JPH048982Y2 - - Google Patents

Info

Publication number
JPH048982Y2
JPH048982Y2 JP1986024595U JP2459586U JPH048982Y2 JP H048982 Y2 JPH048982 Y2 JP H048982Y2 JP 1986024595 U JP1986024595 U JP 1986024595U JP 2459586 U JP2459586 U JP 2459586U JP H048982 Y2 JPH048982 Y2 JP H048982Y2
Authority
JP
Japan
Prior art keywords
pipe
gas
stainless steel
concentration
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986024595U
Other languages
Japanese (ja)
Other versions
JPS62136212U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986024595U priority Critical patent/JPH048982Y2/ja
Publication of JPS62136212U publication Critical patent/JPS62136212U/ja
Application granted granted Critical
Publication of JPH048982Y2 publication Critical patent/JPH048982Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Drying Of Gases (AREA)

Description

【考案の詳細な説明】 (イ) 産業上の利用分野 本考案は例えば各種ガスの濃度測定器等に用い
られる除湿装置の改良構成に関し、特に装置内の
ガス通路の液封止を防止するものに関する。
[Detailed description of the invention] (a) Field of industrial application The present invention relates to an improved configuration of a dehumidifying device used, for example, in various gas concentration measuring instruments, and in particular to preventing liquid sealing of gas passages within the device. Regarding.

(ロ) 従来の技術 従来此種除湿装置は例えば特開昭60−110284号
公報に示される如く、恒温槽内のガス濃度測定の
ために用いられている。即ち此種ガス濃度の測定
に際しては測定対象たるサンプルガスの湿度の変
化が測定精度に大きく影響して来るため、サンプ
ルガスの湿度を一定にするために、コンプレツサ
にて冷媒を循環される冷凍サイクルにて除湿装置
を構成し、冷凍サイクルの冷却器にてサンプルガ
スを冷却して強制的に除湿し、湿度を一定として
いる。
(B) Prior Art Conventionally, this type of dehumidification device has been used for measuring gas concentration in a thermostatic chamber, as shown in, for example, Japanese Patent Application Laid-Open No. 110284/1984. In other words, when measuring the concentration of this type of gas, changes in the humidity of the sample gas to be measured greatly affect the measurement accuracy, so in order to keep the humidity of the sample gas constant, a refrigeration cycle in which refrigerant is circulated by a compressor is used. A dehumidifying device is configured with a refrigeration cycle cooler, and the sample gas is cooled and forcibly dehumidified to keep the humidity constant.

斯る冷凍サイクルを用いた除湿装置では装置自
体が大型化すると共にコンプレツサの振動が問題
となり、斯る計測器等には不向きである。そこで
従来ではゼーベツク効果を利用した半導体熱電素
子から成る熱電冷却素子にて除湿器を構成するも
のが考えられている。
In a dehumidifying device using such a refrigeration cycle, the device itself becomes large and vibrations of the compressor become a problem, making it unsuitable for such measuring instruments. Therefore, conventional dehumidifiers have been considered in which a thermoelectric cooling element made of a semiconductor thermoelectric element that utilizes the Seebeck effect is used.

