JPH02111657A - Production of magnesia-calcia refractory brick - Google Patents

Production of magnesia-calcia refractory brick

Info

Publication number
JPH02111657A
JPH02111657A JP63263310A JP26331088A JPH02111657A JP H02111657 A JPH02111657 A JP H02111657A JP 63263310 A JP63263310 A JP 63263310A JP 26331088 A JP26331088 A JP 26331088A JP H02111657 A JPH02111657 A JP H02111657A
Authority
JP
Japan
Prior art keywords
resin
mixture
magnesia
refractory
clinker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63263310A
Other languages
Japanese (ja)
Inventor
Mari Nagafune
長舟 万里
Ichiro Tsuchiya
一郎 土屋
Masao Oguchi
征男 小口
Tatsuo Kawakami
川上 辰男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Refractories Corp
Original Assignee
Kawasaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Refractories Co Ltd filed Critical Kawasaki Refractories Co Ltd
Priority to JP63263310A priority Critical patent/JPH02111657A/en
Publication of JPH02111657A publication Critical patent/JPH02111657A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a calcined refractory brick having excellent heat-resistance and structural spalling resistance by adding heated and melted thermoplastic resin to coarse grains of heated refractory aggregate, kneading the mixture to coat the grain with the resin, adding fine powder and then a thermosetting resin to the kneaded mixture and kneading, forming and calcining the mixture. CONSTITUTION:Coarse grains (having particle diameter of preferably <=5mm, especially >=3.5mm) such as natural dolomite clinker and seawater magnesia clinker are mixed with molten thermoplastic resin such as polypropylene. The amount of the resin is usually 3-10wt.%, preferably about 3-7wt.%. When the temperature of the mixture is lowered to <=40 deg.C, the mixture is added with fine grains and fine powder of refractory, kneaded further, added with (usually 0.1-1 pts.wt., preferably 0.5-0.7 pts.wt. of) a thermosetting resin such as phenolic resin and kneaded to obtain a body, which is formed and then calcined in an oxidizing atmosphere at about 1400-1700 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマグネシア−カルシア系耐火れんがの製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing magnesia-calcia refractory bricks.

〔従来の技術とその課題〕[Conventional technology and its issues]

マグネシア系れんがは、製鉄、製鋼、非鉄金属製造等の
諸分野で使用される各種の炉の内張材として広く使用さ
れている。
Magnesia bricks are widely used as lining materials for various furnaces used in various fields such as iron manufacturing, steel manufacturing, and nonferrous metal manufacturing.

一般にマグネシア系れんがはMgOの融点が約2800
℃と高(、且つスラグへの溶解度が低いので、耐スラグ
性には優れているものの、耐スポーリング性に劣るとい
う重要な欠点がある。すなわち、MgOとスラグとの反
応性が低、いため、スラグがれんが内部まで浸透して浸
透部に存在するMgO結晶(ペリクレース)の結合組織
を緩めさせる。その結果、れんがの温度が低下すると浸
透部と非浸透部との間に物理的性質(熱膨張係数、気孔
率、強度等)の違いが生じて、スポーリングが発生し易
くなる。また、MgOは熱膨張係数が大きいのでれんが
の炉内側(高温側)部分と背面側(低温側)部分との膨
張差によってもスポーリングが発生し易い。従って、マ
グネシア系れんがを使用する炉においては、スラグの作
用、炉体構造に起因する熱歪、炉の使用サイクル(加熱
と冷却の繰り返し)に起因する熱衝〒8、機械的衝撃1
等の諸要因が重なり合って、熱的スポーリングおよび構
造的スポーリングが生じ、れんがが炉体から徐々に剥落
していき、遂には炉が使用不能となる。
Generally, the melting point of MgO in magnesia bricks is approximately 2800.
Although it has excellent slag resistance due to its low solubility in slag, it has an important drawback of poor spalling resistance. In other words, the reactivity of MgO with slag is low, , the slag penetrates into the interior of the brick and loosens the connective tissue of MgO crystals (periclase) present in the permeated part.As a result, when the temperature of the brick decreases, physical properties (thermal properties) between the permeated part and the non-penetrated part Spalling is likely to occur due to differences in coefficient of expansion (expansion coefficient, porosity, strength, etc.). Also, since MgO has a large coefficient of thermal expansion, the inner side (high temperature side) and back side (low temperature side) of the brick Spalling is also likely to occur due to the expansion difference between Thermal shock caused by 〒8, mechanical shock 1
The combination of these factors causes thermal spalling and structural spalling, and the bricks gradually fall off from the furnace body, eventually rendering the furnace unusable.

