JPH0489608A - Thin film magnetic head and manufacture of said head - Google Patents

Thin film magnetic head and manufacture of said head

Info

Publication number
JPH0489608A
JPH0489608A JP20052390A JP20052390A JPH0489608A JP H0489608 A JPH0489608 A JP H0489608A JP 20052390 A JP20052390 A JP 20052390A JP 20052390 A JP20052390 A JP 20052390A JP H0489608 A JPH0489608 A JP H0489608A
Authority
JP
Japan
Prior art keywords
layer
insulating layer
thin film
magnetic
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20052390A
Other languages
Japanese (ja)
Other versions
JP3041902B2 (en
Inventor
Toshikuni Kai
甲斐 敏訓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2200523A priority Critical patent/JP3041902B2/en
Publication of JPH0489608A publication Critical patent/JPH0489608A/en
Application granted granted Critical
Publication of JP3041902B2 publication Critical patent/JP3041902B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To reduce the unnecessary dimension of gap depth (GD) and to improve the recording performance of the thin film magnetic head by providing more than two angles at the tip shape of an upper magnetic layer and reducing the angle only at one part of the tip of the upper magnetic layer without degrading the recording performance. CONSTITUTION:A tip angle theta1 formed between an upper magnetic layer 13 and a magnetic gap layer 7 is initially acute in the depth direction and made larger than an angle theta2 communicated to the angle theta1 or initially made acute and successively made larger afterwards, and at this part, the shape of the upper magnetic layer 13 is recessed upward. Thus, since the tip angle theta1 formed between the upper magnetic layer 13 and the magnetic gap layer 7 is made acute less than 30 deg. at a position where these two layers contact, the GD can be reduced. On the other hand, since the angle theta2 communicated to this tip angle theta1 is made larger or successively made larger, abnormal approach between upper and lower magnetic layers 13 and 6 and short-circuiting between the upper magnetic layer 13 and coil layers 9 and 11 can be prevented. Then, the GD can be reduced without damaging the performance of the thin film magnetic head.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高性能の薄膜磁気ヘッド、特に良好な記録性能
を有する薄膜磁気ヘッドおよびその製造3・\−/ 方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a high performance thin film magnetic head, particularly to a thin film magnetic head having good recording performance and a method for manufacturing the same.

従来の技術 磁気ディスク装置の高性能化にともない、それに用いる
薄膜磁気ヘッドにも種々の高性能化が要求されている。
2. Description of the Related Art As the performance of magnetic disk drives increases, the thin film magnetic heads used therein are also required to have various improvements in performance.

その中でも特に磁気ディスク装置の線記録密度向上のた
め、高抗磁力媒体への薄膜磁気ヘッドの記録能力向上が
大きな課題となっている。
Among these, in order to improve the linear recording density of magnetic disk devices, improving the recording ability of thin film magnetic heads on high coercive force media has become a particularly important issue.

以下従来の薄膜磁気ヘッドについて説明する。A conventional thin film magnetic head will be explained below.

第4図は従来の薄膜磁気ヘッドの外観斜視図である。セ
ラミック基板上に薄膜形成技術を用いて素子を形成し、
磁気ディスク装置用のスライダー形状にした状態である
FIG. 4 is an external perspective view of a conventional thin film magnetic head. The device is formed on a ceramic substrate using thin film formation technology,
It is in the shape of a slider for a magnetic disk device.

第4図において、1は浮上レール、2は薄膜磁気ヘッド
素子、3は端子を示す。薄膜磁気ヘッドを磁気ディスク
装置等に搭載する時は浮上レール1に対して裏面側に平
行にジンバルを接着して用いる。第5図は従来の薄膜磁
気ヘッドの拡大正面図であり、4は絶縁層、5は磁性層
でコイ/I/層はこれらの層に覆われている。第6図は
第5図のa、/線で切断した薄膜磁気ヘッド先端部の拡
大断面図である。アルミナ等の絶縁物で被覆されたセラ
ミック基板上に下部磁性層6.磁気ギャップ層7を形成
し、さらにその上に下部絶縁層8.下部導体層9.中間
絶縁層10.上部導体層11.上部絶縁層12.上部磁
性層13を順次積層し最終的にアルミナ等からなる保護
層14を設けたものである。
In FIG. 4, 1 is a floating rail, 2 is a thin film magnetic head element, and 3 is a terminal. When a thin film magnetic head is mounted on a magnetic disk device or the like, a gimbal is attached to the floating rail 1 in parallel to the back side thereof. FIG. 5 is an enlarged front view of a conventional thin film magnetic head, in which 4 is an insulating layer, 5 is a magnetic layer, and the coil/I/layer is covered with these layers. FIG. 6 is an enlarged cross-sectional view of the tip of the thin film magnetic head taken along line a and / in FIG. 5. FIG. A lower magnetic layer 6. is formed on a ceramic substrate coated with an insulating material such as alumina. A magnetic gap layer 7 is formed, and a lower insulating layer 8 is further formed thereon. Lower conductor layer 9. Intermediate insulating layer 10. Upper conductor layer 11. Upper insulating layer 12. Upper magnetic layers 13 are sequentially laminated, and finally a protective layer 14 made of alumina or the like is provided.

