JPH0492365A - Manufacture of alkaline storage battery - Google Patents

Manufacture of alkaline storage battery

Info

Publication number
JPH0492365A
JPH0492365A JP2207455A JP20745590A JPH0492365A JP H0492365 A JPH0492365 A JP H0492365A JP 2207455 A JP2207455 A JP 2207455A JP 20745590 A JP20745590 A JP 20745590A JP H0492365 A JPH0492365 A JP H0492365A
Authority
JP
Japan
Prior art keywords
water solution
alkaline
alkaline water
temperature
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2207455A
Other languages
Japanese (ja)
Inventor
Takahisa Awajiya
淡路谷 隆久
Ichiro Yoshida
一朗 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2207455A priority Critical patent/JPH0492365A/en
Publication of JPH0492365A publication Critical patent/JPH0492365A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To maintain the preservable property of an alkaline storage battery and to improve the discharge performance extensively by adding a nickel hydroxide to an anode including a cadmium oxide as a main active substance, and carrying out a discharge in the formation process in a high temperature of alkaline water solution. CONSTITUTION:A nickel hydroxide is added to a cadmium oxide to be the main active substance of an anode plate to produce an electric plate, and after that, it is charged in a normal temperature of alkaline water solution in the formation process. And after discharging in a high temperature of alkaline water solution, it is washed in the water and dried to remove the alkaline component to make a completed electrode plate. The electrode plate is combined with a separator and a cathode plate to form an alkaline storage battery. Since it is charged in a normal temperature of alkaline water solution, the cadmium electrode is hardly corroded, and there is no density change of the alkaline water solution, making the handling, the temperature maintaining cost, and the like also excellent. Furthermore, since the discharging is carried out in a high temperature of alkaline water solution, it has an effect to reduce the active substance surface area as the temperature of the alkaline water solution is higher, in the discharge operation.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、密閉型ニッケルーカドミウム蓄電池の如きア
ルカリ蓄電池の製造法に係り、特に放電性能の向上に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for manufacturing alkaline storage batteries such as sealed nickel-cadmium storage batteries, and particularly to improving discharge performance.

(ロ)従来の技術 従来、密閉型ニッケルーカドミウム蓄電池の放電性能の
向上については、種々検討されている。
(B) Prior Art Conventionally, various studies have been made to improve the discharge performance of sealed nickel-cadmium storage batteries.

特に最近、民生用の密閉型ニッケルーカドミウム蓄電池
の用途が広がり、例えば、電動工具用では、高率放電時
の特性向上が求められている。この場合、陰極板の性能
が低下するのは、陰極板が容量制限されるからであり、
この性能を向上することが重要な問題である。
Particularly recently, the applications of sealed nickel-cadmium storage batteries for consumer use have expanded, and for example, for power tools, there is a demand for improved characteristics during high rate discharge. In this case, the performance of the cathode plate is reduced because the cathode plate is capacity limited,
Improving this performance is an important issue.

活物質の利用率を高めるため、特開昭51−9231号
公報では、高温のアルカリ水溶液にて高率電流値での充
放電を行う方法を提案している。
In order to increase the utilization rate of the active material, Japanese Patent Application Laid-Open No. 51-9231 proposes a method of performing charging and discharging at a high rate current value in a high-temperature alkaline aqueous solution.

又、特開昭62−119861号公報では、高温のアル
カリ水溶液中で高率電流値にて充電を行い、常温のアル
カリ水溶液中で高率電流値にて放電を行う方法を提案し
ている。
Further, Japanese Patent Application Laid-Open No. 62-119861 proposes a method in which charging is performed at a high rate current value in an alkaline aqueous solution at a high temperature, and discharging is performed at a high rate current value in an alkaline aqueous solution at room temperature.

しかしながら、高温のアルカリ水溶液を用いた場合、化
成処理における充放電により、特に充電時において、カ
ドミウム極板が非常に腐食され易くなり、これが電池性
能低下の一因となるといった問題を生じる。
However, when a high-temperature alkaline aqueous solution is used, the cadmium electrode plate becomes extremely susceptible to corrosion, especially during charging, due to charging and discharging during chemical conversion treatment, which causes a problem that this becomes a cause of deterioration in battery performance.

