JPH0492855A - Production of beta-alumina electrolyte raw material - Google Patents

Production of beta-alumina electrolyte raw material

Info

Publication number
JPH0492855A
JPH0492855A JP2209177A JP20917790A JPH0492855A JP H0492855 A JPH0492855 A JP H0492855A JP 2209177 A JP2209177 A JP 2209177A JP 20917790 A JP20917790 A JP 20917790A JP H0492855 A JPH0492855 A JP H0492855A
Authority
JP
Japan
Prior art keywords
alumina
phase
amount
raw material
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2209177A
Other languages
Japanese (ja)
Inventor
Toshiro Nishi
敏郎 西
Katsunori Akiyama
勝徳 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2209177A priority Critical patent/JPH0492855A/en
Publication of JPH0492855A publication Critical patent/JPH0492855A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To produce a beta-alumina electrolyte raw material composed of nearly single phase with easy low-temperature calcination process by adding acetic acid to a mixed solution containing alkoxides of Al and Na at a specific ratio and hydrolyzing with a methanol-diluted water to obtain a gel. CONSTITUTION:A mixed solution of an aluminum alkoxide and a sodium alkoxide is prepared at an Al:Na atomic ratio of (6-10):1. The mixed solution is mixed with acetic acid and then hydrolyzed in one stage by adding methanol- diluted water in an amount not less than the amount necessary for hydrolysis, preferably about <=4 times the necessary amount. The gel produced by this process is aged, dried at about 70 deg.C and calcined at a low temperature (about <=1200 deg.C, preferably about 1000-1100 deg.C). A single-phase beta-alumina electrolyte raw material composed of fine particles having diameter of about <=0.5mum can be produced by this process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はナトリウムイオンをキャリアとして作動するナ
トリウム−硫黄電池、ナトリウム−溶融塩電池あるいは
アルカリ金属熱電変換電池等の固体電解質隔膜として使
用するベータアルミナ電解質原料の製造法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to beta-alumina used as a solid electrolyte diaphragm in sodium-sulfur batteries, sodium-molten salt batteries, alkali metal thermoelectric conversion batteries, etc. that operate using sodium ions as carriers. Concerning a method for producing electrolyte raw materials.

〔従来の技術〕[Conventional technology]

ベータアルミナ電解質は高いナトリウムイオン導電性を
有するために、ナ) IJウムイオンをキャリアとする
各種電池の電解質として利用されている。そしてこの電
解質は電池の内部抵抗の大部分を占めるため、低抵抗で
かつ高強度を示す緻密焼結体が望ましく、また焼結を行
う高温時たとえば1700℃で、揮発しやすいナトリウ
ムを含有するためになるべく低温で焼結する方が望まし
い。またベータアルミナにはβ−アルミナ(理論組成:
 Na2O・11^1203)及びβ′−アルミナ(理
論組成:Na2O・5.3A]203)という二種類の
結晶形が存在し、β型の方が比抵抗は大きいものの耐久
性が高いと言われている。本発明でいうベータアルミナ
はβ−アルミナのことを指す。
Beta-alumina electrolytes have high sodium ion conductivity and are therefore used as electrolytes in various batteries that use n/a) IJium ions as carriers. Since this electrolyte accounts for most of the internal resistance of the battery, a dense sintered body with low resistance and high strength is desirable, and because it contains sodium, which easily volatizes at high temperatures during sintering, such as 1700°C. It is preferable to sinter at as low a temperature as possible. Beta alumina also has β-alumina (theoretical composition:
There are two types of crystal forms: Na2O・11^1203) and β'-alumina (theoretical composition: Na2O・5.3A]203), and although the β type has a higher specific resistance, it is said to be more durable. ing. Beta alumina in the present invention refers to β-alumina.

