KR101658887B1 - Method of preparing light weight aggregate using gold mine tail - Google Patents
Method of preparing light weight aggregate using gold mine tail Download PDFInfo
- Publication number
- KR101658887B1 KR101658887B1 KR1020150123589A KR20150123589A KR101658887B1 KR 101658887 B1 KR101658887 B1 KR 101658887B1 KR 1020150123589 A KR1020150123589 A KR 1020150123589A KR 20150123589 A KR20150123589 A KR 20150123589A KR 101658887 B1 KR101658887 B1 KR 101658887B1
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- oxide
- mixture
- delete delete
- gold
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/02—Preparing or treating the raw materials individually or as batches
- C04B33/13—Compounding ingredients
- C04B33/132—Waste materials; Refuse; Residues
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/02—Preparing or treating the raw materials individually or as batches
- C04B33/13—Compounding ingredients
- C04B33/132—Waste materials; Refuse; Residues
- C04B33/1324—Recycled material, e.g. tile dust, stone waste, spent refractory material
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/32—Burning methods
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C5/00—Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/60—Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Dispersion Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Treatment Of Sludge (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
본 발명은 금광미를 이용한 경량골재의 제조 방법에 관한 것이다.The present invention relates to a method for producing a lightweight aggregate using gold light.
광미는 광석에서 필요한 성분을 골라내는 선광공정에서 발생되는 부산물을 말하며, 회수되는 유용광물에 비해 그 양이 매우 많다. 현재 발생된 광미는 광산 근처의 야적장에 방치하고 있는데, 야적장 부지확보 문제 및 주변환경 오염 문제 등을 야기하고 있다. The tailings are byproducts generated in the ore mining process to extract the necessary components from the ore, and the amount of these minerals is much higher than the recovered minerals. Currently, the mine tailings are left in the yard near the mine, causing problems such as securing the yard site and polluting the surrounding environment.
금광미의 경우, 대부분 실리카로 이루어져 있으며 이 외에 알루미나 등을 포함하고 있다. 종래에 금광미를 시멘트 원료로 활용, 콘크리트 혼합제로 첨가, 녹생토 제조 등의 다양한 광미활용 연구 및 제품개발 시도가 있었으나, 현재 상업화되어 있는 기술은 없는 상태이다. In the case of gold mining, it is mostly composed of silica and contains alumina and the like. Conventionally, there have been attempts to develop a variety of gumi application and product development such as the use of gold minerals as raw materials for cement, addition of concrete mixtures, and production of rye soil, but there is no commercialized technology at present.
이는 원천적으로 금광미의 높은 실리카 함량 때문에 제품의 소성 및 가공이 쉽지 않고 미세한 입자사이즈로 인한 낮은 기공율 탓에 소결 또한 잘 이루어지지 않는 것에 기인한다고 볼 수 있다. This is attributed to the fact that the sintering of the product is not easy due to the high silica content of the gold minerals and that the sintering is not performed well due to the low porosity due to the fine particle size.
한편 금광미를 다른 폐자원과 혼합 후 용융 및 분사시켜 볼 형태로 만드는 기술이 있으나, 이 방법은 용융에 과도한 에너지가 소모되는 문제가 있다.On the other hand, there is a technique of mixing gold minerals with other waste materials, melting and injecting them into a ball shape, but this method has a problem that excessive energy is consumed in melting.
따라서 본 발명의 목적은 금광미를 이용한 경량골재 제조 방법을 제공하는 것이다.SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a method of manufacturing a lightweight aggregate using gold mine tailings.
상기 본 발명의 목적은 금광미, 적니 및 폐석회석을 혼합하여 혼합물을 얻는 단계와; 상기 혼합물을 펠렛형태로 제조하는 단계와; 상기 펠렛을 1000℃ 내지 1250℃에서 열처리하여 경량골재를 얻는 단계를 포함하는 금광미를 이용한 경량골재 제조 방법에 의해 달성된다.The above object of the present invention is achieved by a method for producing a limestone, comprising the steps of: mixing a gold mine, red mud, and waste limestone to obtain a mixture; Preparing the mixture in the form of pellets; And heat treating the pellet at a temperature of 1000 ° C to 1250 ° C to obtain a lightweight aggregate.