(ハ) 考案が解決しようとする問題点 斯る熱電冷却素子を用いた従来の除湿装置10
0を第5図及びその断面図である第6図に示す。
101はステンレス製ブロツクであり、ブロツク
101には上下延在して相互に平行する通路10
2,103と下部にて各通路102,103を連
通する様左右に延在する通路104がそれぞれブ
ロツク101を貫通形成されている。通路102
には上下よりこれもステンレス製のパイプ10
5,106が挿入されて溶接B,Bにより固定さ
れ、通路103には上方よりこれもステンレス製
パイプ107が挿入され溶接Bにて固定される。
更に通路104の両側及び通路103の下端も溶
接B,B,Bにより閉塞する。ブロツク101や
各パイプ105,106,107をステンレス製
としたのは種々のガスに接触するため、それによ
つて腐食しない様にするためである。パイプ10
6には排水パイプPが接続され、排水パイプPは
排水皿W内の水L内に没入せられて液封止されて
いる。Aは矩形平板状の熱電冷却素子であり、直
流電圧を印加すること吸熱側A1より熱を吸収
し、放熱側A2より熱を放散する作用を発揮する
ものである。この熱電冷却素子Aはその吸熱側A
1をブロツク101の一側面に熱伝導関係として
ブロツク101に取付けられる。即ち熱電冷却素
子Aは平板状であるため、熱伝導を良好とするた
めに外面に平坦面を有する矩形状のブロツク10
1が必要となるのである。Rは放熱フインで、ア
ルミブロツクDを介して熱電冷却素子Aの放熱側
A2に取付けられ、フインR以外は断熱材Iによ
つて包囲される。
(c) Problems to be solved by the invention Conventional dehumidification device 10 using such a thermoelectric cooling element
0 is shown in FIG. 5 and FIG. 6, which is a sectional view thereof.
101 is a block made of stainless steel, and the block 101 has passages 10 extending vertically and parallel to each other.
Passages 104 extending left and right are formed through the block 101 so as to communicate the passages 102, 103 at the lower portions thereof. Passage 102
This is also a stainless steel pipe 10 from the top and bottom.
5 and 106 are inserted and fixed by welds B and B, and a stainless steel pipe 107 is also inserted into the passage 103 from above and fixed by welds B.
Further, both sides of the passage 104 and the lower end of the passage 103 are also closed by welding B, B, B. The reason why the block 101 and the pipes 105, 106, and 107 are made of stainless steel is to prevent corrosion due to contact with various gases. pipe 10
A drain pipe P is connected to 6, and the drain pipe P is immersed in the water L in the drain tray W and is sealed with liquid. A is a thermoelectric cooling element in the form of a rectangular plate, and when a DC voltage is applied, it absorbs heat from the heat absorption side A1 and radiates heat from the heat radiation side A2. This thermoelectric cooling element A has its heat absorption side A
1 is attached to one side of the block 101 in a heat conductive relationship. That is, since the thermoelectric cooling element A has a flat plate shape, a rectangular block 10 having a flat outer surface is used to improve heat conduction.
1 is required. R denotes a heat radiation fin, which is attached to the heat radiation side A2 of the thermoelectric cooling element A via an aluminum block D, and the parts other than the fin R are surrounded by a heat insulating material I.

除湿装置100の動作はパイプ105よりサン
プルガスを吸入し、通路102,104,103
を通過せしめた後、パイプ107より放出する。
パイプ107は図示しない濃度検出装置に接続せ
られ、そこでサンプルガス中の所定のガスの濃度
を検出する。サンプルガスは通路102,10
4,103を通過する間にブロツク101の壁面
を介して熱電冷却素子Aより冷却され、ガス中の
水分が凝縮することによつて除湿され略湿度100
%の状態とせられ、凝縮した水分はパイプ106
より排出される。これによつてサンプルガスの湿
度は略100%の一定状態となり、ガス濃度の測定
精度は良好となるが、通路102,104,10
3は全体としてUターン形状となつているため通
路104,103部分で凝縮した水分は逆風とな
るためにパイプ106方向に移動できず、通路が
密封されガスが流通しなくなつてしまう問題があ
る。又、耐腐食性のステンレスブロツク101を
使用しなければならないため通路の形成は第6図
に示す如く成す以外になく多数の溶接B,B…作
業が必要となつていた。
The operation of the dehumidifier 100 is to suck in sample gas from a pipe 105 and
After passing through, it is discharged from pipe 107.
The pipe 107 is connected to a concentration detection device (not shown), which detects the concentration of a predetermined gas in the sample gas. The sample gas is in the passages 102, 10.
4,103, it is cooled by the thermoelectric cooling element A through the wall surface of the block 101, and the moisture in the gas condenses, dehumidifying the gas to approximately 100% humidity.
%, and the condensed water is transferred to the pipe 106.
more excreted. As a result, the humidity of the sample gas becomes constant at approximately 100%, and the measurement accuracy of the gas concentration is good.
3 has a U-turn shape as a whole, so moisture condensed in the passages 104 and 103 becomes a headwind and cannot move in the direction of the pipe 106, causing the problem that the passage is sealed and gas does not flow. . Furthermore, since a corrosion-resistant stainless steel block 101 must be used, the passages have no choice but to be formed as shown in FIG. 6, and a large number of welding operations B, B, etc. are required.