又、陰極板の性能向上に関しては、導電性の向上(特に
非焼結式陰極)とカドミウムの充放電反応(溶解−析出
反応)をコントロールする添加剤の2つの観点からの検
討がされている。この中で添加剤については、例えば、
リグニン、CMC,MC等の有機物の添加に関するもの
が、数多くあるが、これらは、すべて電池内で分解し、
電解液濃度の低下や陰極の充電リザーブを減少させる危
険性がある。
In addition, with regard to improving the performance of cathode plates, studies are being conducted from two perspectives: improving conductivity (especially non-sintered cathodes) and adding additives to control the cadmium charge/discharge reaction (dissolution-precipitation reaction). . Regarding additives, for example,
There are many methods for adding organic substances such as lignin, CMC, and MC, but all of these decompose within the battery.
There is a risk of lowering the electrolyte concentration and reducing the charge reserve of the cathode.

一方、無機系の添加剤では、対極物質である水酸化ニッ
ケルの添加が有効であるが、この場合は、電池の保存特
性が低下するため、放電性を向上させるのに有効な添加
量を設定できない点があった。
On the other hand, when it comes to inorganic additives, it is effective to add nickel hydroxide as a counter electrode material, but in this case, the storage characteristics of the battery deteriorate, so the amount added is set to be effective in improving the discharge performance. There were some things I couldn't do.

(ハ)発明が解決しようとする課題 本発明は、上述の如き問題点を解決し、水酸化ニッケル
を添加する有効性を維持したまま、他の特性に影響を及
ぼさない方法を提供するものである。
(c) Problems to be Solved by the Invention The present invention solves the above-mentioned problems and provides a method that does not affect other properties while maintaining the effectiveness of adding nickel hydroxide. be.

(ニ)課題を解決するための手段 本発明は、陰極板の主活物質であるカドミウム酸化物に
水酸化ニッケルを添加し、極板を作成後、化成工程で常
温のアルカリ水溶液中で充電し、高温のアルカリ水溶液
中で放電後、水洗、乾燥してアルカリ分を除去し、完成
極板としたものを、セパレータと陽極板を組み合わせて
、アルカノ蓄電池となすものである。
(d) Means for Solving the Problems In the present invention, nickel hydroxide is added to cadmium oxide, which is the main active material of the cathode plate, and after the electrode plate is created, it is charged in an alkaline aqueous solution at room temperature in a chemical formation process. After discharging in a high-temperature alkaline aqueous solution, washing with water and drying to remove the alkaline content, the completed electrode plate is combined with a separator and an anode plate to form an alkano storage battery.

(ホ)作用 本発明の製造方法によれば、化成工程に際し、充電を常
温のアルカリ水溶液中で行っているので、従来のように
高温のアルカリ水溶液中で行う場合に比して、カドミウ
ム極板が腐食され難く、且つ、アルカリ水溶液濃度の変
化もなく、取り扱い性、温度維持コスト等も優れる。又
、放電を高温のアルカリ水溶液中で行うものである。こ
こで、活物質は表面積が小さい程、保存特性が向上する
と考えられ、放電時のアルカリ水溶液温度が高温程、活
物質表面積を減少させる効果がある。
(E) Effect According to the manufacturing method of the present invention, charging is performed in an alkaline aqueous solution at room temperature during the chemical conversion process, so the cadmium electrode plate is is less likely to be corroded, there is no change in the aqueous alkaline solution concentration, and it has excellent handling properties, temperature maintenance cost, etc. Further, the discharge is performed in a high temperature alkaline aqueous solution. Here, it is thought that the smaller the surface area of the active material is, the better the storage characteristics are, and the higher the temperature of the alkaline aqueous solution during discharge, the more effective the active material surface area is to be reduced.

従って、アルカリ水溶液温度が沸点付近ならば保存特性
に関しては最も良好な結果が得られる。しかし、実用的
には、アルカリ水溶液濃度の変化、取り扱い性を考慮す
ると、アルカリ水溶液温度は50〜80℃程度が望まし
い。
Therefore, the best results regarding storage properties can be obtained if the aqueous alkali solution temperature is near the boiling point. However, in practical terms, the temperature of the alkaline aqueous solution is desirably about 50 to 80° C. in consideration of changes in the concentration of the alkaline aqueous solution and ease of handling.

(へ)実施例 多孔度84%のニッケル焼結基板を用い、硝酸カドミウ
ム水溶液に浸漬し、乾燥、アルカリ処理を行い、焼結基
板中に活物質として水酸化カドミウムを充填した。
(F) Example A sintered nickel substrate with a porosity of 84% was immersed in an aqueous cadmium nitrate solution, dried and treated with alkali, and the sintered substrate was filled with cadmium hydroxide as an active material.

水酸化ニッケルの添加は、硝酸カドミウム中への硝酸ニ
ッケルの添加量を規制することにより行った。
Nickel hydroxide was added by regulating the amount of nickel nitrate added to cadmium nitrate.