マグネシアとカルシアとの併用により耐スポーリング性
を改善する試みも従来からある。すなわち、CaOとM
gOとは殆ど反応も固溶もしないのでCaOにより隔離
されたMgOの結晶成長が抑制され、れんがの耐スポー
リング性が向上するものと期待されている。更に、Ca
Oを使用する場合には、CaO自身のフラックス化促進
作用によりれんが内に浸透してくるスラグと反応してス
ラグを高融点化させ、もってスラグのれんが内部への浸
透を防止することができる。この場合、れんがの溶損速
度は大きくなるが、れんがの損傷がスポーリング律速か
ら溶…律速に変わるのでれんがの寿命が延長され、特に
1700℃以上で操業される炉材として有望視されてい
る。
There have also been attempts to improve spalling resistance by using magnesia and calcia in combination. That is, CaO and M
Since it hardly reacts or forms solid solution with gO, it is expected that the crystal growth of MgO isolated by CaO will be suppressed and the spalling resistance of bricks will be improved. Furthermore, Ca
When using O, CaO itself reacts with the slag penetrating into the bricks due to its promoting action, raising the melting point of the slag, thereby preventing the slag from penetrating into the bricks. In this case, the rate of corrosion of the bricks increases, but the damage to the bricks changes from spalling rate-limiting to melting rate-limiting, extending the life of the bricks, making it particularly promising as a furnace material operated at temperatures above 1,700℃. .

しかしながら、CaOを使用する場合には新たな問題が
生ずる。一般にCaO源としては、天然および合成のド
ロマイトクリンカ−1Mg0・CaOクリンカー、Ca
Oクリンカー等が使用されている。天然ドロマイトクリ
ンカ−はSin、、Fex 03 、A120s等のフ
ラックス成分を2〜5%程度含有しており、また合成ド
ロマイトクリンカ−1Mg0・CaOクリンカーおよび
CaOクリンカーにはタリンカー製造時に緻密焼結体を
得るべく添加される焼結助剤に由来するSiO2、Ti
O2、A1203 、Few Ox等が0゜8〜2.5
%程度含まれている。マグネシア−カルシアれんかにお
いて、それらのフラックス成分または焼結助剤はMgO
−CaO結晶間隙あるいはCaO結晶粒子境界に濃縮さ
れ、CaOまたはMgOと反応して低融点化合物を生成
する。また、れんが中のCaO含有量を増加させる場合
には、上記フラックス成分または焼結助剤の量も増大す
ることになり、れんが焼結時に過焼結を生ずることにな
る。過焼結を起こしたれんがは、高弾性体となり、応力
に対する変形量が小さくなるため、応力発生時に変形す
ることなく亀裂を生じ易くなり、耐熱スポーリング性が
低下する。特にCaO含有量が60%を上回る場合には
、過焼結による高弾性化が顕著となって、耐熱スポーリ
ング性が著しく低下するのみならず、Fe、0.または
A1□0.に冨むスラグに対する耐食性が著しく低下す
るという問題がある。
However, new problems arise when using CaO. In general, CaO sources include natural and synthetic dolomite clinker-1Mg0.CaO clinker, Ca
O clinker etc. are used. Natural dolomite clinker contains about 2 to 5% of flux components such as Sin, Fex 03, A120s, etc., and synthetic dolomite clinker - 1Mg0.CaO clinker and CaO clinker have a dense sintered body obtained during the production of tallinker. SiO2, Ti derived from sintering aids added to
O2, A1203, Few Ox, etc. are 0°8 to 2.5
Contains about %. In magnesia-calcia bricks, their flux component or sintering aid is MgO
-CaO is concentrated in the interstices of the CaO crystals or at the boundaries of the CaO crystal grains, and reacts with CaO or MgO to produce low-melting compounds. Furthermore, when increasing the CaO content in the brick, the amount of the above-mentioned flux component or sintering aid also increases, resulting in oversintering when the brick is sintered. Bricks that have been oversintered become highly elastic and have a small amount of deformation in response to stress, so they do not deform when stress occurs and are more likely to crack, resulting in lower heat spalling resistance. In particular, when the CaO content exceeds 60%, the increase in elasticity due to oversintering becomes remarkable, and not only does the heat spalling resistance drop significantly, but also Fe, 0. or A1□0. There is a problem in that the corrosion resistance against slag that accumulates in the steel is significantly reduced.

