound, and a calcium compound in a predetermined amount to silicon carbide particles of a predetermined particle size, and adjusting the element ratio of vanadium and calcium within a predetermined range. It is characterized by the fact that the firing atmosphere is oxidizing in the initial stage of firing, and then fired in a neutral or weakly oxidizing atmosphere.As a result, a dense and high-strength connective tissue is formed, so it can be fired at room temperature. This has the excellent effect of providing a silicon carbide refractory that has significantly improved high-temperature properties such as not only mechanical strength but also high-temperature resistance to softening and deformation and oxidation resistance.

Claims (1)

【特許請求の範囲】 1 500μ以上が30〜60重量%、500μ〜100μが7
〜35重量%、100μ以下が30〜60重量%の粒度分
布を有する炭化珪素粒子100重量部に対し、珪酸
塩鉱物を0.1〜3.0重量部、バナジウムとカルシウ
ムとの元素比が1:0.1〜1:1.0であるバナジウ
ム化合物及びカルシウム化合物を0.2〜2.0重量部
添加して水及び有機バインダーと共に混練し、成
形後、焼成雰囲気を焼成初期を酸化性とし、その
後中性ないし弱酸化性雰囲気中で焼成することを
特徴とする炭化珪素耐火物の製造方法。 2 炭化珪素耐火物全体に対し5〜17%の二酸化
珪素の大部分が焼成に伴う炭化珪素の部分酸化に
より生成される特許請求の範囲第1項に記載の炭
化珪素耐火物の製造方法。 3 珪酸塩鉱物中にNa2O及びK2Oの合量が炭化
珪素粒子への添加物総量の0.5重量%以下含有し
ている特許請求の範囲第1項に記載の炭化珪素耐
火物の製造方法。
[Claims] 1 30 to 60% by weight of 500μ or more, 7 of 500μ to 100μ
~35% by weight, 100 parts by weight of silicon carbide particles having a particle size distribution of 30 to 60% by weight below 100μ, 0.1 to 3.0 parts by weight of silicate mineral, and an elemental ratio of vanadium to calcium of 1:0.1 to 1. : 0.2 to 2.0 parts by weight of a vanadium compound and a calcium compound of 1.0 are added, kneaded with water and an organic binder, and after molding, the firing atmosphere is made oxidizing at the beginning of firing, and then fired in a neutral to slightly oxidizing atmosphere. A method for producing a silicon carbide refractory, characterized by: 2. The method for producing a silicon carbide refractory according to claim 1, wherein most of the silicon dioxide, which is 5 to 17% based on the entire silicon carbide refractory, is produced by partial oxidation of silicon carbide during firing. 3. Production of a silicon carbide refractory according to claim 1, wherein the silicate mineral contains a total amount of Na 2 O and K 2 O of 0.5% by weight or less of the total amount of additives to silicon carbide particles. Method.
JP60220994A 1985-10-02 1985-10-02 Manufacture of silicon carbide refractories Granted JPS6283371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60220994A JPS6283371A (en) 1985-10-02 1985-10-02 Manufacture of silicon carbide refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60220994A JPS6283371A (en) 1985-10-02 1985-10-02 Manufacture of silicon carbide refractories

Publications (2)

Publication Number Publication Date
JPS6283371A JPS6283371A (en) 1987-04-16
JPH04946B2 true JPH04946B2 (en) 1992-01-09

Family

ID=16759799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60220994A Granted JPS6283371A (en) 1985-10-02 1985-10-02 Manufacture of silicon carbide refractories

Country Status (1)

Country Link
JP (1) JPS6283371A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101479209B1 (en) * 2012-10-04 2015-01-09 신필교 Manufacturing Process of Lentinus edodes Culture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4704111B2 (en) * 2005-06-01 2011-06-15 日本碍子株式会社 Oxide bonded silicon carbide material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101479209B1 (en) * 2012-10-04 2015-01-09 신필교 Manufacturing Process of Lentinus edodes Culture

Also Published As

Publication number Publication date
JPS6283371A (en) 1987-04-16

Similar Documents

Publication Publication Date Title
US10093581B2 (en) Refractory batch and use thereof
JP4704111B2 (en) Oxide bonded silicon carbide material
JP2015528790A (en) Refractory products and their use
JPH072536A (en) Fire brick as bed of tin bath
US3236665A (en) Silica refractory
CN104276831B (en) A kind of method preparing calcium oxide carbon brick
JPH04946B2 (en)
KR101658887B1 (en) Method of preparing light weight aggregate using gold mine tail
JPS6410469B2 (en)
JP2968166B2 (en) Method of manufacturing silica brick
US1546833A (en) Refractory article and method of making the same
JPS60118669A (en) Refractory formed body comprising partially stabilized zirconium dioxide
JPH04114969A (en) Nitride-bonded sic refractory material
JPS6283372A (en) Manufacture of silicon carbide refractories
JPH0481543B2 (en)
KR101372958B1 (en) Refractories for electric furnaces
JP4907094B2 (en) Method for producing fused siliceous refractories
JPH02111657A (en) Production of magnesia-calcia refractory brick
SU604668A1 (en) Ceramic binder for abrasive tool
JPS5934674B2 (en) Basic refractory composition
JPS608988B2 (en) Immersion nozzle composition for casting
EP0072871A1 (en) Castable composition for heat resistant product
JPH04238855A (en) Magnesia alumina-based spinel refractory and production thereof
JP3176836B2 (en) Irregular refractories
JPH01320264A (en) Production of alumina-series ceramic

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term