JPH048912A - Non-contact bearing using superconductor - Google Patents

Non-contact bearing using superconductor

Info

Publication number
JPH048912A
JPH048912A JP11142290A JP11142290A JPH048912A JP H048912 A JPH048912 A JP H048912A JP 11142290 A JP11142290 A JP 11142290A JP 11142290 A JP11142290 A JP 11142290A JP H048912 A JPH048912 A JP H048912A
Authority
JP
Japan
Prior art keywords
superconductor
bearing
permanent magnet
shaft
contact bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11142290A
Other languages
Japanese (ja)
Inventor
Seiji Yasuhara
安原 征治
Yukio Mikami
行雄 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP11142290A priority Critical patent/JPH048912A/en
Publication of JPH048912A publication Critical patent/JPH048912A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To control movement of a non-contact bearing in the shaft direction by constituting a part or the whole of a shaft and a bearing by way of assembling a superconductor and a permanent magnet and making polarities of the magnetized superconductor and the permanent magnet in the same direction. CONSTITUTION:A bearing 1 of an oxide superconductor is magnetized so that it is to be in the same direction as the polarity of a permanent magnet arranged on a rotating shaft 2. Consequently, the rotating shaft 2 comes to a standstill in the center of the bearing 1, and it is possible to support it non-contactly and simplify a structure without a device to prevent movement in the axial direction.

Description

【発明の詳細な説明】 [発明の目的] CM業上の利用分野) 本発明は超電導体を用いた非接触軸受に関する。[Detailed description of the invention] [Purpose of the invention] Field of use in commercial industry) The present invention relates to a non-contact bearing using a superconductor.

(従来の技術) 従来、超電導体のマイスナー効果を利用した非接触軸受
についてはすでにいくつかの報告がなされている。この
従来の非接触軸受では、軸または軸受部に永久磁石と超
電導体のいずれかを用いて、永久磁石と超電導体を対面
させて配置するものである。このような配置では、軸を
浮揚させる力として、主に超電導体に対するマイスナー
効果が利用されている。
(Prior Art) Several reports have been made regarding non-contact bearings that utilize the Meissner effect of superconductors. In this conventional non-contact bearing, either a permanent magnet or a superconductor is used in the shaft or the bearing part, and the permanent magnet and the superconductor are arranged facing each other. In such an arrangement, the Meissner effect on the superconductor is mainly utilized as the force for levitating the shaft.

第3図は従来のマイスナー効果を利用した非接触軸受装
置の説明図である。回転軸11は超電導体で、軸受I2
は永久磁石で構成されている。回転軸11の直角方向に
対しては非接触軸受としての作用はあるが、軸方向の力
に対してはほとんど作用しないため、軸端部に超電導体
15および14を別に配置する必要がある。
FIG. 3 is an explanatory diagram of a conventional non-contact bearing device using the Meissner effect. The rotating shaft 11 is a superconductor, and the bearing I2
is made up of permanent magnets. Although it acts as a non-contact bearing in the direction perpendicular to the rotating shaft 11, it hardly acts against forces in the axial direction, so it is necessary to separately arrange the superconductors 15 and 14 at the end of the shaft.

第4図は回転軸が縦の、従来のマイスナー効果を利用し
た非接触軸受装置の例の説明図である。
FIG. 4 is an explanatory diagram of an example of a conventional non-contact bearing device using the Meissner effect, in which the rotation axis is vertical.

回転軸21に永久磁石22.23が取り付けられ、超電
導体の軸受24,25、および軸方向の力に対抗する超
電導体26が配置されている。
A permanent magnet 22, 23 is attached to the rotating shaft 21, superconductor bearings 24, 25 and a superconductor 26 are arranged to counteract the axial force.