この発明は上記従来の事情に鑑みて提案されたものであ
って、耐熱スポーリング性及び耐構造スポーリング性に
優れた焼成耐火れんがの製造する方法を提供することを
目的とするものである。
The present invention has been proposed in view of the above-mentioned conventional circumstances, and an object of the present invention is to provide a method for producing fired refractory bricks that are excellent in heat spalling resistance and structural spalling resistance.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、この発明は以下の手段を採
用していにる。すなわち、本発明耐火れんがは加熱した
耐火骨材の粗粒と加熱により溶解した熱可塑性樹脂を温
度が40℃〜常温に降下するまで混練して粗粒を樹脂で
コーティングした後、微粉を投入し、最後に熱硬化性樹
脂を添加し混練、成形、焼成するようにしたものである
In order to achieve the above object, the present invention employs the following means. That is, the refractory brick of the present invention is made by kneading heated coarse particles of refractory aggregate and a thermoplastic resin dissolved by heating until the temperature drops from 40°C to room temperature, coating the coarse particles with resin, and then adding fine powder. Finally, a thermosetting resin is added, kneaded, molded, and fired.

〔作 用〕[For production]

本発明製造法によれば、焼成時、粗粒にコーティングし
た樹脂の揮発により粗粒表面に空隙が形成され、該空隙
が熱応力を吸収し、耐熱衝撃性の向上に寄与しているこ
とが見出された。
According to the manufacturing method of the present invention, voids are formed on the surface of the coarse grains due to volatilization of the resin coated on the coarse grains during firing, and these voids absorb thermal stress and contribute to improving thermal shock resistance. discovered.

本発明において使用するマグネシア原料としては、公知
のものがいずれも使用でき、例えば天然マグネシアクリ
ンカ−1海水マグネシアクリンカ、電融マグネシア等を
挙げることができる。カルシア原料としても公知のもの
がいずれも使用でき、例えば天然ドロマイトクリンカ“
−5合成ドロマイトクリンカー1電融ドロマイトクリン
カ:合成マグネシアカルシアクリンカ−等を挙げること
ができる。本発明では、これら耐火骨材の1種または2
種以上の混合物を使用できる。
As the magnesia raw material used in the present invention, any known material can be used, such as natural magnesia clinker-1 seawater magnesia clinker, fused magnesia, and the like. Any known calcia raw material can be used, such as natural dolomite clinker.
-5 Synthetic dolomite clinker 1 Electrofused dolomite clinker: Synthetic magnesia calcia clinker, etc. can be mentioned. In the present invention, one or two of these refractory aggregates are used.
Mixtures of more than one species can be used.

耐火骨材の粒径は特に制限されず、適宜選択すればよい
が、通常5mm以下程度とするのが良く、特に3.5m
m以下とすること力もより好ましい。
The particle size of the refractory aggregate is not particularly limited and may be selected as appropriate, but it is usually about 5 mm or less, especially 3.5 m.
It is also more preferable that the force be less than or equal to m.

熱可塑性樹脂としてはポリプロピレン、ワックス等が使
用でき、その添加量は適宜決定すればよいが、通常3〜
10重量部、好ましくは3〜7重量部程度とするのがよ
い。この添加量が10重量部を越えると形成する空隙が
大きくなり過ぎて強度が低下する恐れがある。また、3
重量部未満では熱応力の吸収が可能な空隙が形成されな
いので好ましくなく、3〜7重量部程度が好ましい。
As the thermoplastic resin, polypropylene, wax, etc. can be used, and the amount added may be determined as appropriate, but usually 3~
The amount is preferably about 10 parts by weight, preferably about 3 to 7 parts by weight. If the amount added exceeds 10 parts by weight, the voids formed may become too large and the strength may decrease. Also, 3
If the amount is less than 3 parts by weight, voids capable of absorbing thermal stress will not be formed, which is not preferable, and about 3 to 7 parts by weight is preferable.