第6図に示す薄膜磁気ヘッドの媒体対向面15から下部
磁性層6と上部磁性層13が磁気ギヤツブ層了を介して
対向する位置16までの距離、すなわちギャップデプス
(以下GDと略す)は薄膜磁気ヘッドの性能に大きな影
響を及ぼし、特に記録能力に関しては最も重要な寸法と
なっている。
The distance from the medium facing surface 15 of the thin film magnetic head shown in FIG. 6 to the position 16 where the lower magnetic layer 6 and the upper magnetic layer 13 face each other via the magnetic gear layer, that is, the gap depth (hereinafter abbreviated as GD) is the thin film magnetic head. It has a great influence on the performance of a magnetic head, and is the most important dimension, especially with regard to recording capacity.

薄膜磁気ヘッドは媒体対向面15の上に現れた下部磁性
層6および上部磁性層13と磁気ギャップ層7からなる
磁界発生領域Bが有限(3〜16μm)でかつ磁気回路
を構成する上下磁性層13゜6が薄く、それに比べて磁
気回路が長いだめ(C領域で1〜6μm 、 D領域で
5〜10μm程度)5・\−2 磁気飽和しやすく、フェライトを主たる構成月料とした
磁気ヘッドに比べて記録性能に対するGD寸法の影響が
大きい。そのため通常の薄膜磁気ヘッドのGD寸法は0
.5〜2μm程度に規制され、この寸法が小さい程記録
性能は高くなる。しかし、薄膜磁気ヘッドの中には再生
性能に形状効果(媒体上の記録波長と3寸法の関係によ
り無限長の3寸法のヘッドに比べて再生出力が増減する
現象)を積極的に用いるものがあるため、3寸法が変化
すると再生特性が所望の特性から変わってしまう。
The thin film magnetic head has a finite magnetic field generation region B (3 to 16 μm) consisting of a lower magnetic layer 6, an upper magnetic layer 13, and a magnetic gap layer 7 appearing on the medium facing surface 15, and upper and lower magnetic layers forming a magnetic circuit. 13゜6 is thin and the magnetic circuit is long compared to it (about 1 to 6 μm in the C region and 5 to 10 μm in the D region). The influence of GD size on recording performance is greater than that of GD. Therefore, the GD dimension of a normal thin film magnetic head is 0.
.. It is regulated to about 5 to 2 μm, and the smaller this dimension, the higher the recording performance. However, some thin-film magnetic heads actively use the shape effect (a phenomenon in which the reproduction output increases or decreases compared to an infinitely long three-dimensional head due to the relationship between the recording wavelength on the medium and the three dimensions) in the reproduction performance. Therefore, if the three dimensions change, the reproduction characteristics will change from the desired characteristics.

そのためGD調整加工は媒体対向面15の上の上部磁性
層13の寸法が変わってくる傾斜部の手前で終了しなけ
ればならない。したがって、GD寸法の中に必ず残って
しまう寸法Aが存在し、この寸法が形状効果を利用する
薄膜磁気ヘッドの記録性能の限界を作っている。上部磁
性層13は上部磁性層13を形成する下地面に対してほ
ぼ平行に成長するため、このへ寸法は上部磁性層13の
媒体対向面15の上での膜厚Eに対して比例関係にあり
、上部磁性層13が磁気ギャップ層7となす6/\−ノ 角度(以下先端角度と称する)θが大きい程へ寸法の絶
対値は大きい。
Therefore, the GD adjustment process must be completed before the slope where the dimensions of the upper magnetic layer 13 on the medium facing surface 15 change. Therefore, there is a dimension A that always remains among the GD dimensions, and this dimension creates a limit to the recording performance of a thin film magnetic head that utilizes the shape effect. Since the upper magnetic layer 13 grows almost parallel to the underlying surface on which the upper magnetic layer 13 is formed, the dimension thereof is proportional to the film thickness E of the upper magnetic layer 13 on the medium facing surface 15. The larger the 6/\-angle (hereinafter referred to as tip angle) θ that the upper magnetic layer 13 makes with the magnetic gap layer 7, the larger the absolute value of the dimension.

