JPH07118331B2 - Nickel-cadmium storage battery - Google Patents

Nickel-cadmium storage battery

Info

Publication number
JPH07118331B2
JPH07118331B2 JP63029749A JP2974988A JPH07118331B2 JP H07118331 B2 JPH07118331 B2 JP H07118331B2 JP 63029749 A JP63029749 A JP 63029749A JP 2974988 A JP2974988 A JP 2974988A JP H07118331 B2 JPH07118331 B2 JP H07118331B2
Authority
JP
Japan
Prior art keywords
storage battery
cadmium
nickel
electrode plate
hydroxyethyl cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63029749A
Other languages
Japanese (ja)
Other versions
JPH01206570A (en
Inventor
吉村  公志
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP63029749A priority Critical patent/JPH07118331B2/en
Publication of JPH01206570A publication Critical patent/JPH01206570A/en
Publication of JPH07118331B2 publication Critical patent/JPH07118331B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はニッケル−カドミウム蓄電池に関するものであ
る。
Description: FIELD OF THE INVENTION The present invention relates to nickel-cadmium storage batteries.

従来の技術と課題 カドミウム活物質の放電反応は、溶解,析出機構を経由
するために放電時の活物質利用率は放電電流が大きくな
るに従い大きく低下する。カドミウム負極板を用いたニ
ッケル−カドミウム蓄電池には種々の用途に応じたもの
が製造されているが、このうち放電を大電流で行う高率
放電用途の蓄電池は前記のカドミウム負極板の放電率依
存性が水酸化ニッケル電極よりも大きいことに起因して
一般用途の蓄電池よりも30%程度容量が少なくなってい
た。
Conventional technology and problems Since the discharge reaction of cadmium active material goes through the mechanism of dissolution and precipitation, the utilization rate of active material during discharge drops significantly as the discharge current increases. Although nickel-cadmium storage batteries using cadmium negative electrode plates are manufactured according to various applications, among them, storage batteries for high rate discharge applications that discharge at a high current depend on the discharge rate of the above cadmium negative electrode plate. Due to its higher performance than the nickel hydroxide electrode, the capacity was about 30% less than that of a general-purpose storage battery.

よって、このようなカドミウム負極性の特性に起因した
問題点を改善し、高率放電特性の優れたニッケル−カド
ミウム蓄電池を得ることが課題であった。
Therefore, it has been a problem to improve the problems caused by the characteristics of the negative polarity of cadmium and obtain a nickel-cadmium storage battery having excellent high rate discharge characteristics.

課題を解決するための手段 本発明はニッケル−カドミウム蓄電池の電解液中にヒド
ロキシエチルセルロースを含むことを特徴とする。
Means for Solving the Problems The present invention is characterized in that the electrolytic solution of a nickel-cadmium storage battery contains hydroxyethyl cellulose.

作用 ニッケル−カドミウム蓄電池の放電性能を改良するため
に従来から種々の添加剤、例えばカルボキシメチルセル
ロースやケイ酸ナトリウムなどを用いる方法が提案され
ている。しかし従来提案されていた添加剤による効果は
わずかなものであった。
Actions In order to improve the discharge performance of nickel-cadmium storage batteries, methods using various additives such as carboxymethyl cellulose and sodium silicate have been proposed. However, the effect of the additives proposed hitherto has been slight.

本発明者においても種々の添加剤について検討したとこ
ろ、その中でヒドロキシエチルセルロースを含有するア
ルカリ電解液を蓄電池に用いることによってカドミウム
活物質の高率放電時の活物質利用率が大きく向上し、蓄
電池の容量が増大することを見い出した。また、この効
果は負極板の形態(焼結式,ペースト式等)に関係なく
カドミウム活物質を含むもの全てで認められた。ヒドロ
キシエチルセルロースを含む電解液を用いた場合の効果
の概要の一例は以下のようである。
The present inventor also investigated various additives, and by using an alkaline electrolyte containing hydroxyethyl cellulose in a storage battery, the active material utilization rate during high-rate discharge of cadmium active material was greatly improved, and the storage battery was improved. It has been found that the capacity of In addition, this effect was recognized for all those containing a cadmium active material regardless of the form of the negative electrode plate (sintering type, paste type, etc.). An example of the outline of the effect when the electrolytic solution containing hydroxyethyl cellulose is used is as follows.