(ニ) 問題点を解決するための手段 本考案は斯かる問題点を解決するために、上下
に延在する耐腐食性の熱良導性円筒体18と、こ
の円筒体の上端及び下部を露出させて円筒体18
外面を囲繞するように熱交換的に配設され外面に
平坦面を構成する熱良導性ブロツク21,22
と、ブロツク21の平坦面に熱交換的に設けた熱
電冷却素子Aと、円筒体の下部に形成したガス流
入部24及び排水部18Aとから除湿装置4を構
成したものである。
(d) Means for solving the problem In order to solve the problem, the present invention has a corrosion-resistant and thermally conductive cylinder 18 that extends vertically, and the upper and lower ends of this cylinder. Exposing the cylindrical body 18
Thermally conductive blocks 21 and 22 are arranged so as to surround the outer surface for heat exchange and form a flat surface on the outer surface.
The dehumidifying device 4 is composed of a thermoelectric cooling element A provided on the flat surface of the block 21 for heat exchange, and a gas inflow section 24 and a drainage section 18A formed at the lower part of the cylindrical body.

(ホ) 作用 本考案によれば簡単な構造で除湿装置を構成で
きる。又、被除湿ガス中からの凝縮水は良好に排
出され目詰まりが生じない。
(E) Effect According to the present invention, a dehumidifying device can be constructed with a simple structure. Further, condensed water from the gas to be dehumidified is well discharged and no clogging occurs.

(ヘ) 実施例 次に第1図乃至第4図において本考案の実施例
を説明する。尚、図中第5図、第6図と同一符号
のものは同一とする。第4図に本考案を細菌培養
用の恒温槽内のCO2ガス濃度の測定に用いた場合
のブロツク図を示す。1は恒温槽で内部は加湿装
置2によつて高湿度に保たれると共に、図示しな
い温度制御装置によつて例えば30℃の一定温度に
維持される。恒温槽1内からは導出管3によつて
サンプルガスが導出せられ、本願の除湿装置4に
流入し、そこで除湿されてガスは上方のCO2濃度
検出器5へ、凝縮水は排水パイプPより排水皿L
に排出される。除湿装置4の温度は温度検出装置
6によつて検出され、その情報は温度制御装置7
に送られて該温度制御装置7が後述する熱電冷却
素子を制御することにより除湿装置4は例えば+
5℃の一定温度に冷却維持されるようになつてい
る。除湿装置4を通過したサンプルガスは+5℃
に冷却される事によつて略100%の湿度とされて
CO2濃度検出器5に至るので測定精度は非常に良
好となる。このサンプルガスの循環は送風機8に
よつて作り出されCO2濃度検出器5を経たガスは
流出管9を通つて送風機8によつて加速され、帰
還管10より図中実線矢印の如く恒温槽1内に戻
される。12はCO2ガスボンベであり、CO2濃度
検出器5からの情報により濃度制御装置13がバ
ルブ14を開閉することによつて補給管15より
CO2ガスを帰還管10に合流せしめて恒温槽1内
を略一定のCO2濃度とするものである。この除湿
装置4とCO2濃度検出器5によつてCO2濃度検出
装置16を構成している。
(F) Embodiment Next, an embodiment of the present invention will be described with reference to FIGS. 1 to 4. In the figure, the same reference numerals as in FIGS. 5 and 6 are the same. Figure 4 shows a block diagram when the present invention is used to measure the CO 2 gas concentration in a constant temperature bath for bacterial culture. Reference numeral 1 denotes a constant temperature bath, the interior of which is kept at high humidity by a humidifier 2 and maintained at a constant temperature of, for example, 30° C. by a temperature control device (not shown). A sample gas is led out from inside the constant temperature chamber 1 through a lead-out pipe 3, flows into the dehumidifier 4 of the present invention, is dehumidified there, and the gas is sent to the upper CO 2 concentration detector 5, while the condensed water is sent to the drain pipe P. Drainage tray L
is discharged. The temperature of the dehumidifier 4 is detected by a temperature detection device 6, and the information is sent to a temperature control device 7.
The temperature control device 7 controls a thermoelectric cooling element, which will be described later, so that the dehumidification device 4 can, for example,
It is designed to be kept cool at a constant temperature of 5°C. The sample gas that passed through the dehumidifier 4 was +5℃
The humidity is approximately 100% by being cooled to
Since the CO 2 concentration detector 5 is used, the measurement accuracy is very good. Circulation of this sample gas is created by a blower 8, and the gas that has passed through the CO 2 concentration detector 5 passes through an outflow pipe 9, is accelerated by the blower 8, and is sent from a return pipe 10 to a constant temperature chamber 1 as shown by the solid line arrow in the figure. returned inside. 12 is a CO 2 gas cylinder, and the concentration control device 13 opens and closes the valve 14 based on the information from the CO 2 concentration detector 5, so that the gas is supplied from the supply pipe 15.
The CO 2 gas is made to flow into the return pipe 10 to maintain a substantially constant CO 2 concentration inside the thermostatic chamber 1. This dehumidification device 4 and CO 2 concentration detector 5 constitute a CO 2 concentration detection device 16 .