予備実験の結果より、N i / Cd金属比で、3%
付近が水酸化カドミウムの利用率として最も高い値を示
したので、ニッケル3%添加した極板を作成した。この
極板を更に2つに分け、一方は常温の苛性カリ(25%
)水溶液中で、0.2C(V、 S、公称容量)の電流
で200%充電し、80℃の苛性カリ(25%)水溶液
中で、0.2Cの電流で放電して、化成し本発明品aを
作成した。
From the results of preliminary experiments, the Ni/Cd metal ratio was 3%.
Since the area near the area showed the highest utilization rate of cadmium hydroxide, an electrode plate with 3% nickel added was created. This electrode plate is further divided into two parts, one of which is made of caustic potassium (25%) at room temperature.
) Charged to 200% with a current of 0.2C (V, S, nominal capacity) in an aqueous solution, and discharged with a current of 0.2C in a caustic potash (25%) aqueous solution at 80°C to form the present invention. I created item a.

又、常温の苛性カリ(25%)水溶液中で、0.2Cの
電流で200%充電し、常温の苛性カリ(25%)水溶
液中で0.2Cの電流で放電して、化成した比較量すを
作成した。
In addition, the chemically formed comparative amount was charged to 200% at a current of 0.2 C in a caustic potash (25%) aqueous solution at room temperature, and discharged at a current of 0.2 C in a caustic potash (25%) aqueous solution at room temperature. Created.

又、硝酸ニッケルを添加せず、他は比較量すと同一条件
で比較量Cを作成した。
In addition, a comparative amount C was prepared under the same conditions except that nickel nitrate was not added.

上記3種類の陰極板とセパレータと陽極板を組み合わせ
て、公称容量1.2AHの本発明電池A及び比較電池B
、Cを作成した。
Inventive battery A and comparative battery B with a nominal capacity of 1.2AH are made by combining the above three types of cathode plates, separators, and anode plates.
, C was created.

表1に、上記電池のハイレート放電のサイクル特性及び
保存特性を測定した結果を示す。サイクル特性は、O,
IC(120m A )の電流で16時間充電し、8 
C(9,6A )の電流で放電し、電池電圧が1.OV
に達するまでの放電時間を示した。保存特性の保存前の
電池容量は、0. I C(120m A )の電流で
16時間充電し、I C(1,2A )の電流で放電し
、電池電圧が1.OVに達するまでの放電時間を示した
Table 1 shows the results of measuring the high rate discharge cycle characteristics and storage characteristics of the above battery. The cycle characteristics are O,
Charging with IC (120mA) current for 16 hours, 8
Discharged with a current of C (9.6 A), and the battery voltage reached 1. O.V.
The discharge time until reaching . The battery capacity before storage of storage characteristics is 0. Charged with a current of IC (120mA) for 16 hours, discharged with a current of IC (1.2A), and the battery voltage reached 1. The discharge time until reaching OV is shown.

保存後の電池容量は、保存前の電池容量測定後再び、O
,、IC(120m A )の電流で16時間充電し、
45℃の恒温槽中に172ケ月間放置した後、I C(
1,2A )の電流で放電し、電池電圧が1.(IVに
達するまでの放電時間を示した。
The battery capacity after storage is measured at O
,, charged for 16 hours with the current of IC (120mA),
After being left in a constant temperature bath at 45°C for 172 months, IC (
It is discharged with a current of 1.2 A), and the battery voltage reaches 1.2 A). (Discharging time until reaching IV is shown.

以下余白 表  1 表  2 表1より、比較電池Bは、サイクル特性の向上があるが
、一方では保存特性は大きく低下している。本発明電池
Aは、保存特性が比較電池C並みに向上し、且つサイク
ル特性も良好で、本発明の狙いとする性能を有している
Table 1 Table 2 Table 1 shows that Comparative Battery B has improved cycle characteristics, but on the other hand, storage characteristics have significantly deteriorated. The battery A of the present invention has improved storage characteristics comparable to those of the comparative battery C, and also has good cycle characteristics, and has the performance aimed at by the present invention.

表2に、本発明電池A及び比較電池B、Cの各極板の表
面積(焼結体を含む:焼結体単独表面積約0.4m”/
g)と残留硝酸根の測定結果を示す。活物質の表面積は
化成終了極板を微粉末状にして芯体を取り除き、BET
法にて測定した。焼結体単独の表面積は約0.4m’/
gである。残留硝酸根量は、各極板を900℃以上で焼
き、その間の捕集空気を乳用式ガス検知管にて測定した
Table 2 shows the surface area of each electrode plate of the present invention battery A and comparative batteries B and C (including the sintered body: the surface area of the sintered body alone is approximately 0.4 m"/
g) and the measurement results of residual nitrate radicals are shown. The surface area of the active material is determined by turning the formed electrode plate into fine powder and removing the core.
Measured using the method. The surface area of the sintered body alone is approximately 0.4 m'/
It is g. The amount of residual nitrate radicals was determined by baking each electrode plate at a temperature of 900° C. or higher, and measuring the air collected during that time using a milk gas detection tube.