従来の一般用途用と呼ばれている密閉形のニッケル−カ
ドミウム蓄電池は通常最大で2CA(1/2時間率)程度の放
電に用いられる。これを例えば10A(10時間率)で放電
した場合にはカドミウム負極板の放電率依存性によって
放電できる電気量が1CA(1時間率)の場合に較べて約6
0〜70%に低下する。
The conventional sealed nickel-cadmium storage battery, which is called for general use, is usually used for discharging up to about 2 CA (1/2 hour rate). When this is discharged at, for example, 10 A (10 hour rate), it can be discharged by about 6 CA as compared with the case where the discharge rate dependence of the cadmium negative electrode plate allows the discharge of electricity at 1 CA (1 hour rate).
It drops to 0-70%.

一方、同様のニッケル−カドミウム蓄電池でヒドロキシ
エチルセルロースを含有する電解液を用いた場合には10
CAで放電できる電気量は1CAで放電した場合の約80〜85
%であり、有からに改良されている。
On the other hand, when the same nickel-cadmium battery with an electrolyte containing hydroxyethyl cellulose was used,
The amount of electricity that can be discharged with CA is approximately 80 to 85 when discharged with 1 CA.
%, Which is an improvement from yes.

このような効果の原因はヒドロキシエチルセルロースを
用いた場合に、カドミウム活物質の結晶形態が針状のγ
型になっていることによると考えられる。
The reason for this effect is that when hydroxyethyl cellulose is used, the crystal form of the cadmium active material is γ, which is needle-like.
It is thought that it is because it is a mold.

ヒドロキシエチルセルロースは水酸化カドミウムの低温
での充電効率を改良するものとして既に特開昭61−2405
79号公報で提案されている物質である。この提案ではヒ
ドロキシエチルセルロースをペースト式カドミウム負極
板の製作に際し、添加するというものであるが、このよ
うにして製作したカドミウム負極板を用いた蓄電池は初
期に較べ数十サイクル充放電をくり返した後の方が高率
放電の性能が良いという不安定な性能を示すことがわか
った。
Hydroxyethyl cellulose has already been used as a material for improving the charging efficiency of cadmium hydroxide at low temperature, as disclosed in JP-A-61-2405
It is a substance proposed in Japanese Patent Publication No. 79. In this proposal, hydroxyethyl cellulose is added when manufacturing a paste-type cadmium negative electrode plate, but the storage battery using the cadmium negative electrode plate manufactured in this manner has a charge and discharge cycle of several tens of cycles compared to the initial stage. It was found that the higher rate discharge has better performance, which is unstable.

そのため、ヒドロキシエチルセルロースを添加したペー
スト式カドミウム負極板について更に検討を行ったとこ
ろ、新たに以下のような問題点を有していることがわか
った。
Therefore, when the paste type cadmium negative electrode plate to which hydroxyethyl cellulose was added was further investigated, it was found that it had the following new problems.

ヒドロキシエチルセルロースはメチルセルロースやカル
ボキシメチルセルロースなどと異なり、水に完全溶解す
る。このためペースト式カドミウム負極板の製造工程の
うちの活物質ペーストの乾燥工程で、ヒドロキシエチル
セルロースは、極板の内部から外部に向かって移動する
水によって極板表面部に運ばれる。
Unlike methyl cellulose and carboxymethyl cellulose, hydroxyethyl cellulose is completely soluble in water. Therefore, in the process of drying the active material paste in the process of manufacturing the paste-type cadmium negative electrode plate, the hydroxyethyl cellulose is carried to the surface part of the electrode plate by the water moving from the inside of the electrode plate to the outside.

つまり、乾燥工程を終了したペースト式カドミウム負極
中でのヒドロキシエチルセルロースの分布は、極板の部
位によって異なっていること、また極板表面部ではヒド
ロキシエチルセルロースの存在量が非常に多くなってい
ることなどによって、性能は不安定である。
That is, the distribution of hydroxyethyl cellulose in the paste-type cadmium negative electrode that has completed the drying process is different depending on the site of the electrode plate, and that the amount of hydroxyethyl cellulose present on the surface of the electrode plate is very large. Due to this, the performance is unstable.