第1図にCO2濃度検出装置16の斜視図を、
又、第2図に同断面図を示す。18は円筒直管状
のステンレス管であり、このステンレス管18
は、その外側に熱伝導的に密接する様断面半円弧
状の溝19,20をそれぞれ形成したアルミブロ
ツク21,22によつて挾持される。アルミブロ
ツク21,22はステンレス管18を挾持した状
態で相互に螺子止め若しくは溶接により固着され
るが密封する必要はない。又、他に、単一のアル
ミブロツク内に断面円形の孔を貫通形成し、そこ
にステンレス管18を貫挿せしめても良い。この
ステンレス管18は上下方向に延在する様配置す
る。アルミブロツク21,22は全体として矩形
状を成しており、ステンレス管18とは反対側の
アルミブロツク21外面である平坦面に熱電冷却
素子Aの吸熱側A1が熱交換的に設けられ、更に
放熱側A2にはアルミブロツクDを介して放熱フ
インRが取付けられている。
FIG. 1 shows a perspective view of the CO 2 concentration detection device 16.
Further, FIG. 2 shows a sectional view of the same. 18 is a cylindrical straight stainless steel pipe, and this stainless steel pipe 18
are held between aluminum blocks 21 and 22, which have grooves 19 and 20 each having a semicircular arc cross section formed on the outside thereof so as to be in close contact with each other for heat conduction. The aluminum blocks 21 and 22 are fixed to each other by screws or welding while holding the stainless steel tube 18 between them, but there is no need to seal them. Alternatively, a hole having a circular cross section may be formed in a single aluminum block, and the stainless steel tube 18 may be inserted through the hole. This stainless steel tube 18 is arranged so as to extend in the vertical direction. The aluminum blocks 21 and 22 have a rectangular shape as a whole, and the heat absorption side A 1 of the thermoelectric cooling element A is provided on the flat surface, which is the outer surface of the aluminum block 21 on the opposite side from the stainless steel pipe 18 , for heat exchange. Furthermore, a heat radiation fin R is attached to the heat radiation side A2 via an aluminum block D.