従来のβ−アルミナの原料の製造方法は2つの手法があ
る。その1つは酸化アルミナと炭酸ナトリウムの粉体を
混合し、1200〜1300℃程度の仮焼でβ−アルミ
ナとβ′−アルミナの混合相の結晶相を示す粉体を得る
手法と、他の1つは特開昭55〜90470号公報にみ
られるように、アルミニウムとナトリウムのアルコキシ
ド溶液の2段加水分解を行い、それを乾燥させたゲルを
1200〜1550℃の仮焼でβ−アルミナとβ′−ア
ルミナの混合相を示す粉体を得る手法の2種である。こ
れらの粉体は1700℃程度の焼結を行うことでβ−ア
ルミナ相(若干のβ′−アルミナを含む場合もある)の
焼結体を得ることができる。
There are two conventional methods for producing β-alumina raw materials. One method is to mix powders of alumina oxide and sodium carbonate and calcinate them at about 1,200 to 1,300°C to obtain a powder that exhibits a mixed crystalline phase of β-alumina and β'-alumina. One method is to perform two-stage hydrolysis of an alkoxide solution of aluminum and sodium, and then calcining the resulting gel at 1,200 to 1,550°C to form β-alumina, as shown in Japanese Patent Application Laid-open No. 55-90470. There are two methods for obtaining a powder exhibiting a mixed phase of β'-alumina. By sintering these powders at about 1700°C, a sintered body of β-alumina phase (sometimes containing some β'-alumina) can be obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記従来の手法の了ルミニウムとナトリウムの
アルコキシド溶液を出発原料としてβ−アルミナ電解質
原料の製造法を提供しようとするものであるが、上記の
特開昭55〜90470号公報に示された手法ではす)
 IJウムアルコキシドの部分的加水分解を行った後に
、アルミニウムのアルコキシドと混合後、さらに加水分
解するという煩雑な二段加水分解手法を取っており、か
つ1200℃の仮焼ではβ−アルミナとβ′−アルミナ
の混合相を示し、単相の結晶相を示していない。
The present invention aims to provide a method for producing a β-alumina electrolyte raw material using the alkoxide solution of luminium and sodium as a starting material using the conventional method described above. (This is a method)
After partially hydrolyzing IJ alumina alkoxide, it is mixed with aluminum alkoxide and then further hydrolyzed, a complicated two-step hydrolysis method. - Shows a mixed phase of alumina and does not show a single crystalline phase.

本発明は上記技術水準に鑑み、簡単で、かつ工業的に原
料の取扱いに問題がなく、低温仮焼ではゾβ−アルミナ
単相の原料粉が得られる製造方法を提供しようとするも
のである。
In view of the above-mentioned state of the art, the present invention aims to provide a manufacturing method that is simple, has no problems in industrially handling raw materials, and can obtain a single-phase zo-β-alumina raw material powder in low-temperature calcination. .

特に、Naの蒸発を防ぎ、組成を変化させない、あるい
は焼結炉の動力を下げるという意味で、低温焼結化は非
常に重要である。低温焼結のためには、仮焼粉粒子の粒
径をある程度小さくする必要があり、上記した特開昭5
5〜90470号公報のアルコキシドの二段加水分解法
により得られた仮焼粉は、約0.18μmとこの条件を
満たすが、前述したように、手法が二段加水分解という
煩雑な手法であること及びβ−アルミナとβ′−アルミ
ナの混合相を示すという欠点がある。
In particular, low-temperature sintering is very important in terms of preventing evaporation of Na, not changing the composition, or reducing the power of the sintering furnace. For low-temperature sintering, it is necessary to reduce the particle size of the calcined powder particles to a certain extent, and the above-mentioned Japanese Patent Laid-Open No. 5
The calcined powder obtained by the two-stage hydrolysis method of alkoxides of Publication No. 5-90470 satisfies this condition with a diameter of about 0.18 μm, but as mentioned above, the method is a complicated two-stage hydrolysis method. It also has the disadvantage of exhibiting a mixed phase of β-alumina and β'-alumina.

また従来より、アルコキシドの加水分解による微粒調製
では、上述のような二段加水分解法を用いずにアルコキ
シドの混合溶液に直接水を添加するいわゆる一段加水分
解法では、アルミニウムの水酸化物(ベーマイト)が析
出し、焼成後もアルミナの多い仮焼粉が得られるといわ
れていた。
Conventionally, in the preparation of fine particles by hydrolysis of alkoxides, the so-called one-step hydrolysis method in which water is directly added to the alkoxide mixed solution without using the two-step hydrolysis method described above has been used to prepare aluminum hydroxide (boehmite). ) was said to precipitate, and a calcined powder with a high alumina content could be obtained even after firing.