しかしヒドロキシエチルセルロースはニッケル−カドミ
ウム蓄電池に用いられる高濃度のアルカリ電解液に可溶
であるため、このようなペースト式カドミウム負極板を
アルカリ電解液中に、1週間程度の長時間位置するか、
あるいは20サイクル程度の充放電をくり返すことによっ
てヒドロキシエチルセルロースの分布が均一化し、性能
は安定するようになる。
However, since hydroxyethyl cellulose is soluble in a high-concentration alkaline electrolyte used in nickel-cadmium storage batteries, such a paste-type cadmium negative electrode plate is left in the alkaline electrolyte for a long time of about one week, or
Alternatively, by repeating charging and discharging for about 20 cycles, the distribution of hydroxyethyl cellulose becomes uniform and the performance becomes stable.

ただし開放形蓄電池に比べ、密閉形では電解液量が少な
いために、電極性能が安定するまでにより多くの時間あ
るいは充放電数を要していた。
However, as compared with the open type storage battery, the closed type requires less time for the electrode performance to stabilize because the amount of electrolyte is smaller.

本発明は以上述べたような問題点を解決したものであ
り、ヒドロキシエチルセルロースを含有する電解液を用
いることによって初期から良好な特性が安定して得られ
ることを見い出したことに基ずくものである。本発明は
従来電極性能が安定するまでに長時間を有していた密閉
形蓄電池において特に有効であり、また先述の特開昭61
−240579号公報に示された発明では適用できなかった焼
結式カドミウム負極板にも適用することができる。
The present invention solves the problems as described above, and is based on the finding that good characteristics can be stably obtained from the initial stage by using an electrolytic solution containing hydroxyethyl cellulose. . INDUSTRIAL APPLICABILITY The present invention is particularly effective in a sealed storage battery which has conventionally required a long period of time until the electrode performance becomes stable.
It can also be applied to a sintered cadmium negative electrode plate, which could not be applied in the invention disclosed in Japanese Unexamined Patent Publication No. 240579.

実施例 以下本発明を好適な実施例を用いて説明する。Examples The present invention will be described below with reference to preferred examples.

[蓄電池A](従来例) 金属ニッケル粉末とメチルセルロースおよび水を混練す
ることによって調製したニッケルスラリーをニッケルめ
っきした穿孔鋼板に塗着したものを950℃の還元雰囲気
中で処理した後に空気中で200℃で熱処理することによ
って焼結基板を作製した。次にこの焼結基板に硝酸カド
ミウムの水溶液を含浸した後。中和を行いカドミウム活
物質を充填するという通常の化学含浸の工程を繰り返し
焼結式カドミウム負極板を作成した。また水酸化ニッケ
ル正極板も通常の化学含浸の工程によって製作した。
[Battery A] (conventional example) A nickel slurry prepared by kneading metallic nickel powder, methyl cellulose and water was applied to a nickel-plated perforated steel sheet, which was treated in a reducing atmosphere at 950 ° C. and then 200 A sintered substrate was produced by heat treatment at ℃. Next, after impregnating the sintered substrate with an aqueous solution of cadmium nitrate. The normal chemical impregnation step of neutralizing and filling the cadmium active material was repeated to prepare a sintered cadmium negative electrode plate. A nickel hydroxide positive electrode plate was also manufactured by a normal chemical impregnation process.

以上のようにして製作した負極板と正極板とをポリプロ
ピレン製セパレーターを介して積層した後に金属製容器
に収容することによって交渉容量600mAhの角形の密閉形
ニッケル−カドミウム蓄電池とした。電解後は比重1.30
0(20℃)KOH水溶液を用いた。これを蓄電池Aとする。
The negative electrode plate and the positive electrode plate manufactured as described above were stacked with a polypropylene separator interposed therebetween and then housed in a metal container to obtain a prismatic sealed nickel-cadmium storage battery having a negotiation capacity of 600 mAh. Specific gravity after electrolysis 1.30
A 0 (20 ° C.) KOH aqueous solution was used. This is storage battery A.