アルミブロツク21,22下方に位置するステ
ンレス管18の側壁には流入管24が溶接Bによ
り固定され、流入管24は導出管3に接続され
る。即ち、溶接して密封する個所はここだけであ
り、従来に比して溶接作業の著しい削減が図れ
る。又、ステンレス管18の上端はアルミブロツ
ク21,22より少許突出せしめている。25は
合成樹脂製のケーシングで上下及び側壁に開口2
6,27,28をそれぞれ有し、この下壁の開口
27にステンレス管18上端を挿入した状態で、
シール材29を介しアルミブロツク21,22上
端に螺子等により固着されている。30はケーシ
ング25とアルミブロツク21,22間に渡つて
設けられるアルミテープであり、アルミブロツク
21,22の温度でケーシング25内を冷却する
ための熱伝達部材及び両者を結合する部材の一つ
としての機能を奏し、ケーシング25をステンレ
ス等の熱良導体で構成した場合は不要である。ケ
ーシング25の開口26からはCO2濃度検出器5
が挿入されて密封される。32は濃度制御装置1
3へのリード線である。又、ケーシング25の開
口には樹脂製の流出管9が接続される。アルミブ
ロツク21外面には温度検出装置21を取付け、
ステンレス管18の下端及び放熱フインRを露出
した状態で断熱材Iによつて包囲する。この状態
でステンレス管18の下端は排水部18Aとし、
ここに排水パイプPが接続され、パイプPは排水
皿W内の水L内に没入される。
An inflow pipe 24 is fixed to the side wall of the stainless steel pipe 18 located below the aluminum blocks 21 and 22 by welding B, and the inflow pipe 24 is connected to the outlet pipe 3. That is, this is the only location to be welded and sealed, and welding work can be significantly reduced compared to the conventional method. Further, the upper end of the stainless steel tube 18 is made to protrude slightly from the aluminum blocks 21 and 22. 25 is a synthetic resin casing with openings 2 on the top, bottom and side walls.
6, 27, and 28, respectively, and with the upper end of the stainless steel pipe 18 inserted into the opening 27 of the lower wall,
It is fixed to the upper ends of the aluminum blocks 21 and 22 via a sealing material 29 with screws or the like. An aluminum tape 30 is provided between the casing 25 and the aluminum blocks 21 and 22, and serves as a heat transfer member for cooling the inside of the casing 25 at the temperature of the aluminum blocks 21 and 22, and as a member that connects the two. It is not necessary if the casing 25 is made of a good thermal conductor such as stainless steel. The CO 2 concentration detector 5 is connected to the opening 26 of the casing 25.
is inserted and sealed. 32 is the concentration control device 1
This is the lead wire to 3. Further, an outflow pipe 9 made of resin is connected to the opening of the casing 25. A temperature detection device 21 is attached to the outer surface of the aluminum block 21,
The lower end of the stainless steel pipe 18 and the heat dissipating fin R are surrounded by a heat insulating material I in an exposed state. In this state, the lower end of the stainless steel pipe 18 is a drainage part 18A,
A drain pipe P is connected here, and the pipe P is immersed in the water L in the drain tray W.

次に動作を説明する。恒温槽1内のガス(サン
プルガス)は送風機8によつて吸引され流入管2
4よりステンレス管18内に流入し、そこを第2
図中実線矢印の如く上昇する。ステンレス管18
はアルミブロツク21,22を介して熱電冷却素
子Aより冷却され、温度制御装置7によつて略+
5℃の一定温度に維持されており、サンプルガス
はここを上昇する間に冷却されてその中の水分が
ステンレス管18内壁面に凝縮するが、この凝縮
水はステンレス管18内壁面を伝つて図中破線矢
印の如く落下し排水部18Aより良好に排水パイ
プPに流入し排出される。従つて通風路が凝縮水
によつて目詰まりする事がない。ステンレス管1
8内を上昇したサンプルガスは除湿されることに
よつて略湿度100%とされケーシング25内に流
入し、そこでCO2濃度検出器5によつて濃度検出
された後流出管9より送風機8に吸引されること
になる。
Next, the operation will be explained. The gas (sample gas) in the thermostatic chamber 1 is sucked by the blower 8 and flows into the inflow pipe 2.
4 into the stainless steel pipe 18, and the second
It rises as shown by the solid line arrow in the figure. stainless steel pipe 18
is cooled by thermoelectric cooling element A via aluminum blocks 21 and 22, and approximately +
The sample gas is maintained at a constant temperature of 5°C, and as it rises, it is cooled and the moisture in it condenses on the inner wall of the stainless steel tube 18. It falls as indicated by the broken line arrow in the figure, flows into the drain pipe P from the drain section 18A, and is discharged. Therefore, the ventilation passage will not be clogged with condensed water. stainless steel pipe 1
The sample gas rising inside the casing 25 is dehumidified to approximately 100% humidity and flows into the casing 25, where the concentration is detected by the CO 2 concentration detector 5 and then sent to the blower 8 through the outflow pipe 9. It will be attracted.