상기 혼합물은 실리카 50 내지 60중량%, 산화칼슘 15 내지 25중량%, 산화철 8 내지 15 중량% 및 알루미나 10 내지 15 중량%와 잔부 3 내지 10중량%를 포함할 수 있다.The mixture may comprise from 50 to 60% by weight of silica, from 15 to 25% by weight of calcium oxide, from 8 to 15% by weight of iron oxide, from 10 to 15% by weight of alumina and from 3 to 10% by weight of the balance.
상기 잔부는 산화마그네슘, 산화나트륨, 산화칼륨 및 산화티타늄 중 적어도 하나를 포함할 수 있다.The remainder may comprise at least one of magnesium oxide, sodium oxide, potassium oxide and titanium oxide.
상기 열처리온도는 1100℃ 내지 1200℃일 수 있다.The heat treatment temperature may range from 1100 ° C to 1200 ° C.
상기 펠렛 제조 후 상기 펠렛을 건조하는 단계를 더 포함할 수 있다.And drying the pellet after manufacturing the pellet.
상기 금광미는 실리카를 80중량% 내지 95중량% 포함하고, 상기 적니는 알루미나를 23중량% 내지 33중량% 및 산화철을 30중량% 내지 40중량% 포함하고, 상기 폐석회석은 실리카를 15중량% 내지 35중량% 및 산화칼슘을 63중량% 내지 73중량% 포함할 수 있다.Wherein the gold limestone comprises from 80% to 95% by weight of silica, the reddish brown contains from 23% to 33% by weight of alumina and from 30% to 40% by weight of iron oxide and the limestone comprises 15% By weight of calcium oxide and 63% by weight to 73% by weight of calcium oxide.
상기 열처리 시간은 10분 내지 1시간일 수 있다.The heat treatment time may be 10 minutes to 1 hour.
상기 경량골재의 압축강도는 2000N/펠렛 이상일 수 있다.The compressive strength of the lightweight aggregate may be 2000N / pellet or more.
상기 본 발명의 목적은 1300℃ 이하에서 용융소결이 가능한 실리카, 산화칼슘, 산화철 및 알루미나의 조성비가 되도록 금광미, 적니 및 폐석회석을 혼합하여 혼합물을 얻는 단계와; 상기 혼합물을 펠렛형태로 제조하는 단계와; 상기 펠렛을 용융소결시켜 경량골재를 얻는 단계를 포함하는 금광미를 이용한 경량골재 제조 방법에 의하여 달성된다.The above object of the present invention is achieved by a method for producing a steel slab, comprising the steps of: mixing a gold limestone, red mud, and waste limestone with a composition ratio of silica, calcium oxide, iron oxide and alumina capable of melting and sintering at 1300 ° C or lower; Preparing the mixture in the form of pellets; And a step of melting and sintering the pellets to obtain a lightweight aggregate.
상기 용융소결은 1000℃ 내지 1250℃일 수 있다.The melt sintering may be 1000 ° C to 1250 ° C.
상기 열처리온도는 1100℃ 내지 1200℃일 수 있다.The heat treatment temperature may range from 1100 ° C to 1200 ° C.
상기 혼합물은 실리카 50 내지 60중량%, 산화칼슘 15 내지 25중량%, 산화철 8 내지 15 중량% 및 알루미나 10 내지 15 중량%와 잔부 3 내지 10중량%를 포함할 수 있다.The mixture may comprise from 50 to 60% by weight of silica, from 15 to 25% by weight of calcium oxide, from 8 to 15% by weight of iron oxide, from 10 to 15% by weight of alumina and from 3 to 10% by weight of the balance.