本発明では、上記事実を考慮し、一段加水分解の条件を
選定し、得られたゲルの仮焼により良質のβ−アルミナ
電解質の原料粉を得ることを目的とするものである。
In consideration of the above facts, the present invention aims to select the conditions for one-stage hydrolysis and to obtain a high-quality raw material powder for β-alumina electrolyte by calcining the obtained gel.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はアルミニウムアルコキシドとナトリウムアルコ
キシドを^1 : Na原子比が6〜10:1になるよ
うに調製した混合溶液を、酢酸添加の条件下、メタノー
ルで希釈した加水分解に必要な量以上の水の添加条件下
で、一段で加水分解させ、得られたゲルを乾燥後、低温
で仮焼することを特徴とするβ−アルミナ電解質原料の
製造方法である。
In the present invention, a mixed solution of aluminum alkoxide and sodium alkoxide prepared at a ^1:Na atomic ratio of 6 to 10:1 is diluted with methanol under conditions of addition of acetic acid, and water is added in an amount greater than the amount necessary for hydrolysis. This is a method for producing a β-alumina electrolyte raw material, which is characterized in that it is hydrolyzed in one step under the addition conditions of , and the resulting gel is dried and then calcined at a low temperature.

本発明でアルミニウムアルコキシドとナトリウムアルコ
キシドを^]:Na原子比が6〜10:1と特定したの
はこの範囲を逸脱するとβ−アルミナが得られないから
である。
The reason why the atomic ratio of aluminum alkoxide and sodium alkoxide is specified to be 6 to 10:1 in the present invention is that β-alumina cannot be obtained if it deviates from this range.

加水分解を一段で行うためには、アルミニウムアルコキ
シドの溶液濃度は0.62 mol/A以下にするのが
好ましい。この濃度以上であると凝集が激しく微粒が生
成せず、凝集すると後の粉体のハンドリングが難しくな
るからである。また、加水分解の水の量は加水分解を行
う水の量よりも多量必要であるが加水分解に必要な量の
4倍以下にしないと凝集が始まるので、それ以上の水は
添加すべきではない。また、加水分解用の水はメタノー
ルで希釈すべきである。さもないと凝集が激しくなるか
らである。
In order to carry out hydrolysis in one step, the solution concentration of aluminum alkoxide is preferably 0.62 mol/A or less. This is because if the concentration is higher than this, the agglomeration will be severe and no fine particles will be produced, and if the agglomeration occurs, it will be difficult to handle the powder afterwards. Also, the amount of water for hydrolysis is required to be larger than the amount of water for hydrolysis, but unless it is less than four times the amount required for hydrolysis, flocculation will start, so you should not add more water than that. do not have. Also, water for hydrolysis should be diluted with methanol. Otherwise, agglomeration will become severe.

酢酸はアルミニウムアルコキシドの低濃度溶液に2倍量
の水をメタノールで10倍希釈した状態で、CH,CD
DH/^1比を変化させたゲルの仮焼物ではCH,CD
DH/AI= 0.1の場合が最もβ相が多くλ相が少
ない。
Acetic acid is prepared by adding CH, CD to a low concentration solution of aluminum alkoxide, diluting twice the amount of water with methanol and diluting it 10 times.
In gel calcined products with different DH/^1 ratios, CH, CD
When DH/AI=0.1, there is the most β phase and the least λ phase.

〔作用〕[Effect]

本発明のβ−アルミナ電解質原料は、アルミニウムとナ
トリウムのアルコキシドの混合溶液を一段で加水分解後
、乾燥させたゲルを1200℃以下の低温、好ましくは
1000℃以上1100℃以下で仮焼することにより得
られる。1200℃以下という低温ではほり単相比(^
l/Na比が8までは単相、8を越えると他の相が混在
)するため、Naz[]成分の揮発が殆どなく仕込み組
成と仮焼粉組成に変化がないため、及び粒成長が少ない
ため0,5μm以下、さらに詳しくは0.05〜0.2
μmという非常に微細な粒子を得ることができる。
The β-alumina electrolyte raw material of the present invention can be obtained by hydrolyzing a mixed solution of aluminum and sodium alkoxide in one step, and then calcining the dried gel at a low temperature of 1200°C or lower, preferably at 1000°C or higher and 1100°C or lower. can get. At low temperatures below 1200℃, the single phase ratio (^
When the l/Na ratio is up to 8, there is a single phase, and when it exceeds 8, other phases are mixed), so there is almost no volatilization of the Naz[] component and there is no change in the charging composition and calcined powder composition, and grain growth is Because it is small, it is 0.5 μm or less, more specifically 0.05 to 0.2
Very fine particles of μm size can be obtained.