この様に湿度が一定とされる事によつてCO2
度の測定精度は向上するが、アルミブロツク2
1,22からの熱伝導によつてケーシング25内
も略+5℃の一定の温度に冷却されるので、検出
器5の温度による誤差も同時に解消することがで
き、測定精度は更に向上する。又、ケーシング2
5をアルミブロツク21,22に熱交換的に設け
る事によつてCO2濃度検出装置16自体の小型化
も達成される。尚、実施例では恒温槽のCO2濃度
検出装置に本願を適用したが、それに限られず、
種々の機器に応用可能である。
By keeping the humidity constant in this way, the measurement accuracy of CO 2 concentration improves, but the aluminum block 2
Since the inside of the casing 25 is also cooled to a constant temperature of approximately +5° C. by heat conduction from the detectors 1 and 22, errors caused by the temperature of the detector 5 can be eliminated at the same time, and measurement accuracy is further improved. Also, casing 2
5 on the aluminum blocks 21 and 22 for heat exchange, the CO 2 concentration detection device 16 itself can be made smaller. In addition, in the example, the present application was applied to a CO 2 concentration detection device in a constant temperature bath, but it is not limited to this.
It can be applied to various devices.

(ト) 考案の効果 以上詳述したように本考案によれば、円筒体に
おいて、熱良導性ブロツクにて囲繞され熱電冷却
素子によつて間接的に冷却されることとなる部分
(即ち除湿室にあたる部分)には、吸入及び排出
管との接合部がなくなり、溶接によつて密封する
個所も著しく削減することができ、除霜装置とし
ての組立て作業の簡素化が図れると共に、熱電冷
却素子による円筒体の冷却効率を向上して、円筒
体を通過するガスの除湿及び冷却を促進できる。
(g) Effects of the invention As detailed above, according to the invention, the part of the cylindrical body that is surrounded by the thermally conductive block and is indirectly cooled by the thermoelectric cooling element (i.e., the dehumidifying part) There are no joints with the suction and discharge pipes in the chamber), and the number of parts to be sealed by welding can be significantly reduced, simplifying the assembly work as a defrosting device, and making it possible to use thermoelectric cooling elements. The cooling efficiency of the cylindrical body can be improved, and the dehumidification and cooling of the gas passing through the cylindrical body can be promoted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は本考案の実施例を示し、第
1図はCO2濃度検出装置の斜視図、第2図は同側
断面図、第3図はステンレス管にアルミブロツク
を取付けた状態の斜視図、第4図は恒温槽のCO2
ガス濃度の測定動作を説明するためのブロツク図
であり、第5図及び第6図は従来例を示し、第5
図は除湿装置の斜視図、第6図は同側断面図であ
る。 4……除湿装置、18……ステンレス管、18
A……排水部、21,22……アルミブロツク、
24……流入管、A……熱電冷却素子。
Figures 1 to 4 show examples of the present invention. Figure 1 is a perspective view of a CO 2 concentration detection device, Figure 2 is a sectional view of the same side, and Figure 3 is an aluminum block attached to a stainless steel pipe. A perspective view of the state, Figure 4 shows CO 2 in the constant temperature chamber.
FIG. 5 is a block diagram for explaining the gas concentration measurement operation; FIGS. 5 and 6 show a conventional example;
The figure is a perspective view of the dehumidifying device, and FIG. 6 is a sectional view of the same side. 4...Dehumidifier, 18...Stainless steel pipe, 18
A... Drainage section, 21, 22... Aluminum block,
24...Inflow pipe, A...Thermoelectric cooling element.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 上下に延在する耐腐食性の熱良導性円筒体と、
該円筒体の下部を露出させて前記円筒体外面を囲
繞するように熱交換的に配設され外面に平坦面を
構成する熱良導性ブロツクと、前記平坦面に熱交
換的に設けた熱電冷却素子と、前記円筒体の下部
に形成したガス流入部及び排水部とを備えてなる
除湿装置。
A corrosion-resistant and thermally conductive cylindrical body extending vertically;
A thermally conductive block is arranged for heat exchange so as to expose the lower part of the cylindrical body and surround the outer surface of the cylindrical body, and has a flat surface on the outer surface, and a thermoelectric block is provided for heat exchange on the flat surface. A dehumidifying device comprising a cooling element, and a gas inflow section and a drainage section formed at the bottom of the cylindrical body.
JP1986024595U 1986-02-21 1986-02-21 Expired JPH048982Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986024595U JPH048982Y2 (en) 1986-02-21 1986-02-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986024595U JPH048982Y2 (en) 1986-02-21 1986-02-21