発明が解決しようとする課題 しかしながら上記従来の構成では、薄膜磁気ヘッドの先
端角度θを発生磁界の観点から文献などで適当とされて
いる30〜46度とし、膜厚Eを2μmとするとへ寸法
は0.5〜2μmとなる。このへ寸法ではGD寸法を0
.5〜2μmに調整加工する際、余裕度を減少させ、加
工歩留まりを著しく低下させる原因となシ、また薄膜磁
気ヘッドの記録性能の向上を阻害するという課題を有し
ていた。一方、この課題を解決するために第7図に示す
ような先端角度θを小さくした構造がとられている。し
かしながらこの構造では、へ寸法を小さくするため上部
磁性層13と磁気ギヤツブ唐子のなす先端角度θをより
鋭角にするため下部磁性層6と上部磁性層13が接近し
過ぎ、磁性層間の漏れ磁束が増加して記録性能が著しく
低下したシ、下部導体層9.上部導体N11が上部磁性
層13と接近し過ぎ、第7図のF領域において上部磁性
了\7 層13と短絡するという課題を有していた。
Problems to be Solved by the Invention However, in the conventional configuration described above, if the tip angle θ of the thin film magnetic head is set to 30 to 46 degrees, which is considered appropriate in the literature from the viewpoint of the generated magnetic field, and the film thickness E is set to 2 μm, the dimension to is 0.5 to 2 μm. In this dimension, set the GD dimension to 0.
.. When adjusting the thickness to 5 to 2 .mu.m, there is a problem in that the margin is reduced and the processing yield is significantly lowered, and the recording performance of the thin film magnetic head is hindered from being improved. On the other hand, in order to solve this problem, a structure in which the tip angle θ is made small as shown in FIG. 7 has been adopted. However, in this structure, in order to reduce the dimension, the tip angle θ between the upper magnetic layer 13 and the magnetic gear knob is made more acute, so the lower magnetic layer 6 and the upper magnetic layer 13 are brought too close together, resulting in leakage magnetic flux between the magnetic layers. The lower conductor layer 9. There was a problem in that the upper conductor N11 came too close to the upper magnetic layer 13, causing a short circuit with the upper magnetic layer 13 in region F in FIG.

本発明は上記従来の課題を解決するもので、へ寸法を小
さくし、性能を向上させた薄膜磁気ヘッドおよびその製
造方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a thin-film magnetic head with reduced dimensions and improved performance, and a method for manufacturing the same.

課題を解決するだめの手段 この目的を達成するために本発明は、上部磁性層が磁気
ギャップ層となす先端角度が深さ方向に初期は鋭角でそ
れに連なる角度はより大きな角度を持つか、または初期
は鋭角でその後順次大きな角度となるようにし、この部
分で上部磁性層の形状を上に凹形状としたものである。
Means for Solving the Problem In order to achieve this object, the present invention provides a method in which the tip angle between the upper magnetic layer and the magnetic gap layer is initially acute in the depth direction, and the subsequent angles are larger, or The angle is initially acute, and then gradually becomes larger, and the shape of the upper magnetic layer is concave upward at this portion.

作  用 この構成によって、上部磁性層が磁気ギャップ層となす
先端角度をこの2層が接する位置において30度以下の
鋭角とすることにより、CiD寸法を小さくすることが
でき、またこの先端角度に連々る角度をより大きな角度
、あるいは順次大きな角度とすることにより上下磁性層
の異常な接近および上部磁性層とコイル層の短絡を防止
することができる。
Function: With this configuration, the CiD dimension can be reduced by making the tip angle between the upper magnetic layer and the magnetic gap layer an acute angle of 30 degrees or less at the position where these two layers touch, and this tip angle By making the angle larger or successively larger, it is possible to prevent abnormal approach between the upper and lower magnetic layers and short circuit between the upper magnetic layer and the coil layer.