[蓄電池B](本発明実施例) 電解液として比重1.300(20℃)KOH水溶液1リットルに
対しヒドロキシエチルセルロース1.5g溶解したものを用
いた以外は全て蓄電池Aと同様にした。これを蓄電池B
とする。
[Rechargeable Battery B] (Example of the present invention) The same operation was performed as in Rechargeable Battery A, except that 1.5 g of hydroxyethyl cellulose was dissolved in 1 liter of an aqueous KOH solution having a specific gravity of 1.300 (20 ° C.). This is storage battery B
And

[蓄電池C](従来例) 酸化カドミウム粉末100部,金属カドミウム粉末20部,
金属ニッケル粉末10部,メチルセルロース0.8部,グル
コ酸カリウム0.4部,塩ビーアクリルニトリル系短繊維
0.8部および水50部を混練したカドミウムペーストとし
た。このペーストをニッケルめっきした穿孔鋼板に塗着
後90℃で乾燥することによってペースト式カドミウム負
極板を製作した。
[Battery C] (conventional example) 100 parts cadmium oxide powder, 20 parts metal cadmium powder,
Metallic nickel powder 10 parts, methyl cellulose 0.8 parts, potassium gluconate 0.4 parts, salt bee acrylonitrile short fibers
Cadmium paste was prepared by kneading 0.8 parts and 50 parts of water. A paste-type cadmium negative electrode plate was manufactured by applying this paste to a perforated steel plate plated with nickel and drying at 90 ° C.

水酸化ニッケル正極板は蓄電池Aで用いたものと同じで
あり、以上の極板を用いて蓄電池Aと同様にして蓄電池
を製作した。これを蓄電池Cとする。電解液は比重1.30
0(20℃)KOH水溶液である。
The nickel hydroxide positive electrode plate was the same as that used in the storage battery A, and a storage battery was manufactured in the same manner as the storage battery A using the above electrode plate. This is referred to as a storage battery C. Specific gravity of electrolyte is 1.30
0 (20 ℃) KOH aqueous solution.

[蓄電池D](従来例) 電解液として比重1.300(20℃)KOH水溶液1リットルに
対しカルボキシメチルセルロース1.2gを溶解したものを
用いた以外は全て蓄電池Cと同様にした。これを蓄電池
Dとする。
[Battery D] (conventional example) The same as Battery B except that 1.2 g of carboxymethylcellulose was dissolved in 1 liter of an aqueous KOH solution having a specific gravity of 1.300 (20 ° C.). This is referred to as a storage battery D.

[蓄電池E](本発明実施例) 電解液として比重1.300(20℃)KOH水溶液1リットルに
対しヒドロキシエチルセルロースセルロース1.2gを溶解
したものを用いた以外は全て蓄電池Cと同様にした。こ
れを蓄電池Eとする。
[Rechargeable Battery E] (Example of the present invention) The same operation as in Rechargeable Battery C except that 1.2 g of hydroxyethyl cellulose cellulose was dissolved in 1 liter of an aqueous KOH solution having a specific gravity of 1.300 (20 ° C.). This is referred to as a storage battery E.

[蓄電池E](比較例) 蓄電池Cにおけるカドミウムペーストの配合においてメ
チルセルロースの代わりにヒドロキシエチルセルロース
を用いた以外は全て蓄電池Cと同様にした。これを蓄電
池Fとする。
[Storage Battery E] (Comparative Example) Storage battery C was the same as storage battery C except that hydroxyethyl cellulose was used instead of methyl cellulose in the formulation of the cadmium paste. This is referred to as a storage battery F.

なお蓄電池C〜Fには、酸化カドミウムの水和反応に必
要な水をさらに加えている。
Water required for the hydration reaction of cadmium oxide is further added to the storage batteries C to F.

以上のようにして製作した蓄電池A〜Fについて10サイ
クルほど充・放電を行った後に常温における放電電流と
放電電気量の関係を求めた。
After charging / discharging the storage batteries A to F produced as described above for about 10 cycles, the relationship between the discharge current and the discharge electricity amount at room temperature was obtained.

結果は第1図に示したとうりであり、電解液にヒドロキ
シエチルセルロースを含有している蓄電池BおよびEは
従来の蓄電池A,C,Dに較べ高率放電での電気量が明らか
に多く、負極制限になりにくいことを示している。ま
た、比較例の蓄電池Fは本発明の蓄電池B,Eよりも放電
電気量が少なく,また十分に性能が向上していないこと
を示している。
The results are as shown in Fig. 1. The storage batteries B and E containing hydroxyethyl cellulose in the electrolytic solution clearly have a large amount of electricity at a high rate discharge as compared with the conventional storage batteries A, C and D, and the negative electrode It shows that it is hard to be a limit. Further, it is shown that the storage battery F of the comparative example has a smaller amount of discharged electricity than the storage batteries B and E of the present invention, and the performance is not sufficiently improved.