熱硬化性樹脂としてはポリウレタン系、エボキン系、フ
ェノール系樹脂が使用でき、その添加量は適宜決定すれ
ばよいが、通常0.3〜1重量部、好ましくは0.5〜
0.7重量部程度とするのがよい。この添加量が1重量
部を越えると樹脂の硬化により1バツチの坏土の第一回
成型品と最後の成型品の品質に差が表れる恐れがある。
As the thermosetting resin, polyurethane-based, evoquin-based, and phenol-based resins can be used, and the amount added may be determined appropriately, but it is usually 0.3 to 1 part by weight, preferably 0.5 to 1.
The amount is preferably about 0.7 parts by weight. If the amount added exceeds 1 part by weight, there may be a difference in quality between the first molded product and the final molded product of one batch of clay due to curing of the resin.

また、0゜3重量部未満の場合は成型時に粗粒表面の熱
可塑性樹脂のコーティングが崩壊し好ましくない。
If the amount is less than 0.3 parts by weight, the thermoplastic resin coating on the surface of the coarse particles will collapse during molding, which is undesirable.

本発明耐火物は常法に従って例えば、上記耐火骨材及び
バインダーを混練し、この混合物を成型し、酸化雰囲気
中1400〜1700℃程度で焼成することにより製造
される。
The refractory of the present invention is produced in accordance with a conventional method, for example, by kneading the above-mentioned refractory aggregate and binder, molding the mixture, and firing it at about 1400 to 1700° C. in an oxidizing atmosphere.

〔実施例〕〔Example〕

以下に実施例を挙げ、本発明をより一層明確なものとす
る。
Examples will be given below to further clarify the present invention.

100℃に加熱した粒径3〜1mmの天然ドロマイトク
リンカ−40重量部及び海水マグネシアクリンカ−20
重量部に160℃に加熱した熱可塑性樹脂であるポリプ
ロピレン(添加量は第1表に示す)を添加し、混合物の
温度が35℃になるまで混練した後、粒径1mm以下の
海水マグネシアクリンカ−40重量部を投入し、更に熱
硬化性樹脂であるポリウレタン(添加量は第1表に示す
)を添加し混練して皿型に成形、1650℃で焼成して
本発明耐火物を得た。
40 parts by weight of natural dolomite clinker with a particle size of 3 to 1 mm heated to 100°C and 20 parts by weight of seawater magnesia clinker
Polypropylene, which is a thermoplastic resin heated to 160°C (the amount added is shown in Table 1), is added to the weight part, and the mixture is kneaded until the temperature reaches 35°C, followed by seawater magnesia clinker with a particle size of 1 mm or less. 40 parts by weight was added, and polyurethane, which is a thermosetting resin (the amount added is shown in Table 1), was added, kneaded, molded into a dish shape, and fired at 1650° C. to obtain a refractory of the present invention.

第 1 表  添加量(重量部) 第2表に得られたれんがの物性を示す。Table 1 Addition amount (parts by weight) Table 2 shows the physical properties of the obtained bricks.

比較例として耐火骨材の配合割合は実施例と同様にし、
バインダーとして熱可塑性樹脂であるポリプロピレン1
.5重量部(比較例1)、熱硬化性樹脂であるポリウレ
タン1.5重量部(比較例2)をそれぞれ添加したれん
がを通常の方法で製造した。これらの物性を第2表に併
せて示す。
As a comparative example, the mixing ratio of fireproof aggregate was the same as in the example,
Polypropylene 1, a thermoplastic resin, as a binder
.. Bricks to which 5 parts by weight (Comparative Example 1) and 1.5 parts by weight of polyurethane which is a thermosetting resin (Comparative Example 2) were added were manufactured in a conventional manner. These physical properties are also shown in Table 2.

第2表 〔発明の効果〕 本発明によれば強度を低下させることなく耐熱スポーリ
ング性に優れた焼成耐火れんがが得られる。
Table 2 [Effects of the Invention] According to the present invention, fired refractory bricks having excellent heat spalling resistance can be obtained without reducing strength.