Publications (2)

Publication Number Publication Date
JPS62136212U JPS62136212U (en) 1987-08-27
JPH048982Y2 true JPH048982Y2 (en) 1992-03-06

Family

ID=30823973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986024595U Expired JPH048982Y2 (en) 1986-02-21 1986-02-21

Country Status (1)

Country Link
JP (1) JPH048982Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5789107B2 (en) * 2011-03-07 2015-10-07 株式会社Kelk Dehumidifier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4854541A (en) * 1971-11-09 1973-07-31
JPS5213020A (en) * 1975-07-22 1977-02-01 Toyota Motor Corp Manifold reactor
JPS5995357A (en) * 1982-11-25 1984-06-01 関西電力株式会社 Dehumidifier for switch board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4854541A (en) * 1971-11-09 1973-07-31
JPS5213020A (en) * 1975-07-22 1977-02-01 Toyota Motor Corp Manifold reactor
JPS5995357A (en) * 1982-11-25 1984-06-01 関西電力株式会社 Dehumidifier for switch board

Also Published As

Publication number Publication date
JPS62136212U (en) 1987-08-27

Similar Documents

Publication Publication Date Title
JPH032854Y2 (en)
US6453679B1 (en) Dehumidifier and control system for a disk drive
JPH048982Y2 (en)
JP2006285454A (en) Constant temperature and constant humidity apparatus
JPH058510Y2 (en)
EP0040627B1 (en) A method and apparatus for determining the concentration of an absorbable component in a gas stream
US4829778A (en) Measuring gas cooling device
JP2958866B2 (en) Method and apparatus for detecting enthalpy difference
JP3607138B2 (en) Dehumidifier for gas analysis
JPH0322579B2 (en)
JP3206240U (en) Analysis equipment
JP2893797B2 (en) Humidifier
JPH06121911A (en) Air conditioner
US6782767B2 (en) Gas sample probe for a gas analyzer
JP2003194680A (en) Dehumidifier for gas analysis
JP2711722B2 (en) Electronic dehumidifier
JP3097292B2 (en) Electronic dehumidifier
JPH08798Y2 (en) Cooling dehumidifier
JPH0125422B2 (en)
JPS634939Y2 (en)
JPH0512629Y2 (en)
JPH0451342Y2 (en)
JPS6144106Y2 (en)
JPH0810063B2 (en) Constant temperature and constant humidity air supply device
JP3372703B2 (en) Dehumidifier for gas analysis