このようにして得られた仮焼粉はほぼ単相の微粒子であ
るために、低温で焼結しやす(Na2Oの揮発を極力押
さえるという利点をもつ。
Since the calcined powder thus obtained is almost single-phase fine particles, it can be easily sintered at low temperatures (it has the advantage of suppressing the volatilization of Na2O as much as possible).

なお、アルミニウム及びナトリウムのアルコキシド以外
にも焼成によって酸化物に変化する元素のアルコキシド
例えば、リチウムアルコキシドあるいはマグネシウムア
ルコキシド等を添加してもよい。
In addition to alkoxides of aluminum and sodium, alkoxides of elements that change into oxides upon firing, such as lithium alkoxide or magnesium alkoxide, may be added.

゛〔実施例〕 次に本発明を実際の実施例により、さらに詳細に説明す
る。
[Example] Next, the present invention will be explained in more detail using actual examples.

アルミニウイソプロポキシド及びナトリウムエトキシド
に対して各種溶媒(メタノール、エタノール、n−及び
l−プロパツール、n及び1−ブタノール、キシレン及
びトルエン)に対する溶解度を求め、アルミニウムイソ
プロポキシドに対してトルエンを、ナトリウムエトキシ
ドに対してメタノールをそれぞれ溶媒として選定した。
The solubility of aluminum isopropoxide and sodium ethoxide in various solvents (methanol, ethanol, n- and l-propanol, n and 1-butanol, xylene and toluene) was determined. , methanol was selected as the solvent for sodium ethoxide, respectively.

なお、両アルコキシド溶液は、ろ紙(5C)にてろ過を
行い、不溶性残査及び加水分解物を除去した後に溶液濃
度を求めた。
Note that both alkoxide solutions were filtered using filter paper (5C) to remove insoluble residues and hydrolyzates, and then the solution concentrations were determined.

アルミニウムの溶液については、0.29及び0、62
 mol/j!の2種の溶液を調製し、ナ) IJウム
の溶液については0.34 mol/βの溶液を調製し
た。その人1:Na比が6.7,8.8.5.9゜10
=1になるようにその溶液を混合した。
0.29 and 0.62 for solutions of aluminum
mol/j! Two kinds of solutions were prepared, and a solution of 0.34 mol/β was prepared for the IJium solution. The person's 1:Na ratio is 6.7, 8.8.5.9°10
The solutions were mixed so that 1.

加水分解条件の選定のために、Al : Na= 8.
5の溶液を選び、アルミニウムの水酸化物(ベーマイト
)の優先的生成を防ぐために、酢酸(CH3COOH)
を溶液に加えた。その添加量は、CH3COO1l  
: Al比で0. 0.01. 0.1とした。その後
、その混合溶液に加水分解に必要な水の理論量の2倍及
び4倍の水をビユレットにて直接及びメタノールで10
倍希釈してそれぞれ0.5−/min、及び2. Or
nll / min、の添加速度で加えた。
For selection of hydrolysis conditions, Al:Na=8.
5 and acetic acid (CH3COOH) to prevent the preferential formation of aluminum hydroxide (boehmite).
was added to the solution. The amount added is CH3COO1l
: Al ratio 0. 0.01. It was set to 0.1. Then, 2 times and 4 times the theoretical amount of water required for hydrolysis was added directly to the mixed solution in a biurette, and 10 times more water was added with methanol.
0.5-/min, respectively, and 2. Or
was added at an addition rate of nll/min.

すなわち、条件として^1溶液濃度(2条件)酢酸濃度
(3条件)、水の添加量(2条件)及び水の希釈の有無
(2条件)の合計24条件の中から条件を選定した。
That is, conditions were selected from a total of 24 conditions: ^1 solution concentration (2 conditions), acetic acid concentration (3 conditions), amount of water added (2 conditions), and presence or absence of water dilution (2 conditions).

まず、アルミニウム溶液濃度が低い(0,29mol/
jり溶液をナトリウム溶液と混合した系において、上記
12条件(酢酸量、水の添加量、水の希釈比)を変化さ
せて調製して生成したゾルを、テフロン製バットに移し
一昼夜放置して、エージングを実施した。次に70℃の
乾燥器にて、−昼夜乾燥させ、白色のゲルを仮焼して仮
焼粉を得た。アルミニウム溶液が0.62 mol#!
の系では0.29 mol/Jの系に較べ、ややゲルが
凝集しやすいという結果であった。
First, the aluminum solution concentration is low (0.29 mol/
In a system where the solution was mixed with a sodium solution, the sol prepared by changing the above 12 conditions (amount of acetic acid, amount of water added, dilution ratio of water) was transferred to a Teflon vat and left overnight. , aging was performed. Next, it was dried in a dryer at 70° C. day and night, and the white gel was calcined to obtain calcined powder. Aluminum solution is 0.62 mol#!
The result was that the gel aggregated a little more easily in the 0.29 mol/J system than in the 0.29 mol/J system.

−例として、Al : Na= 8.5で酢酸量比([
:)13CDDH/AI) = 0.01、メタノール
で10倍希釈して理論値の2倍量の水を添加した系につ
いて、仮焼時間を一定(10時間)とした時の仮焼温度
と結晶相の割合をX線回折により求め第1図に示す。
- As an example, the acetic acid amount ratio ([
:)13CDDH/AI) = 0.01, calcination temperature and crystals when calcination time is constant (10 hours) for a system diluted 10 times with methanol and added with twice the theoretical amount of water The phase ratio was determined by X-ray diffraction and is shown in FIG.

第1図から判るように、β−アルミナ相は1000℃か
ら生成をはじめ、λ−アルミナ(NaaAI2MDsx
++)及びγ−アルミナ(Al2O2)の混合した状態
であり、1100℃でβ−アルミナ相の割合は最高を示
し、1200℃以上ではNaの蒸発によると思われるα
−アルミナ(八120、)が生成をはじめた。
As can be seen from Figure 1, the β-alumina phase begins to form at 1000°C, and the β-alumina phase (NaaAI2MDsx
++) and γ-alumina (Al2O2), the ratio of β-alumina phase reaches its maximum at 1100°C, and the ratio of α-alumina phase reaches its maximum at 1200°C or higher, which is thought to be due to evaporation of Na.
-Alumina (8120,) started to form.

第1図の結果より、仮焼条件を1100℃、10時間と
固定し、他の12条件(酸の量、水の添加量、水の希釈
比)についても結晶相の割合を求めて第2図に示した。
From the results shown in Figure 1, the calcination conditions were fixed at 1100°C for 10 hours, and the proportion of the crystal phase was determined under the other 12 conditions (amount of acid, amount of water added, dilution ratio of water). Shown in the figure.

第2図の(A)は理論値の2倍量の水のみを添加した場
合、(B)は理論値の2倍量の水をメタノールで10倍
に希釈して添加した場合、(C)は理論値の4倍量の水
のみを添加した場合、(D)は理論値の4倍量の水をメ
タノールで10倍に希釈して添加した場合を示す。なお
第2図中、NはC)13[1’0(IH/^1比を示し
、λ相以外は全てβ−アルミナ相を示す。また■〜■は
実験番号を示す。
(A) in Figure 2 is when only twice the theoretical amount of water is added, (B) is when twice the theoretical amount of water is diluted 10 times with methanol, and (C) (D) shows the case where only 4 times the theoretical amount of water was added, and (D) shows the case where 4 times the theoretical amount of water was diluted 10 times with methanol and added. In FIG. 2, N indicates the C)13[1'0 (IH/^1 ratio), and all the phases other than the λ phase indicate the β-alumina phase. Also, ■ to ■ indicate the experiment numbers.

第2図より(C)(水のみ理論値の4倍添加)の条件を
除いて、β−アルミナとλ−アルミナの混合相であるが
、(B)ではやや凝集が見られること、他の(^)、(
B)及び(D)の3系の中で(D)系もやや凝集が見ら
れること等から、最もλの割合の少い(B)系の実験番
号■の条件(CH3CO[lH/AI比が0.01にな
るように酢酸を加えた混合溶液を、メタノールで10倍
希釈した理論値の2倍量の溶液で加水分解したもの)を
標準条件とした。
From Figure 2, except for the condition (C) (only water added 4 times the theoretical value), there is a mixed phase of β-alumina and λ-alumina, but in (B) there is some aggregation, and other conditions (^)、(
Among the three systems B) and (D), the (D) system also shows some aggregation, so the conditions of experiment number ■ (CH3CO[lH/AI ratio The standard conditions were a mixed solution in which acetic acid was added so that the ratio of 0.01 to 0.01 was diluted 10 times with methanol, and the amount of the solution was twice the theoretical value.

この標準条件にて、調製した仮焼粉の走査型電子顕微鏡
による観察結果によると、得られた仮焼粉の粒径は約0
.1μm程度である。他のやや凝集した仮焼粉について
も観察を行ったが、−次粒子はほぼ0.1μmと一定で
あった。
According to the results of scanning electron microscope observation of the calcined powder prepared under these standard conditions, the particle size of the calcined powder obtained was approximately 0.
.. It is about 1 μm. Other slightly agglomerated calcined powders were also observed, and the size of the secondary particles was constant at approximately 0.1 μm.

次にAl : Na比を6.7,8,8.5,9.10
の6種類の濃度に調製した混合溶液を、上記標準条件で
、加水分解、乾燥及び仮焼して得た仮焼粉の結晶相の割
合を第3図に示す。
Next, the Al:Na ratio was set to 6.7, 8, 8.5, 9.10.
Figure 3 shows the ratio of the crystal phase of the calcined powder obtained by hydrolyzing, drying and calcining mixed solutions prepared at six different concentrations under the above standard conditions.

第3図から、^I:Na比が6.7.8まではβ−アル
ミナ単相、8以上ではβ−アルミナ相と若干のλ−アル
ミナ相の混合相がみられた。またβ−アルミナは六方晶
であり、得られた仮焼粉の格子定数を求めa軸及びC軸
をそれぞれ第1図及び第5図に示した。これにより得ら
れた仮焼粉の格子定数はAl : Na比に殆ど依存し
ないことが判った。
From FIG. 3, a single β-alumina phase was observed when the I:Na ratio was up to 6.7.8, and a mixed phase of a β-alumina phase and some λ-alumina phase was observed when the I:Na ratio was 8 or more. Further, β-alumina is a hexagonal crystal, and the lattice constant of the obtained calcined powder was determined, and the a-axis and C-axis are shown in FIGS. 1 and 5, respectively. It was found that the lattice constant of the calcined powder thus obtained was almost independent of the Al:Na ratio.

また同様に得られた仮焼粉の結晶子径を5herrer
O式から求めたが、第6図に示すように、これをAl:
Na比によらずほぼ270人と一定であった。
In addition, the crystallite diameter of the calcined powder obtained in the same manner was set to 5herrer.
It was obtained from the O formula, and as shown in Figure 6, this was calculated from Al:
The number of people remained constant at approximately 270 regardless of the Na ratio.

このようにAl:Na比が6〜10:1の範囲において
、仮焼粉の粒径(0,1μm)、結晶子径(270人)
及び格子定数(a軸: 5.55人、C軸: 22.5
5人)はほぼ一定の値を示し、微細で均質の仮焼粉が得
られた。またAI: Na比が10:1の試料ではλ−
アルミナ相が25%程度みられたが、−軸成型(100
kg/cat)後にCIP処理を行い、ペレットに成型
して、同一組成の粉体に埋め込み、1650℃、10分
間の焼結を行ったところ、β単相が得られ結晶相におけ
る実質上の問題はなく、Al:Na比が8以下では当然
のことながら、β単相の焼結体が得られた。
In this way, when the Al:Na ratio is in the range of 6 to 10:1, the particle size of the calcined powder (0.1 μm) and the crystallite size (270)
and lattice constant (a-axis: 5.55, C-axis: 22.5
5) showed almost constant values, and fine and homogeneous calcined powder was obtained. In addition, in a sample with an AI:Na ratio of 10:1, λ-
Approximately 25% alumina phase was observed, but -shaft molding (100%
kg/cat), then subjected to CIP treatment, molded into pellets, embedded in powder of the same composition, and sintered at 1650°C for 10 minutes, a β single phase was obtained, which solved the practical problem with the crystalline phase. Naturally, when the Al:Na ratio was 8 or less, a β single-phase sintered body was obtained.