Claims (1)

【特許請求の範囲】 〔1〕粗粒耐火骨材に溶融した熱可塑性樹脂を添加混合
し、混合物の温度が40℃以下に低下した時、細粒、微
粉耐火物粉末を加え混練を続け、更に熱硬化性樹脂を添
加混練して坏土を造り、成形後、焼成することを特徴と
するマグネシア−カルシア系耐火れんがの製造方法。
[Scope of Claims] [1] Adding and mixing a molten thermoplastic resin to coarse refractory aggregate, and when the temperature of the mixture drops to 40°C or less, adding fine refractory powder and continuing kneading; A method for producing a magnesia-calcia refractory brick, which comprises further adding and kneading a thermosetting resin to form a clay, which is then molded and then fired.
JP63263310A 1988-10-19 1988-10-19 Production of magnesia-calcia refractory brick Pending JPH02111657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63263310A JPH02111657A (en) 1988-10-19 1988-10-19 Production of magnesia-calcia refractory brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63263310A JPH02111657A (en) 1988-10-19 1988-10-19 Production of magnesia-calcia refractory brick

Publications (1)

Publication Number Publication Date
JPH02111657A true JPH02111657A (en) 1990-04-24

Family

ID=17387703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63263310A Pending JPH02111657A (en) 1988-10-19 1988-10-19 Production of magnesia-calcia refractory brick

Country Status (1)

Country Link
JP (1) JPH02111657A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5932505A (en) * 1996-11-04 1999-08-03 Rutgers, The State University Hydrofluoric acid resistant ceramic mortar
JP2002316878A (en) * 2001-04-16 2002-10-31 Nippon Steel Corp Coarse aggregate for refractories subjected to coating, refractories using the same and vessel for molten metal for metal smelting
JP2012062233A (en) * 2010-09-17 2012-03-29 Nippon Steel Corp Mgo-c-based refractory

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5932505A (en) * 1996-11-04 1999-08-03 Rutgers, The State University Hydrofluoric acid resistant ceramic mortar
JP2002316878A (en) * 2001-04-16 2002-10-31 Nippon Steel Corp Coarse aggregate for refractories subjected to coating, refractories using the same and vessel for molten metal for metal smelting
JP4542281B2 (en) * 2001-04-16 2010-09-08 新日本製鐵株式会社 Coated coarse aggregate for refractory, refractory using the same and molten metal container for metal refining
JP2012062233A (en) * 2010-09-17 2012-03-29 Nippon Steel Corp Mgo-c-based refractory

Similar Documents

Publication Publication Date Title
US8030236B2 (en) Fire-resistant ordinary ceramic batch, and fire-resistant product therefrom
US5420087A (en) Refractory or fireproof brick as tin bath bottom brick
US3652307A (en) Alumina refractories
US2407135A (en) Furnace lining
US3467535A (en) Refractory insulating compositions
US3008842A (en) Basic refractory insulating shapes
US2040236A (en) Process of making bonded silicon carbide refractories
JPH02111657A (en) Production of magnesia-calcia refractory brick
US3262795A (en) Basic fused refractory
US4931415A (en) Metal melting crucible
US5382555A (en) High alumina brick with metallic carbide and its preparation
JPS60118669A (en) Refractory formed body comprising partially stabilized zirconium dioxide
JPH0881256A (en) Brick containing compressed and pulverized expanded graphite
US1897183A (en) Method of and material employed in the manufacture of refractory
JP2960631B2 (en) Irregular refractories for lining molten metal containers
JP3949408B2 (en) Silica brick for hot repair and its manufacturing method
JP2009242122A (en) Brick for blast furnace hearth and blast furnace hearth lined with the same
US3227568A (en) Refractory brick
US3353976A (en) Refractory and method
JP2611405B2 (en) Method for producing zirconia refractories
US3715223A (en) Production of basic refractories
JPS5839798B2 (en) Method for producing coal-fired firebrick
JPH07108803B2 (en) Magnesia-alumina spinel refractory and manufacturing method thereof
CN118812241A (en) Unfired magnesia-alumina spinel brick for dip pipe of RH refining furnace and preparation method thereof
JPS61232266A (en) Manufacture of alumina-carbon base refractories for immersion nozzle