상기 잔부는 산화마그네슘, 산화나트륨, 산화칼륨 및 산화티타늄 중 적어도 하나를 포함할 수 있다.The remainder may comprise at least one of magnesium oxide, sodium oxide, potassium oxide and titanium oxide.
상기 금광미는 실리카를 80중량% 내지 95중량% 포함하고, 상기 적니는 알루미나를 23중량% 내지 33중량% 및 산화철을 30중량% 내지 40중량% 포함하고, 상기 폐석회석은 실리카를 15중량% 내지 35중량% 및 산화칼슘을 63중량% 내지 73중량% 포함할 수 있다.Wherein the gold limestone comprises from 80% to 95% by weight of silica, the reddish brown contains from 23% to 33% by weight of alumina and from 30% to 40% by weight of iron oxide and the limestone comprises 15% By weight of calcium oxide and 63% by weight to 73% by weight of calcium oxide.
상기 용융소결 시간은 10분 내지 1시간일 수 있다.The melt sintering time may be 10 minutes to 1 hour.
본 발명에 따르면 금광미를 이용한 경량골재 제조 방법이 제공된다. According to the present invention, there is provided a method of manufacturing a lightweight aggregate using gold light gray.
도 1은 본 발명에 따른 경량골재 제조방법의 공정도이고,
도 2는 본 발명에 따른 혼합물의 조성에 따른 상태도를 나타낸 것이고,
도 3은 본 발명에 따른 실험예를 나타낸 것이고,
도 4는 본 발명에 따른 실험예에서 소결온도에 따른 상태를 나타낸 것이고,
도 5는 본 발명에 따른 실험예에서 얻어진 경량골재를 나타낸 것이다.1 is a process diagram of a method for manufacturing a lightweight aggregate according to the present invention,
FIG. 2 shows a state diagram according to the composition of the mixture according to the present invention,
3 shows an experimental example according to the present invention,
FIG. 4 shows the sintering temperature according to the present invention,
5 shows the lightweight aggregate obtained in the experimental example according to the present invention.
이하 도면을 참조하여 본 발명을 더욱 상세히 설명한다.BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to the drawings.
첨부된 도면은 본 발명의 기술적 사상을 더욱 구체적으로 설명하기 위하여 도시한 일 예에 불과하므로 본 발명의 사상이 첨부된 도면에 한정되는 것은 아니다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are included to provide a further understanding of the technical concept of the present invention, are incorporated in and constitute a part of the specification, and are not intended to limit the scope of the present invention.
도 1은 본 발명에 따른 경량골재 제조방법의 공정도이다.1 is a process diagram of a method for manufacturing a lightweight aggregate according to the present invention.
먼저 금광미, 적니 및 폐석회석을 준비한다(S100). First, gold mining, red mud, and waste limestone are prepared (S100).
금광미의 경우 실리카(SiO2)의 함량이 85중량% 내지 95중량%이며, 알루미나(Al2O3)를 대략 6중량% 내지 7중량% 정도 함유하고 있다. 선광공정의 마지막 단계인 필터 프레스를 통과한 후에 얻어지는 금광미의 경우 대략 20 중량%의 높은 수분함량을 가지며 완전 건조될 경우 대략 25μm 이하의 미세한 입자구성을 가진다. The amount of silica (SiO2) in the case of gold minerals is 85 wt% to 95 wt%, and contains about 6 wt% to 7 wt% of alumina (Al2O3). And has a high water content of about 20% by weight in the case of a gold mine obtained after passing through a filter press, which is the last stage of the beneficiation process, and has a fine particle structure of about 25 m or less when completely dried.