この結果薄膜磁気ヘッドの性能を損なうことなくGD寸
法を小さくすることができる。
As a result, the GD dimension can be reduced without impairing the performance of the thin film magnetic head.

実施例 以下本発明の一実施例を添付図面を参照して説明する。Example An embodiment of the present invention will be described below with reference to the accompanying drawings.

薄膜磁気ヘッドの完成状態は第4図、第5図に示す従来
例と同様であるため説明は省略する。第1図は本発明の
一実施例における薄膜磁気ヘッドの要部断面図である。
The completed state of the thin film magnetic head is the same as that of the conventional example shown in FIGS. 4 and 5, so a description thereof will be omitted. FIG. 1 is a sectional view of a main part of a thin film magnetic head according to an embodiment of the present invention.

図に示すようにアルミナ等の絶縁物で被覆されたセラミ
ック基板上にパーマロイ、アモルファスまたはその他の
磁性体からなる下部磁性層6を形成し、その上にア/l
/ミナ等の絶縁材料による磁気ギャップ層7.感光性材
料や二酸化シリコン(S 102 )等の絶縁物から成
る下部絶縁層8.銅等の導電性材料からなる下部導電層
9.感光性材料やSio2等の絶縁物からなる中間絶縁
層10.銅等の導電性材料からなる上部導電層11.感
光性材料やSio2等の絶縁物からなる上部絶縁層12
、さらにその上に最上層の絶縁9・・−7 層16.パーマロイやアモルファス、その他の磁性体か
らなる上部磁性層13を順次積層し、最終的にアルミナ
等の絶縁物からなる保護層14で保護したものである。
As shown in the figure, a lower magnetic layer 6 made of permalloy, amorphous or other magnetic material is formed on a ceramic substrate coated with an insulating material such as alumina, and an a/l layer is formed on it.
/Magnetic gap layer made of insulating material such as Mina7. 8. A lower insulating layer made of a photosensitive material or an insulator such as silicon dioxide (S 102 ). Lower conductive layer 9 made of conductive material such as copper. Intermediate insulating layer 10 made of a photosensitive material or an insulator such as Sio2. Upper conductive layer 11 made of a conductive material such as copper. Upper insulating layer 12 made of a photosensitive material or an insulator such as Sio2
, and then the top layer of insulation 9...-7 layers 16. Upper magnetic layers 13 made of permalloy, amorphous, or other magnetic materials are sequentially laminated, and are finally protected with a protective layer 14 made of an insulator such as alumina.