(発明が解決しようとする問題点) 上記のマイスナー効果を利用した非接触軸受では、軸は
浮上して回転はするが、軸方向の力に対してはマイスナ
ー効果が働かない。このため、軸方向への移動により永
久磁石と超電導体との位置が相対する位置からずれて、
軸受としての作用を損なうことがあった。そのため第3
図および第4図に示すように、軸端部にも永久磁石と超
電導体の組合せを配置して、マイスナー効果を軸方向に
も働かせて軸の移動を防止する必要があった。本発明は
、軸方向への移動をも制御し得る非接触軸受を提供する
ことを目的とする。
(Problems to be Solved by the Invention) In the non-contact bearing that utilizes the Meissner effect described above, the shaft floats and rotates, but the Meissner effect does not work against forces in the axial direction. Therefore, due to the movement in the axial direction, the positions of the permanent magnet and the superconductor shift from their opposing positions,
The function as a bearing may be impaired. Therefore, the third
As shown in FIG. 4 and FIG. 4, it was necessary to arrange a combination of a permanent magnet and a superconductor at the end of the shaft to apply the Meissner effect in the axial direction as well to prevent the shaft from moving. An object of the present invention is to provide a non-contact bearing that can also control movement in the axial direction.

[発明の構成] (問題点を解決するための手段) 上記問題点を解決するために、超電導体を用いる非接触
軸受において、超電導体のマイスナー効果とピン止め効
果の大きい超電導材料の磁石化する性質を利用し、軸お
よび軸受部を磁石化した超電導体と永久磁石の組み合わ
せで構成し、両者を対面する状態に配置し、磁石化した
超電導体の極性と永久磁石の極性を同一方向に揃えた構
成とすることにより非接触軸受を実現する。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, in a non-contact bearing using a superconductor, a superconducting material having a large Meissner effect and a large pinning effect of the superconductor is magnetized. Taking advantage of this property, the shaft and bearing part are composed of a combination of a magnetized superconductor and a permanent magnet, and the two are placed facing each other, so that the polarity of the magnetized superconductor and the polarity of the permanent magnet are aligned in the same direction. A non-contact bearing can be achieved by adopting a similar configuration.

(作用) 本発明の非接触軸受装置の作動について第5図に基づい
て説明する。軸受に相当する円筒体31は超電導体で形
成されている。ここで用いられる超電導材料としては臨
界電流密度が大きく、ピン止め効果の大きいものが望ま
しい。このような超電導材料で作られた円筒体を磁石化
するためには、外部から磁場を印加する必要がある。外
部磁場の印加の方法としては、円筒体を冷却して超電導
状態にし、超電導体内部に侵入するほどの強い外部磁場
を印加した後に外部磁場を取り除くことにより磁場をと
ラップして磁石化する方法と、常電導状態で外部磁場を
印加しながら冷却することにより超電導状態とした後に
外部磁場を取り除いて超電導体内に磁場をトラップさせ
、磁石化する方法などがある。第5図では前者の磁石化
方法を用いた場合を示す。
(Operation) The operation of the non-contact bearing device of the present invention will be explained based on FIG. 5. A cylindrical body 31 corresponding to a bearing is made of a superconductor. It is desirable that the superconducting material used here has a large critical current density and a large pinning effect. In order to magnetize a cylinder made of such a superconducting material, it is necessary to apply a magnetic field from the outside. The method of applying an external magnetic field is to cool the cylinder to a superconducting state, apply an external magnetic field strong enough to penetrate inside the superconductor, and then remove the external magnetic field to wrap the magnetic field and turn it into a magnet. Another method is to turn a superconductor into a superconductor state by cooling it while applying an external magnetic field in a normal conductor state, and then removing the external magnetic field to trap the magnetic field within the superconductor and turning it into a magnet. FIG. 5 shows the case where the former magnetization method is used.

第5図(a)に示すように、冷媒34中で超電導状態に
ある円筒体31にコイル32により超電導体内部に侵入
するほどの強い外部磁場を円筒体31の軸方向に加える
。第5図(b)に示すように、外部磁場を取り除くと、
超電導円筒体内部に入り込んだ磁場は超電導体の強いピ
ン止め効果によりトラップされ、超電導円筒体が磁石化
する。
As shown in FIG. 5(a), a coil 32 applies an external magnetic field strong enough to enter the inside of the superconductor to the cylinder 31 which is in a superconducting state in a coolant 34 in the axial direction of the cylinder 31. As shown in Figure 5(b), when the external magnetic field is removed,
The magnetic field that enters the superconducting cylinder is trapped by the strong pinning effect of the superconductor, and the superconducting cylinder becomes a magnet.