また、今回調製した仮焼粉(AI/Na=7)と通常の
固相法で得られたβ−アルミナとβ′アルミナの混合相
を示す仮焼粉(AI/Na=7)を、通常の焼結温度と
いわれる1700℃よりも50℃低い、1650℃、1
0分間の焼結を行ったところ、前者は93.0%、後者
は90.2%という相対密度が得られ、本発明で得られ
た粉体では焼結密度の向上を確認することができた。
In addition, the calcined powder (AI/Na = 7) prepared this time and the calcined powder (AI/Na = 7) showing a mixed phase of β-alumina and β' alumina obtained by the usual solid phase method were 1,650℃, which is 50℃ lower than 1,700℃, which is said to be the sintering temperature of
When sintered for 0 minutes, a relative density of 93.0% for the former and 90.2% for the latter was obtained, confirming that the powder obtained in the present invention has an improved sintered density. Ta.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば低温で単相でかつ
粒径の細いβ−アルミナ電解質の原料を得ることができ
る。また、そのような原料を用いることにより、従来の
方法で得られたものよりも、より低温で焼結を行うこと
ができるため、Na2O成分の揮発あるいは異常粒成長
(Duplex構造化)を防ぐことができる。異常粒成
長のない組織のものは、一般に耐久性に優れているとい
われている。また出発原料としてナトリウムとアルミニ
ウムのアルコキシドの混合溶液を用いているため、ナト
リウムとアルミニウムの原子レベルでの混合が行われて
いる。そのため、通常の固相法(A1203とNa2O
,を規定量混合し、1300℃程度で仮焼し、これを粉
砕して再度焼結する方法)により調製したものよりNa
成分の偏積が少く、これも耐久性向上の一因になると考
えられる。
As explained above, according to the present invention, it is possible to obtain a raw material for a β-alumina electrolyte that is single-phase and has a small particle size at a low temperature. In addition, by using such a raw material, sintering can be performed at a lower temperature than that obtained by conventional methods, which prevents volatilization of the Na2O component or abnormal grain growth (Duplex structure). I can do it. Those with a structure free of abnormal grain growth are generally said to have excellent durability. Furthermore, since a mixed solution of sodium and aluminum alkoxides is used as a starting material, sodium and aluminum are mixed at the atomic level. Therefore, the usual solid phase method (A1203 and Na2O
The Na
There is little unevenness of components, which is thought to be a factor in improving durability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における仮焼温度と結晶相の
割合の関係を示す図表、第2図は加水分解の条件と、仮
焼後の結晶相の割合の関係を示す図表、第3図は仮焼粉
のAl : Na比と結晶相の割合の関係を示す図表、
第4図は仮焼粉の格子定数 (a軸) を示す図表、 第5図は仮焼粉 の格子定数 (C軸) を示す図表、 第6図は仮焼 粉の結晶子径を示す図表である。
FIG. 1 is a diagram showing the relationship between the calcination temperature and the ratio of the crystalline phase in an example of the present invention, FIG. 2 is a diagram showing the relationship between the hydrolysis conditions and the ratio of the crystalline phase after calcination, and FIG. Figure 3 is a diagram showing the relationship between the Al:Na ratio of calcined powder and the proportion of crystalline phase;
Figure 4 is a chart showing the lattice constant (a-axis) of calcined powder, Figure 5 is a chart showing the lattice constant (c-axis) of calcined powder, and Figure 6 is a chart showing the crystallite diameter of calcined powder. It is.