従来の薄膜磁気ヘッドにおいて形成される形状に最上層
の絶縁層16を付加した形状であるが、この最上層の絶
縁層16を形成するのにその他の絶縁層8,10または
12と同じ粘度の樹脂を用いると磁気ギャップ層7と上
部磁性層13のなす角度は従来の薄膜磁気ヘッドより大
きくなるだめ逆効果となってしまう。そこで種々の粘度
の感光性樹脂を用いて検討し、この最上層の絶縁層16
に用いる樹脂の粘度は30 c pから50apが適切
であることがわかった。この粘度の定義は樹脂製造メー
カーによって異なるため数値としては各々の樹脂によっ
て異なるが、少なくとも最上層の絶縁層16に用いる樹
脂はその他の絶縁層8,1oまたは12に用いる樹脂よ
り粘度を小さくしなければならない。以上のようにして
作成した薄膜磁気ヘッドの断面形状は、第1図のように
上部磁性層13が磁気ギャップ層7と10 ・\−7 接する角度θ1が小さく、それに連なる角度θ2がより
大きく、上部磁性層13の先端領域Cが2種の角度で構
成され、さらにこの各々異なる角度をなめらかに結ぶこ
とができる。このようにして形成した薄膜磁気ヘッドは
GD寸法中に含まれる不要寸法Aを従来の薄膜磁気ヘッ
ドより小さくすることができ、薄膜磁気ヘッドの記録性
能を向上することができる。この上部磁性層13と磁気
ギャップ層7がなす角度θ1 とそれに連なる角度θ2
までの変曲点19の位置は、絶縁層8〜12の先端位置
と最上層の絶縁層16の先端位置との距離Eおよび最上
層の絶縁層16に用いる樹脂の粘度を調整することによ
り変更することができる。例えば、樹脂の粘度を300
pとした場合、E寸法を3〜5μmとすることによりθ
1 を1o〜20度、変曲点19は1〜2μmとなる。
The top insulating layer 16 is added to the shape formed in a conventional thin film magnetic head, but the top insulating layer 16 is formed using a material with the same viscosity as the other insulating layers 8, 10, or 12. If resin is used, the angle between the magnetic gap layer 7 and the upper magnetic layer 13 will be larger than that of a conventional thin film magnetic head, resulting in an opposite effect. Therefore, we investigated the use of photosensitive resins with various viscosities, and developed the uppermost insulation layer 16.
It has been found that the appropriate viscosity of the resin used for this is 30 cp to 50 ap. The definition of this viscosity differs depending on the resin manufacturer, so the numerical value differs depending on each resin, but at least the resin used for the uppermost insulating layer 16 must have a lower viscosity than the resin used for the other insulating layers 8, 1o, or 12. Must be. As shown in FIG. 1, the cross-sectional shape of the thin-film magnetic head created as described above has a small angle θ1 at which the upper magnetic layer 13 contacts the magnetic gap layer 7 and 10 \-7, and a larger angle θ2 connected thereto. The tip region C of the upper magnetic layer 13 is configured with two types of angles, and these different angles can be smoothly connected. The thin film magnetic head thus formed can have an unnecessary dimension A included in the GD dimension smaller than that of a conventional thin film magnetic head, and the recording performance of the thin film magnetic head can be improved. The angle θ1 formed between the upper magnetic layer 13 and the magnetic gap layer 7 and the angle θ2 connected to the angle θ1
The position of the inflection point 19 up to is changed by adjusting the distance E between the tip position of the insulating layers 8 to 12 and the tip position of the uppermost insulating layer 16 and the viscosity of the resin used for the uppermost insulating layer 16. can do. For example, if the viscosity of the resin is 300
p, by setting the E dimension to 3 to 5 μm, θ
1 is 10 to 20 degrees, and the inflection point 19 is 1 to 2 μm.

この結果GD寸法中の不要寸法Aは0〜0.3μmとな
るため、実効GD寸法を小さくすることができ、薄膜磁
気ヘッドの記録性能を向上することができる。
As a result, the unnecessary dimension A in the GD dimension becomes 0 to 0.3 μm, so that the effective GD dimension can be reduced and the recording performance of the thin film magnetic head can be improved.

絶縁層8〜12にS Lo 2等の無機絶縁材料を用1
1 ・−− いる場合の製造方法の一例を第2図(a)、[有])に
示す。
An inorganic insulating material such as S Lo 2 is used for the insulating layers 8 to 12.
An example of the manufacturing method in the case where 1.--- is shown in FIG.

同図(a)に示すように上部絶縁層12まで形成した後
、絶縁層8〜12の先端形状を規制するためのエツチン
グマスク17を形成する。この際、エツチングマスク1
7の先端形状18を感光性樹脂等を用いて磁気ギャップ
層7と平行々面に接する部分の角度を小さくそれに連な
る角度を大きくする。
After forming up to the upper insulating layer 12, as shown in FIG. 4A, an etching mask 17 is formed to control the shapes of the tips of the insulating layers 8-12. At this time, etching mask 1
Using a photosensitive resin or the like, the tip shape 18 of the magnetic gap layer 7 is made to have a small angle at a portion in contact with the parallel planes and a large angle connecting thereto.

次に同図(b)に示すようにこのエツチングマスク17
を用いてAr等によるインビームエツチングやCF4 
等のガスを用いた反応性イオンエツチングによフ絶縁層
8〜12の先端形状をエツチングマスク17の先端形状
18と同様な形状にし、第3図に示す断面構造を得だ。
Next, as shown in FIG.
In-beam etching with Ar etc. and CF4
The tips of the insulating layers 8 to 12 were made to have the same shape as the tip 18 of the etching mask 17 by reactive ion etching using a gas such as the following, and the cross-sectional structure shown in FIG. 3 was obtained.