第5図(C)に示すように、この磁石化した超電導円筒
体31内に永久磁石35を入れると超電導円筒体31の
中心部に浮上し、静止する。
As shown in FIG. 5(C), when a permanent magnet 35 is inserted into the magnetized superconducting cylinder 31, it floats to the center of the superconducting cylinder 31 and remains stationary.

超電導円筒体31が磁石化しているため、内部の永久磁
石35とのN−8極との吸引反発作用により、円筒体3
1内の最も磁界の強い部分である中心位置にバランスを
保ち静止する。この様な状態の下では、永久磁石35を
軸方向に動かしても中心に戻る性質がある。これは、軸
に直角な方向はマイスナー効果により、また軸方向には
永久磁石35と磁石化した超電導体からなる円筒体31
のN−8極の吸引、反発作用によると考えられる。
Since the superconducting cylindrical body 31 is magnetized, the cylindrical body 3
It maintains its balance and stands still at the center position, where the magnetic field is the strongest. Under such conditions, even if the permanent magnet 35 is moved in the axial direction, it has the property of returning to the center. This is caused by the Meissner effect in the direction perpendicular to the axis, and by the cylindrical body 31 made of a permanent magnet 35 and a magnetized superconductor in the axial direction.
This is thought to be due to the attraction and repulsion of the N-8 pole.

本発明はこのように磁石化された超電導体の特殊な性質
を利用するものである。以上の説明では、軸受に相当す
るものは超電導体で作られた円筒体としたが、これは多
角形の筒体でも良い。また、逆に軸受を永久磁石で構成
し、円筒体内部に入る、軸に相当するものを磁石化した
超電導体としたものとしても良い。
The present invention utilizes the special properties of such magnetized superconductors. In the above description, the bearing corresponds to a cylindrical body made of a superconductor, but it may also be a polygonal cylindrical body. Alternatively, the bearing may be made of a permanent magnet, and the part corresponding to the shaft, which is placed inside the cylindrical body, may be made of a magnetized superconductor.

(実施例) 以下、本発明の実施例について説明する。第1図は本発
明の実施例の軸受装置を示す説明図である。軸受1とし
て円筒形の酸化物超電導体を、回転軸2には永久磁石を
配置する。ここで用いられる超電導材料としては臨界電
流密度が大きく、ピン止め効果の大きいものが望ましく
、たとえば、第6図に製造方法を示したようなビスマス
系超電導材料などが用いられる。もちろん、このほかの
超電導材料でも要求される性能を満たせば用いることが
できる。
(Example) Examples of the present invention will be described below. FIG. 1 is an explanatory diagram showing a bearing device according to an embodiment of the present invention. A cylindrical oxide superconductor is placed as the bearing 1, and a permanent magnet is placed on the rotating shaft 2. It is desirable that the superconducting material used here has a large critical current density and a large pinning effect, such as a bismuth-based superconducting material whose manufacturing method is shown in FIG. 6. Of course, other superconducting materials can also be used if they meet the required performance.

超電導体の軸受1を回転軸2に配置された永久磁石の極
性と同一方向になるように磁石化すると、回転軸2は軸
受1の中心に静止し、非接触軸受として作動する。 第
2図は縦型の回転軸の場合の、本発明の他の実施例を示
す図である。
When the superconductor bearing 1 is magnetized in the same direction as the polarity of the permanent magnet placed on the rotating shaft 2, the rotating shaft 2 remains stationary at the center of the bearing 1 and operates as a non-contact bearing. FIG. 2 is a diagram showing another embodiment of the present invention in the case of a vertical rotating shaft.

また、軸受部に永久磁石を、軸部に磁石化した超電導体
を用いて同様に非接触軸受を構成させることも可能であ
る。
It is also possible to similarly construct a non-contact bearing by using a permanent magnet in the bearing part and a magnetized superconductor in the shaft part.