적니의 경우 산화철(Fe2O3)을 30중량% 내지 40중량% 포함하고, 알루미나(Al2O3)를 23중량% 내지 33중량%정도 포함한다. 베이어 프로세스에서 첨가되는 수산화나트륨(NaOH)으로 인해 Na2O를 대략 10 중량% 정도 포함하고 있다. 적니를 제철 공정의 철원으로 활용하기에는 철 함량이 낮고 알칼리 화합물로 인한 내화물 (Refractory) 침식 우려가 있어, 고온 공정용으로 부적합한 것으로 알려져 있다.In the case of red mud, 30 wt% to 40 wt% of iron oxide (Fe 2 O 3) and 23 wt% to 33 wt% of alumina (Al 2 O 3) are contained. It contains about 10% by weight of Na 2 O due to the sodium hydroxide (NaOH) added in the Bayer process. It is known that red mud is not suitable for high temperature process because of low iron content and refractory erosion due to alkali compounds in order to utilize red mud as an iron source of steel making process.
폐석회석의 경우 Ignition loss가 35중량% 이상이며, 이를 제외하면 산화칼슘(CaO) 함량이 63중량% 내지 73중량%이며 실리카의 함량이 약 20중량% 정도이다.
In the case of waste limestone, the ignition loss is not less than 35% by weight, except that the content of calcium oxide (CaO) is 63 to 73% by weight and the content of silica is about 20% by weight.
다음으로 이들 3가지 물질을 혼합하여 혼합물을 얻는다(S200).Next, these three materials are mixed to obtain a mixture (S200).
본 발명은 상대적으로 공정온도가 낮은 프로세스를 통해 금광미, 적니, 폐석회석 각각의 부산물로써 활용이 어려운 부분을 상쇄시키고 고온 물성을 활용하여 물리화학적으로 안정한 제품을 생산하는 것에 관한 것이다. The present invention relates to the production of a physico-chemically stable product by offsetting a hard-to-use portion as a by-product of gold mining, red mud, and waste limestone through a process having a relatively low process temperature and utilizing high-temperature properties.
혼합단계에서, 혼합물은 1300℃ 이하, 1250℃ 이하 또는 1200℃이하에서 소결(용융소결)이 가능한 조성이 되도록 한다. 더 자세하게는 1000℃ 내지 1250℃ 또는 1100℃ 내지 1200℃에서 소결 가능한 소성이 되도록 한다. 경량골재 제조에서 가장 중요한 요소로는 원재료의 조성, 소결온도, 반응시간 등이 있다. 최대한 낮은 융점을 갖도록 원재료의 조성을 선택하는 것이 중요하다. 이는 소결에 필요한 고온을 얻기 위해 투입되는 석탄 또는 LNG가 원가의 가장 큰 부분을 차지하기 때문이다.In the mixing step, the mixture is made to have a composition capable of sintering (melting and sintering) at 1300 DEG C or lower, 1250 DEG C or 1200 DEG C or lower. More specifically, sintering is effected at 1000 deg. C to 1250 deg. C or 1100 deg. C to 1200 deg. The most important factors in the production of lightweight aggregate are the composition of raw materials, sintering temperature, and reaction time. It is important to select the composition of the raw material so as to have a melting point as low as possible. This is because the coal or LNG added to obtain the high temperature required for sintering accounts for the largest portion of the cost.
앞서 살펴 본 금광미, 적니 및 폐석회석의 주요성분을 보면, 혼합물의 주요 성분은 실리카, 알루미나, 산화철 및 산화칼슘의 4가지 성분이 될 것으로 예상된다. 즉 4가지 성분의 산화물계 시스템이 되는 것이다. Looking at the major components of the gold minerals, red mud, and waste limestone as we have already seen, the main components of the mixture are expected to be the four components of silica, alumina, iron oxide and calcium oxide. That is, it becomes a four-component oxide system.
도 2는 본 발명에 따른 혼합물의 조성에 따른 상태도를 나타낸 것이다. 상태도로부터 아래의 표 1과 같은 조성을 가질 경우, 혼합물이 1300℃ 이하의 저융점 영역을 가질 것으로 예상된다.