発明の効果 以上のように本発明は薄膜磁気ヘッドの上部磁性層の先
端形状に少なくとも2つ以上の角度を持たせ、記録性能
を劣下させることなく上部磁性層の先端の一部のみの角
度を小さくすることによって、GD寸法の不要寸法(へ
寸法)を小さくし、薄膜磁気ヘッドの記録性能を向上さ
せることができる。さらに、GD寸法の不要寸法(へ寸
法)を小さくすることによってGD調整加工の歩留りを
向上させることができる。
Effects of the Invention As described above, the present invention provides at least two or more angles to the tip shape of the upper magnetic layer of a thin film magnetic head, and allows only a part of the tip of the upper magnetic layer to have an angle without deteriorating recording performance. By reducing , it is possible to reduce the unnecessary dimension (the dimension) of the GD dimension and improve the recording performance of the thin film magnetic head. Furthermore, the yield of GD adjustment processing can be improved by reducing the unnecessary dimension (the dimension) of the GD dimension.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における薄膜磁気ヘッドの要
部断面図、第2図(a) 、 (b)は本発明の一実施
例における薄膜磁気ヘッドの製造方法の工程断面図、第
3図は本発明の他の実施例における薄膜磁気ヘッドの要
部断面図、第4図は従来の薄膜磁気ヘッドの外観斜視図
、第5図は従来の薄膜磁気ヘッドの拡大正面図、第6図
は第6図のa−a’iで切断した薄膜磁気ヘッドの先端
部の拡大要部断面図、第7図は従来の薄膜磁気ヘッドで
先端角度を小さくした例の拡大要部断面図である。 6・・・・・・下部磁性層、7・・・・・・磁気ギャッ
プ層、8・・・・・・下部絶縁層、9・・・・・・下部
導体層、1o・・・・・・中間絶縁層、11・・・・・
・上部導体層、12・・・・・・上部絶縁層、13・・
・・・・上部磁性層。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名寸 稼 綜
FIG. 1 is a cross-sectional view of essential parts of a thin-film magnetic head according to an embodiment of the present invention, and FIGS. 3 is a sectional view of a main part of a thin film magnetic head according to another embodiment of the present invention, FIG. 4 is an external perspective view of a conventional thin film magnetic head, FIG. 5 is an enlarged front view of a conventional thin film magnetic head, and FIG. The figure is an enlarged sectional view of the main part of the tip of a thin-film magnetic head taken along a-a'i in Fig. 6, and Fig. 7 is an enlarged sectional view of the main part of a conventional thin-film magnetic head with a small tip angle. be. 6...Lower magnetic layer, 7...Magnetic gap layer, 8...Lower insulating layer, 9...Lower conductor layer, 1o...・Intermediate insulating layer, 11...
・Top conductor layer, 12...Top insulating layer, 13...
...Top magnetic layer. Name of agent: Patent attorney Shigetaka Awano and one other person

Claims (1)

【特許請求の範囲】 (1)下部磁性層、磁気ギャップ層、上部磁性層および
下部絶縁層、下部導体層、中間絶縁層、上部導体層、上
部絶縁層とで構成されるコイル層からなる薄膜磁気ヘッ
ドにおいて、上部磁性層と磁気ギャップ層がなす角度が
その交点近傍の第一の角度と交点から離れた位置で前記
第一の角度より大きい第二の角度とからなる薄膜磁気ヘ
ッド。 (2)第二の角度は上部絶縁層と磁気ギャップ層とで構
成され、第一の角度は少なくとも上部絶縁層の端部を覆
って形成された最上層の絶縁層と磁気ギャップ層とで構
成された請求項1記載の薄膜磁気ヘッド。 (2)磁気ギャップ層が無機絶縁材料であり、最上層の
絶縁層が他の絶縁層を構成する樹脂より粘度の低い樹脂
である請求項1または2記載の薄膜磁気ヘッド。 (4)磁気ギャップ層、上部絶縁層、中間絶縁層および
下部絶縁層が無機絶縁材料で形成されており、磁気ギャ
ップ層を構成する無機絶縁材料が上部絶縁層、中間絶縁
層および下部絶縁層を構成する無機絶縁材料とは異なる
エッチングレートを有する請求項1または2記載の薄膜
磁気ヘッド。 (5)絶縁基板上の所定の領域上に下部磁性層、磁気ギ
ャップ層、下部絶縁層、下部導体層、中間絶縁層、上部
導体層および上部絶縁層を順次形成する工程と、磁気ギ
ャップ層の上の一部を除いて上部絶縁層との交点から凹
形状で厚くなるエッチングマスクを形成する工程と、磁
気ギャップ層の上の上部絶縁層、中間絶縁層および下部
絶縁層を順次エッチングする工程と、エッチングマスク
を除去した後保護層を形成する工程を備えた薄膜磁気ヘ
ッドの製造方法。
[Claims] (1) A thin film consisting of a coil layer consisting of a lower magnetic layer, a magnetic gap layer, an upper magnetic layer, a lower insulating layer, a lower conductor layer, an intermediate insulating layer, an upper conductor layer, and an upper insulating layer. A thin film magnetic head in which an angle formed by an upper magnetic layer and a magnetic gap layer includes a first angle near the intersection thereof and a second angle larger than the first angle at a position away from the intersection. (2) The second angle is composed of an upper insulating layer and a magnetic gap layer, and the first angle is composed of an uppermost insulating layer and a magnetic gap layer formed covering at least an edge of the upper insulating layer. 2. A thin film magnetic head according to claim 1. (2) The thin film magnetic head according to claim 1 or 2, wherein the magnetic gap layer is made of an inorganic insulating material, and the uppermost insulating layer is a resin having a lower viscosity than the resins constituting the other insulating layers. (4) The magnetic gap layer, the upper insulating layer, the intermediate insulating layer, and the lower insulating layer are formed of an inorganic insulating material, and the inorganic insulating material constituting the magnetic gap layer covers the upper insulating layer, the intermediate insulating layer, and the lower insulating layer. 3. The thin film magnetic head according to claim 1, wherein the thin film magnetic head has an etching rate different from that of the constituent inorganic insulating material. (5) Step of sequentially forming a lower magnetic layer, a magnetic gap layer, a lower insulating layer, a lower conductor layer, an intermediate insulating layer, an upper conductor layer, and an upper insulating layer on a predetermined region on an insulating substrate; A process of forming an etching mask that becomes thicker in a concave shape from the intersection with the upper insulating layer except for the upper part, and a process of sequentially etching the upper insulating layer, the intermediate insulating layer, and the lower insulating layer on the magnetic gap layer. , a method for manufacturing a thin film magnetic head comprising the step of forming a protective layer after removing an etching mask.
JP2200523A 1990-07-26 1990-07-26 Thin film magnetic head Expired - Lifetime JP3041902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2200523A JP3041902B2 (en) 1990-07-26 1990-07-26 Thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2200523A JP3041902B2 (en) 1990-07-26 1990-07-26 Thin film magnetic head

Publications (2)

Publication Number Publication Date
JPH0489608A true JPH0489608A (en) 1992-03-23
JP3041902B2 JP3041902B2 (en) 2000-05-15

Family

ID=16425730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2200523A Expired - Lifetime JP3041902B2 (en) 1990-07-26 1990-07-26 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JP3041902B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01251410A (en) * 1988-03-31 1989-10-06 Toshiba Corp Thin film magnetic head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01251410A (en) * 1988-03-31 1989-10-06 Toshiba Corp Thin film magnetic head

Also Published As

Publication number Publication date
JP3041902B2 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
US4195323A (en) Thin film magnetic recording heads
US4841624A (en) Method of producing a thin film magnetic head
US4321641A (en) Thin film magnetic recording heads
US4489484A (en) Method of making thin film magnetic recording heads
US7086138B2 (en) Method of forming a feature having a high aspect ratio
JPH0223924B2 (en)
JPS60179919A (en) Magetic recorder/reproducer and manufacture thereof
JP3394266B2 (en) Method of manufacturing magnetic write / read head
JPH0489608A (en) Thin film magnetic head and manufacture of said head
US5691866A (en) Magnetic head and method of manufacturing the same
JP3366582B2 (en) Thin film magnetic head and method of manufacturing the same
JP2740698B2 (en) Thin film magnetic head
JP2614535B2 (en) Thin film magnetic head and method of manufacturing the same
JP2891817B2 (en) Magnetic head manufacturing method
JP2625526B2 (en) Substrate for thin film magnetic head and method of manufacturing the same
JPS6168717A (en) Manufacture of thin-film magnetic head
JPH0320807B2 (en)
JPH0676243A (en) Thin film magnetic head
JPS62109212A (en) Thin film magnetic head and its manufacture
JPS60258715A (en) Production of thin film magnetic head
JPH05347008A (en) Magnetic head for perpendicular recording and reproducing and its production
JPS63276704A (en) Thin film magnetic head
JPS6168715A (en) Manufacture of thin-film magnetic head
JPS63257910A (en) Thin film magnetic head
JPH06131630A (en) Thin film magnetic head and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080310

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 11