表2より、活物質の表面積が大きい程、硝酸根の反応性
の観点から、保存特性が低下すると考えられ、活物質の
表面積が、保存特性を決定する因子であると予想される
。本発明電池Aは、表面積を小さくすることができ、性
能の向上につながったものと考えられる。
From Table 2, it is thought that the larger the surface area of the active material, the lower the storage characteristics from the viewpoint of the reactivity of nitrate radicals, and it is expected that the surface area of the active material is a factor that determines the storage characteristics. It is thought that the battery A of the present invention had a smaller surface area, which led to improved performance.

(ト)発明の効果 本発明の製造法によれば、カドミウム酸化物を生活物質
とする陰極に、水酸化ニッケルを添加し、化成工程での
放電を高温のアルカリ水溶液中で行うことにより、保存
特性を低下させる水酸化ニッケルを添加するにもかかわ
らず、アルカリ蓄電池の保存特性を維持し、且つ放電特
性も大幅に向上させることができるものであり、その工
業的価値は極めて大である。
(G) Effects of the Invention According to the production method of the present invention, nickel hydroxide is added to the cathode containing cadmium oxide as a living material, and the discharge in the chemical formation process is performed in a high-temperature alkaline aqueous solution, thereby preserving the cathode. Despite the addition of nickel hydroxide, which deteriorates the characteristics, the storage characteristics of the alkaline storage battery can be maintained and the discharge characteristics can also be greatly improved, and its industrial value is extremely large.

Claims (1)

【特許請求の範囲】[Claims] (1)カドミウム酸化物を主活物質とし、水酸化ニッケ
ルを添加した陰極板を、常温のアルカリ水溶液中で充電
し、続いて高温のアルカリ水溶液中で放電後、電池に組
み込むことを特徴とするアルカリ蓄電池の製造法。
(1) A cathode plate containing cadmium oxide as the main active material and nickel hydroxide added thereto is charged in an aqueous alkaline solution at room temperature, then discharged in an aqueous alkaline solution at a high temperature, and then assembled into a battery. Method of manufacturing alkaline storage batteries.
JP2207455A 1990-08-03 1990-08-03 Manufacture of alkaline storage battery Pending JPH0492365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2207455A JPH0492365A (en) 1990-08-03 1990-08-03 Manufacture of alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2207455A JPH0492365A (en) 1990-08-03 1990-08-03 Manufacture of alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH0492365A true JPH0492365A (en) 1992-03-25

Family

ID=16540057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2207455A Pending JPH0492365A (en) 1990-08-03 1990-08-03 Manufacture of alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0492365A (en)

Similar Documents

Publication Publication Date Title
JPH0378965A (en) Nickel active material for alkaline storage battery
US3779810A (en) Method of making a nickel positive electrode for an alkaline battery
JPH0492365A (en) Manufacture of alkaline storage battery
JPH10284075A (en) Manufacture of positive electrode active material for alkaline battery
JP2003077468A (en) Manufacturing method of nickel electrode material
JPH0275156A (en) Cd-containing powder and negative electrode material for alkaline storage battery
JPH04109557A (en) Non-sintered type positive electrode plate for alkaline storage battery
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JPS5819866A (en) Manufacture of cadmium electrode for secondary battery
JPH02234356A (en) Sealed-type alkali battery
JP2975673B2 (en) Method for producing cadmium negative electrode plate
JPH079806B2 (en) Zinc electrode for alkaline storage battery
JPH0437544B2 (en)
JPH0410176B2 (en)
JPS60258868A (en) Manufacture of lithium secondary battery and its positive electrode
JP2810460B2 (en) Positive plate for alkaline storage battery
CN114335446A (en) Preparation method and application of nickel-zinc alkaline battery negative pole piece
JP2003229131A (en) Alkaline storage battery having nickel electrode and its manufacturing method
JPS60258854A (en) Method of manufacturing paste type cadmium negative pole
JPH07118331B2 (en) Nickel-cadmium storage battery
JPS62180969A (en) Hermetically-sealed nickel-cadmium storage battery
JPS58672B2 (en) Manufacturing method of sealed alkaline storage battery
JPH079807B2 (en) Zinc electrode for alkaline storage battery
JPS6340255A (en) Sintered nickel electrode for alkaline storage battery
JPH041992B2 (en)