[発明の効果コ 本発明の非接触軸受装置では、軸を空間の特定の位置に
安定して保持できるので、マイスナー効果利用の従来の
非接触軸受は装置のように軸方向の移動を防ぐ装置を備
える必要がなくなるため、構造が簡単となるなどの効果
がある。
[Effects of the invention] Since the non-contact bearing device of the present invention can stably hold the shaft at a specific position in space, the conventional non-contact bearing device that uses the Meissner effect is not a device that prevents movement in the axial direction. Since there is no need to provide a , the structure becomes simpler.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の実施例の装置の説明図、第3
図及び第4図は従来の非接触軸受装置の説明図、第5図
は本発明の装置の作動説明図、第6図は本発明で使用す
る超電導材料の一例の製造方法をしめす図である。 1.6.12・・・軸受、2.5.11・・・回転軸、
3.7.33・・・断熱容器、31・・・円筒体、32
・・・コイル、4,8,16,27,34・・・冷媒、
22゜23.35・・・永久磁石。 第3図 第4図 第1図 第2図 第5図
FIGS. 1 and 2 are explanatory diagrams of the apparatus according to the embodiment of the present invention, and FIG.
4 and 4 are explanatory diagrams of a conventional non-contact bearing device, FIG. 5 is an explanatory diagram of the operation of the device of the present invention, and FIG. 6 is a diagram illustrating a manufacturing method of an example of the superconducting material used in the present invention. . 1.6.12...bearing, 2.5.11...rotating shaft,
3.7.33...Insulated container, 31...Cylindrical body, 32
... Coil, 4, 8, 16, 27, 34 ... Refrigerant,
22°23.35...Permanent magnet. Figure 3 Figure 4 Figure 1 Figure 2 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)軸および軸受部の一部ないし全部が超電導体と永
久磁石の組み合わせで構成され、前記軸と前記軸受部が
対面する状態に配置して用いる非接触軸受において、超
電導体を磁石化し、磁石化した超電導体の極性と永久磁
石の極性を同一方向に揃えた構成とすることを特徴とす
る非接触軸受。
(1) In a non-contact bearing in which part or all of the shaft and the bearing portion are composed of a combination of a superconductor and a permanent magnet, and the shaft and the bearing portion are arranged to face each other, the superconductor is magnetized, A non-contact bearing characterized in that the polarity of a magnetized superconductor and the polarity of a permanent magnet are aligned in the same direction.
JP11142290A 1990-04-26 1990-04-26 Non-contact bearing using superconductor Pending JPH048912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11142290A JPH048912A (en) 1990-04-26 1990-04-26 Non-contact bearing using superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11142290A JPH048912A (en) 1990-04-26 1990-04-26 Non-contact bearing using superconductor

Publications (1)

Publication Number Publication Date
JPH048912A true JPH048912A (en) 1992-01-13

Family

ID=14560778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11142290A Pending JPH048912A (en) 1990-04-26 1990-04-26 Non-contact bearing using superconductor

Country Status (1)

Country Link
JP (1) JPH048912A (en)

Similar Documents

Publication Publication Date Title
US5330967A (en) Superconducting bearing device stabilized by trapped flux
JP3961032B2 (en) Magnetic bearing device for rotor shaft
WO1995020264A1 (en) Magnetic levitation device
US6365997B1 (en) Magnetic bearing and its use
US5763971A (en) Superconducting bearing device
JPH05180225A (en) Superconductive bearing device
JP3665878B2 (en) Bearing device and starting method thereof
JPH048912A (en) Non-contact bearing using superconductor
JP2905508B2 (en) Magnetic levitation device
JPH048913A (en) Non-contact bearing using superconductor
US5633548A (en) Method for setting up a superconducting bearing device
Fukuyama et al. An Improvement of the Static and Dynamic Characteristics of Superconducting Magnetic Bearings Using MPMG-YBaCuO
JP3177847B2 (en) Superconducting bearing device
JPH0681845A (en) Supercondctive bearing device
JP3151492B2 (en) Slide device
KR100293316B1 (en) High-TCSuperconducting Bearings for Strong Levitational Force
JP3616856B2 (en) Bearing device
JP3192207B2 (en) Magnetic bearing
JPH06124833A (en) Magnetizing device for magnet
JPH05172145A (en) Super-conductive magnetic bearing device
JP2605200B2 (en) Superconducting bearing device
JP3232463B2 (en) Superconducting bearing device
JP3114175B2 (en) Shaft and bearing
JPH01255716A (en) Superconductive bearing
JPH09170620A (en) Superconducting magnetic bearing device