次に試験を終了した蓄電池のうち従来の蓄電池Dおよび
本発明による蓄電池Eを解体してカドミウム負極板を取
り出し、精製水で洗浄後表面のX線解析図形をCu Kα
を用いて測定すると共に電子顕微鏡を用いて活物質の結
晶形態を調べた。蓄電池Dおよび蓄電池EのX線解析図
形を第2図および第3図に示す。おなじく電子顕微鏡写
真(2000倍)を第4図および第5図に示す。
Next, among the storage batteries that have been tested, the conventional storage battery D and the storage battery E according to the present invention are disassembled, the cadmium negative electrode plate is taken out, washed with purified water, and the surface X-ray analysis pattern is measured using Cu K α rays. Also, the crystal morphology of the active material was examined by using an electron microscope. The X-ray analysis figures of the storage battery D and the storage battery E are shown in FIGS. 2 and 3. Similar electron micrographs (× 2000) are shown in FIGS. 4 and 5.

これにより電解液にカルボキシルメチルセルロースを添
加した蓄電池Dのカドミウム負極板では活物質の結晶形
態がβ型であるのに対し、電解液にヒドロキシエチルセ
ルロースを添加した蓄電池Eのカドミウム負極板では針
状のγ型が主であることがわかった。
As a result, in the cadmium negative electrode plate of the storage battery D in which carboxylmethyl cellulose is added to the electrolytic solution, the crystal form of the active material is β type, whereas in the cadmium negative electrode plate of the storage battery E in which hydroxyethyl cellulose is added to the electrolytic solution, needle-shaped γ It turns out that the mold is the main one.

以上のようにヒドロキシエチルセルロースはカドミウム
活物質の結晶形態に影響をおよぼしていることは明らか
であり、高率放電時の活物質利用率が向上したのはこの
ことに起因したものと考えられる。
As described above, it is clear that hydroxyethyl cellulose affects the crystal morphology of the cadmium active material, and it is considered that this is the reason why the active material utilization rate at the time of high rate discharge is improved.

次に電解液へのヒドロキシエチルセルロースの添加量に
ついて調べた。電池としては蓄電池Eをもとにし、ヒド
ロキシエチルセルロースの添加量を種々代えた電解液を
用いた電池を製作し、その放電性能を測定した。第6図
はその結果を示したものであり、ヒドロキシエチルセル
ロースの添加量としては0.2g/以上9g/以下が適して
いると考えられる。
Next, the amount of hydroxyethyl cellulose added to the electrolytic solution was examined. As the battery, a battery was manufactured based on the storage battery E and using an electrolytic solution in which the amount of hydroxyethyl cellulose added was changed variously, and the discharge performance thereof was measured. FIG. 6 shows the results, and it is considered that 0.2 g / or more and 9 g / or less is suitable as the amount of hydroxyethyl cellulose added.

本発明の実施例では比重1.300(20℃)KOH水溶液を用い
た場合の結果を示したが、これ以外にもニッケル−カド
ミウム蓄電池に一般に用いらえる比重1.22〜1.35(20
℃)KOH水溶液でも同様の効果があることを確認した。
また、電解質がNaOHである場合やKOH,NaOHおよびLiOH混
合系でも同様の効果が認められた。
In the examples of the present invention, the specific gravity of 1.300 (20 ° C.) was shown when using an aqueous KOH solution, but other than this, the specific gravity of 1.22 to 1.35 (20) which is generally used for nickel-cadmium storage batteries is shown.
(° C) It was confirmed that the same effect was obtained with KOH aqueous solution.
The same effect was also observed when the electrolyte was NaOH or a mixed system of KOH, NaOH and LiOH.