Claims (1)

【特許請求の範囲】[Claims] アルミニウムアルコキシドとナトリウムアルコキシドを
Al:Na原子比が6〜10:1になるように調製した
混合溶液を、酢酸添加の条件下、メタノールで希釈した
加水分解に必要な量以上の水の添加条件下で、一段で加
水分解させ、得られたゲルを乾燥後、低温で仮焼するこ
とを特徴とするβ−アルミナ電解質原料の製造方法。
A mixed solution of aluminum alkoxide and sodium alkoxide prepared such that the Al:Na atomic ratio is 6 to 10:1 is diluted with methanol under the conditions of addition of acetic acid and the addition of more than the amount of water required for hydrolysis. A method for producing a β-alumina electrolyte raw material, which comprises performing hydrolysis in one step, drying the resulting gel, and then calcining it at a low temperature.
JP2209177A 1990-08-09 1990-08-09 Production of beta-alumina electrolyte raw material Pending JPH0492855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2209177A JPH0492855A (en) 1990-08-09 1990-08-09 Production of beta-alumina electrolyte raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2209177A JPH0492855A (en) 1990-08-09 1990-08-09 Production of beta-alumina electrolyte raw material

Publications (1)

Publication Number Publication Date
JPH0492855A true JPH0492855A (en) 1992-03-25

Family

ID=16568610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2209177A Pending JPH0492855A (en) 1990-08-09 1990-08-09 Production of beta-alumina electrolyte raw material

Country Status (1)

Country Link
JP (1) JPH0492855A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0725944A4 (en) * 1992-04-10 1995-03-02 Sun Active Glass Electrochrom Electrochromic structures and methods
KR100399758B1 (en) * 2000-11-17 2003-09-29 한국에너지기술연구원 The Manufacture Method of Beta - Alumina Solid Electrolyte for Alkali Metal Thermal to Electric Converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0725944A4 (en) * 1992-04-10 1995-03-02 Sun Active Glass Electrochrom Electrochromic structures and methods
KR100399758B1 (en) * 2000-11-17 2003-09-29 한국에너지기술연구원 The Manufacture Method of Beta - Alumina Solid Electrolyte for Alkali Metal Thermal to Electric Converter

Similar Documents

Publication Publication Date Title
JP6016329B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
JP5131854B2 (en) Lithium ion conductive oxide, method for producing the same, and solid electrolyte composed of the oxide
KR20200083445A (en) Manganese spinel doped with magnesium, cathode material containing the manganese spinel, their preparation method and lithium ion battery comprising the spinel
JP5464840B2 (en) Method for producing zirconia fine particles
KR20090115732A (en) Amorphous fine-particle powder, process for production thereof and perovskite-type barium titanate powder made by using the same
JP6456241B2 (en) Method for producing lithium-containing composite oxide powder
JP2022156600A (en) Ceramic powder material, sintered body, and battery
JPH1179746A (en) Perovskite composite oxide and its production
JP7351736B2 (en) Method for producing lithium lanthanum zirconium oxide crystal particle aggregate for solid electrolyte
JPH08319120A (en) Lithium double oxide, its production and lithium secondary battery
KR101292754B1 (en) Active material for lithium secondary battery, manufaturing method of the same, and lithium secondary battery including the same
JPH0492855A (en) Production of beta-alumina electrolyte raw material
CN115413274B (en) Ceramic powder material, method for producing ceramic powder material, molded body, sintered body, and battery
KR20220024859A (en) Amorphous lithium ion conductive oxide powder and manufacturing method thereof, and manufacturing method of lithium ion conductive oxide powder having NASICON type crystal structure
JPH0210089B2 (en)
KR20220002651A (en) Titanium niobium composite oxide and electrode and lithium ion secondary battery using the same
JP3581620B2 (en) Beta alumina electrolyte and method for producing the same
JPH11189469A (en) Oxide sintered compact of fluorite type or its derivative structure and its production
US4820669A (en) Process for preparing powdered ceramic raw materials of complex oxide
JPH0688788B2 (en) Method for producing low temperature sinterable PZT-based piezoelectric ceramic powder
JP2607519B2 (en) Manufacturing method of optical ceramics
KR960012723B1 (en) Process for the preparation of zirconia powder
JP6069397B2 (en) Method for producing positive electrode active material for lithium ion battery
JP2007026874A (en) Zirconia-based solid electrolyte and solid oxide fuel cell using this
JPH04170363A (en) Solid electrolyte made of polycrystalline sintered body