2 shows a state diagram according to the composition of the mixture according to the present invention. From the state diagram, it is expected that when the composition has the composition shown in Table 1 below, the mixture has a low melting point region of 1300 占 폚 or lower.
즉, 혼합물에서 실리카, 산화칼슘, 산화철 및 알루미나의 함량이 표 1과 같이 되도록 금광미, 적니 및 폐석회석을 혼합하면 혼합물은 1300℃ 이하에서 용융소결이 가능하게 된다.That is, when the mixture of gold, red mud, and waste limestone is mixed so that the content of silica, calcium oxide, iron oxide and alumina in the mixture is as shown in Table 1, the mixture can be melted and sintered at 1300 ° C or lower.
혼합물은 4가지 성분 외에 3중량% 내지 10중량%의 잔부를 가지며, 잔부는 산화마그네슘, 산화나트륨, 산화칼륨 및 산화티타늄 중 어느 하나 이상일 수 있다.
The mixture has a balance of 3 wt% to 10 wt% in addition to the four components, and the balance may be any one or more of magnesium oxide, sodium oxide, potassium oxide, and titanium oxide.
이후 혼합물을 펠렛형태로 성형하고(S300) 건조한다(S400). Thereafter, the mixture is formed into pellets (S300) and dried (S400).
펠렛은 통상의 방법으로 직경 5mm 내지 20mm이 되도록 만들 수 있으며, 건조는 100℃ 내지 250℃에서 10분 내지 1시간 정도 수행될 수 있으나 이에 한정되지 않는다. 건조는 수분이 실질적으로 제거되는 적절한 조건에서 수행될 수 있다.
The pellet may be made to have a diameter of 5 to 20 mm by a conventional method, and drying may be performed at 100 to 250 ° C for about 10 minutes to 1 hour, but is not limited thereto. The drying can be carried out under suitable conditions in which the water is substantially removed.
이후, 건조된 펠렛을 소결하여 경량골재로 제조한다(S500). Thereafter, the dried pellets are sintered to produce lightweight aggregate (S500).
소결, 즉 열처리는 1000℃ 내지 1250℃에서 수행될 수 있으며, 바람직하게는 1100℃ 내지 1200℃ 또는 1150℃ 내지 1200℃에서 수행될 수 있다. 소결온도가 너무 높으면 에너지 비용이 추가되면서 혼합물의 과도하게 용융되어 원하는 경량골재를 얻을 수 없으며, 소결온도가 너무 낮으면 실질적인 소결이 진행되지 않아 원하는 물성을 얻을 수 없다.The sintering, i.e., the heat treatment, may be performed at 1000 ° C to 1250 ° C, preferably at 1100 ° C to 1200 ° C or at 1150 ° C to 1200 ° C. If the sintering temperature is too high, the energy cost is added to excessively melt the mixture and the desired lightweight aggregate can not be obtained. If the sintering temperature is too low, substantial sintering does not proceed and desired properties can not be obtained.
본 연구를 통해 얻은 조성의 범위를 이용하면 완전 용융하는 공정에 비해 낮은 온도에서 처리가 가능하며 이 공정온도는 소성벽돌의 일반적인 제조온도와 일치하여 기술적인 어려움이 없다고 할 수 있다.
By using the range of the composition obtained from this study, it is possible to process at a lower temperature than the complete melting process, and this process temperature is consistent with the general production temperature of the calcined brick, so that it can be said that there is no technical difficulty.
이하 실험예를 통해 본 발명을 더욱 상세히 설명한다.
Hereinafter, the present invention will be described in more detail by way of examples.
도 3은 본 발명에 따른 실험예를 나타낸 것이다.3 shows an experimental example according to the present invention.
먼저 도 3의 (a)와 같이 금광미, 적니 및 석회석을 마련하였으며 성분은 다음 표 2와 같다. 성분분석은 XRF를 통해 진행하였으며, 수분, ignition loss를 제외하고 표시하였다.First, as shown in FIG. 3 (a), gold mine, red mud, and limestone were prepared. Component analysis was carried out through XRF, except for moisture and ignition loss.
다음으로 도 3의 (b)와 같이 금광미, 적니 및 석회석을 중량기준으로 주요 4가지 성분이 표 1과 같이 되도록 2:1:1로 혼합하여 혼합물을 마련하였다.Next, as shown in FIG. 3 (b), the mixture was prepared by mixing gold, red mud, and limestone in a weight ratio of 2: 1: 1 so that the main four components are as shown in Table 1.
혼합물의 성분비는 다음 표 3과 같다.
The composition ratios of the mixtures are shown in Table 3 below.
다음으로 도 3의 (c)와 같이 직경 8 ~ 15mm 의 크기의 펠렛 형태로 제조한 후 200℃의 오븐에서 48시간 건조 시켜 수분을 완전히 제거하였다.Next, as shown in FIG. 3 (c), pellets having a diameter of 8 to 15 mm were prepared and dried in an oven at 200 ° C. for 48 hours to completely remove moisture.
이후 도 3의 (d) 및 (e)와 같이 온도범위 1050℃ ~ 1250℃에서 30분간 열처리를 진행한 후 상온에서 냉각시켰다.Thereafter, as shown in FIGS. 3 (d) and 3 (e), heat treatment was performed at a temperature range of 1050 to 1250 ° C. for 30 minutes, followed by cooling at room temperature.
도 4는 본 발명에 따른 실험예에서 소결온도에 따른 상태를 나타낸 것이고,FIG. 4 shows the sintering temperature according to the experimental example of the present invention,
상온(25℃)에서는 전혀 소결이 진행되지 않았으며, 30분간 고온열처리를 한 결과 온도에 따라 다른 형태의 결과물을 보였다. 1100℃ 이하의 온도에서 열처리를 한 결과물의 경우 쉽게 부스러질 정도로 충분한 소결이 이루어지지 않았다. Sintering did not proceed at room temperature (25 ℃), and after 30 minutes of high temperature annealing, different results were obtained depending on temperature. In the case of the result of the heat treatment at a temperature of 1100 ° C or less, sufficient sintering was not performed to easily break down.
저융점 조성설계로 인해 1200℃ 이상의 온도에서는 내용물이 완전히 녹은 것을 확인할 수 있었고, 이때는 30분 이하의 짧은 소결시간이 유지되어야 함을 알 수 있다.It was confirmed that the content was completely melted at a temperature of 1200 ° C. or higher due to the low melting point composition design, and it is understood that a short sintering time of 30 minutes or less should be maintained at this time.
1150℃에서는 높은 압축강도(2000N / pellet 이상)를 갖는 매우 단단한 결과물이 만들어졌다. 도 5는 본 발명에 따른 실험예에서 얻어진 경량골재를 나타낸 것이다.At 1150 ° C, a very hard result with a high compressive strength (greater than 2000 N / pellet) was produced. 5 shows the lightweight aggregate obtained in the experimental example according to the present invention.
SEM과 XRD를 통해 분석한 결과 fayalite (Fe2SiO4)의 형성에 의해 샘플 내부에서 용융소결 (liquid phase sintering) 이 진행된 것을 확인할 수 있었다. SEM and XRD showed that the formation of fayalite (Fe 2 SiO 4 ) led to the liquid phase sintering in the sample.
전술한 실시예들은 본 발명을 설명하기 위한 예시로서, 본 발명이 이에 한정되는 것은 아니다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양하게 변형하여 본 발명을 실시하는 것이 가능할 것이므로, 본 발명의 기술적 보호범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.The above-described embodiments are illustrative of the present invention, and the present invention is not limited thereto. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the appended claims.
Claims (15)
상기 혼합물을 펠렛형태로 제조하는 단계와;
상기 펠렛을 1100℃ 내지 1200℃에서 열처리하여 경량골재를 얻는 단계를 포함하며,
상기 혼합물은 실리카 50 내지 60중량%, 산화칼슘 15 내지 25중량%, 산화철 8 내지 15 중량% 및 알루미나 10 내지 15 중량%와 잔부 3 내지 10중량%를 포함하며,
상기 잔부는 산화마그네슘, 산화나트륨, 산화칼륨 및 산화티타늄 중 적어도 하나를 포함하는 금광미를 이용한 경량골재 제조 방법.Mixing the gold minerals, red mud, and waste limestone to obtain a mixture;
Preparing the mixture in the form of pellets;
Treating the pellet at a temperature of from 1100 DEG C to 1200 DEG C to obtain a lightweight aggregate,
Wherein the mixture comprises 50 to 60% by weight of silica, 15 to 25% by weight of calcium oxide, 8 to 15% by weight of iron oxide, 10 to 15% by weight of alumina and 3 to 10%
Wherein the remainder comprises at least one of magnesium oxide, sodium oxide, potassium oxide, and titanium oxide.
상기 펠렛 제조 후 상기 펠렛을 건조하는 단계를 더 포함하는 것을 특징으로 하는 금광미를 이용한 경량골재 제조 방법.The method of claim 1,
And drying the pellet after the pellet is manufactured. ≪ RTI ID = 0.0 > 11. < / RTI >
상기 금광미는 실리카를 80중량% 내지 95중량% 포함하고, 상기 적니는 알루미나를 23중량% 내지 33중량% 및 산화철을 30중량% 내지 40중량% 포함하고, 상기 폐석회석은 실리카를 15중량% 내지 35중량% 및 산화칼슘을 63중량% 내지 73중량% 포함하는 것을 특징으로 하는 금광미를 이용한 경량골재 제조방법.The method of claim 1,
Wherein the gold limestone comprises from 80% to 95% by weight of silica, the red mud includes from 23% to 33% by weight of alumina and from 30% to 40% by weight of iron oxide, 35 weight% of calcium oxide and 63 weight% to 73 weight% of calcium oxide.
상기 열처리 시간은 10분 내지 1시간인 것을 특징으로 하는 금광미를 이용한 경량골재 제조방법. The method of claim 1,
Wherein the heat treatment time is from 10 minutes to 1 hour.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150123589A KR101658887B1 (en) | 2015-09-01 | 2015-09-01 | Method of preparing light weight aggregate using gold mine tail |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150123589A KR101658887B1 (en) | 2015-09-01 | 2015-09-01 | Method of preparing light weight aggregate using gold mine tail |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101658887B1 true KR101658887B1 (en) | 2016-09-22 |
Family
ID=57102751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150123589A KR101658887B1 (en) | 2015-09-01 | 2015-09-01 | Method of preparing light weight aggregate using gold mine tail |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101658887B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108503248A (en) * | 2018-04-16 | 2018-09-07 | 贵州紫金矿业股份有限公司 | A method of doing aggregate using superfine granule lightweight calcium and magnesium gelling ointment material |
CN111875303A (en) * | 2020-07-23 | 2020-11-03 | 虞克夫 | Gold tailing curing agent, preparation method and use method |
CN112777957A (en) * | 2021-01-07 | 2021-05-11 | 武汉理工大学 | Preparation process for preparing recycled aggregate based on tailings and aggregate |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070031505A (en) * | 2005-09-14 | 2007-03-20 | 문경주 | Manufacturing method lightweight aggregate using organic and inorganic waste complexly |
KR20110053148A (en) * | 2009-11-13 | 2011-05-19 | 한국지질자원연구원 | Method for manufacturing portland cement using tailing of mineral dressing and portland cement manufactured with this |
KR20130031426A (en) | 2011-09-21 | 2013-03-29 | 한국지질자원연구원 | Recycling method of tailings |
KR20130066191A (en) * | 2011-12-12 | 2013-06-20 | 한갑수 | Artificial light weight aggregate with general oil for inside wall of building and preparation method |
-
2015
- 2015-09-01 KR KR1020150123589A patent/KR101658887B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070031505A (en) * | 2005-09-14 | 2007-03-20 | 문경주 | Manufacturing method lightweight aggregate using organic and inorganic waste complexly |
KR20110053148A (en) * | 2009-11-13 | 2011-05-19 | 한국지질자원연구원 | Method for manufacturing portland cement using tailing of mineral dressing and portland cement manufactured with this |
KR20130031426A (en) | 2011-09-21 | 2013-03-29 | 한국지질자원연구원 | Recycling method of tailings |
KR20130066191A (en) * | 2011-12-12 | 2013-06-20 | 한갑수 | Artificial light weight aggregate with general oil for inside wall of building and preparation method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108503248A (en) * | 2018-04-16 | 2018-09-07 | 贵州紫金矿业股份有限公司 | A method of doing aggregate using superfine granule lightweight calcium and magnesium gelling ointment material |
CN108503248B (en) * | 2018-04-16 | 2020-12-18 | 贵州紫金矿业股份有限公司 | Method for using ultrafine-grained light calcium-magnesium gelled paste material as aggregate |
CN111875303A (en) * | 2020-07-23 | 2020-11-03 | 虞克夫 | Gold tailing curing agent, preparation method and use method |
CN112777957A (en) * | 2021-01-07 | 2021-05-11 | 武汉理工大学 | Preparation process for preparing recycled aggregate based on tailings and aggregate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107935555B (en) | Nickel iron slag ceramic and preparation method thereof | |
WO2015131761A1 (en) | Pyroxene porcelain and preparation method thereof | |
WO2017016062A1 (en) | Low-calcium silicate cement, and preparation method and hardening method thereof | |
RU2521980C1 (en) | Composition for producing heat-resistant composites | |
CN106588059A (en) | Prefabricated member for lime rotary kiln and preparation method of prefabricated member | |
CN108706962B (en) | High-strength ceramic tile of coal gangue-fly ash-desulfurized gypsum system and preparation method thereof | |
KR101658887B1 (en) | Method of preparing light weight aggregate using gold mine tail | |
CN107353032B (en) | Foamed ceramic insulation board taking industrial inorganic hazardous wastes and refractory clay tailings as raw materials and preparation method thereof | |
KR101859704B1 (en) | Blast furnace slag based no cement binder containing calcium chloride | |
RU2374206C1 (en) | Raw mixture for making ceramic objects | |
KR101696716B1 (en) | Manufacturing method of high-strength artificial stone block using tailing | |
CN104944976A (en) | Preparation method of silica insulating refractory bricks | |
KR101911206B1 (en) | Manufacturing method of building material using stone waste | |
KR101168681B1 (en) | Portland cement clinker and manufacturing method thereof | |
KR101332346B1 (en) | Product and method of inorganic binder composition utilizing aluminosilicate and magnesiumsilicate | |
CN103896606A (en) | Fire-resistant material for blast furnace ceramic cup | |
KR101366835B1 (en) | Cement composition using desulphurizing dust | |
Malhotra et al. | Building materials from granulated blast furnace slag-Some new prospects | |
KR102405842B1 (en) | Filler composition for asphalt pavement, filler for asphalt pavement manufactured therefrom, and asphalt for pavement comprising thereof | |
EP3421571B1 (en) | Precast refractory block for coke oven | |
KR102535232B1 (en) | High-strength bonding materials and steam curing concrete structures equipped with them | |
KR101179189B1 (en) | Preparation method for C12A7 mineral using rotary kiln | |
KR101746518B1 (en) | Crack Repair Performance | |
RU2592927C1 (en) | Composition for producing heat-resistant concrete | |
CN107117836A (en) | A kind of method that carbide slag cement is prepared by carbide slag |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AMND | Amendment | ||
AMND | Amendment | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20190626 Year of fee payment: 4 |