発明の効果 以上のようにヒドロキシエチルセルロースを含むアルカ
リ電解液を用いることによって高率放電特性の優れたニ
ッケル−カドミウム蓄電池を得ることができる。
Effects of the Invention As described above, by using the alkaline electrolyte containing hydroxyethyl cellulose, it is possible to obtain a nickel-cadmium storage battery having excellent high rate discharge characteristics.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来品と本発明品の放電特性を比較した図であ
る。 第2図は従来の蓄電池Dのカドミウム負極板表面のX線
解析図形,第3図は本発明による蓄電池Eのカドミウム
負極板表面のX線解析図形を示す図である。 第4図は、従来の蓄電池Dのカドミウム負極板表面にお
ける活物質の結晶の構造を示した電子顕微鏡写真。第5
図は、本発明の蓄電池Eのカドミウム負極板表面におけ
る活物質の結晶の構造を示した電子顕微鏡写真。 第6図は本発明の有効な範囲を示した図である。
FIG. 1 is a diagram comparing the discharge characteristics of the conventional product and the product of the present invention. FIG. 2 is an X-ray analysis pattern on the surface of the cadmium negative electrode plate of the conventional storage battery D, and FIG. 3 is a view showing an X-ray analysis pattern on the surface of the cadmium negative electrode plate of the storage battery E according to the present invention. FIG. 4 is an electron micrograph showing the structure of the crystal of the active material on the surface of the cadmium negative electrode plate of the conventional storage battery D. Fifth
The figure is an electron micrograph showing the structure of the crystal of the active material on the surface of the cadmium negative electrode plate of the storage battery E of the present invention. FIG. 6 is a diagram showing the effective range of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ヒドロキシエチルセルロースを含むアルカ
リ電解液を有することを特徴とするニッケル−カドミウ
ム蓄電池。
1. A nickel-cadmium storage battery comprising an alkaline electrolyte containing hydroxyethyl cellulose.
【請求項2】アルカリ電解液中のヒドロキシエチルセル
ロースの含有量が0.2g/以上9g/以下であることを特
徴とする請求項1記載のニッケル−カドミウム電池。
2. The nickel-cadmium battery according to claim 1, wherein the content of hydroxyethyl cellulose in the alkaline electrolyte is 0.2 g / g or more and 9 g / g or less.
JP63029749A 1988-02-10 1988-02-10 Nickel-cadmium storage battery Expired - Fee Related JPH07118331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63029749A JPH07118331B2 (en) 1988-02-10 1988-02-10 Nickel-cadmium storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63029749A JPH07118331B2 (en) 1988-02-10 1988-02-10 Nickel-cadmium storage battery

Publications (2)

Publication Number Publication Date
JPH01206570A JPH01206570A (en) 1989-08-18
JPH07118331B2 true JPH07118331B2 (en) 1995-12-18

Family

ID=12284743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63029749A Expired - Fee Related JPH07118331B2 (en) 1988-02-10 1988-02-10 Nickel-cadmium storage battery

Country Status (1)

Country Link
JP (1) JPH07118331B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6210617B2 (en) * 2013-03-28 2017-10-11 日産自動車株式会社 Electrolytic solution for alkaline battery and alkaline battery

Also Published As

Publication number Publication date
JPH01206570A (en) 1989-08-18

Similar Documents

Publication Publication Date Title
JPH09270253A (en) Manufacture of lithium nickelate positive plate and lithium battery
JPH0559546B2 (en)
JP5142428B2 (en) Method for producing hydrogen storage alloy electrode for nickel metal hydride storage battery
JPH0221098B2 (en)
JPH07118331B2 (en) Nickel-cadmium storage battery
JPS62234867A (en) Nickel electrode for alkaline cell
JPH10284075A (en) Manufacture of positive electrode active material for alkaline battery
JPS5983347A (en) Sealed nickel-cadmium storage battery
JPH0275156A (en) Cd-containing powder and negative electrode material for alkaline storage battery
JPH02234356A (en) Sealed-type alkali battery
JPH10172560A (en) Lithium battery and positive electrode for it
JPH0429189B2 (en)
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3744306B2 (en) Manufacturing method of sintered nickel electrode for alkaline storage battery
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JP2797554B2 (en) Nickel cadmium storage battery
JPH0430713B2 (en)
JP2861128B2 (en) Cadmium negative electrode plate and method for producing the same
JPS58198856A (en) Manufacture of negative cadmium plate for alkaline storage battery
JP3407983B2 (en) Method for producing non-sintered positive electrode for alkaline storage battery
JPH10149824A (en) Manufacture of hydrogen storage alloy electrode
JP2642623B2 (en) Non-sintered cadmium cathode for alkaline storage batteries
JPH041992B2 (en)
JP2810460B2 (en) Positive plate for alkaline storage battery
JP2754800B2 (en) Nickel cadmium storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees