JPH0487695A - Organic waste water treating device - Google Patents

Organic waste water treating device

Info

Publication number
JPH0487695A
JPH0487695A JP2200941A JP20094190A JPH0487695A JP H0487695 A JPH0487695 A JP H0487695A JP 2200941 A JP2200941 A JP 2200941A JP 20094190 A JP20094190 A JP 20094190A JP H0487695 A JPH0487695 A JP H0487695A
Authority
JP
Japan
Prior art keywords
membrane
liquid
air
water
membrane module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2200941A
Other languages
Japanese (ja)
Other versions
JP3111463B2 (en
Inventor
Shigeki Sawada
沢田 繁樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP20094190A priority Critical patent/JP3111463B2/en
Publication of JPH0487695A publication Critical patent/JPH0487695A/en
Application granted granted Critical
Publication of JP3111463B2 publication Critical patent/JP3111463B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To enhance the oxygen dissolution efficiency of an aerobic bioreaction chamber by using a spiral type membrane module wound with a separating membrane via a spacer of a corrugated board shape on the outer periphery of a water collecting pipe as the membrane module of a membrane separator. CONSTITUTION:Raw water is introduced from a piping 11 into the aerobic biochemical reaction chamber 1 and is subjected to a aerobic biochemical reaction treatment. The treated liquid is introduced through an introducing piping 12 into the membrane separator 2 and air is supplied to this liquid from a supplying piping 15 to form the air-liquid mixture which is introduced into the membrane separator 2. While the permeated water of the membrane separator 2 is taken out as treated water, the concd. water is returned to the aerobic biochemical reaction chamber 1. The air in the bubble-mixed liquid flowing into the membrane separator 2 dissolves sufficiently into the liquid during flows together with the liquid in the membrane module 2B. The liquid into which the air is sufficiently dissolved is returned to the aerobic biochemical reaction chamber 1 after the passage through the membrane module 2B and is thereby extremely efficiently biologically treated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は有機性廃水処理装置に係り、特に、好気性生物
反応処理液を膜モジュールを用いて固液分離することに
より連続処理を行なう有機性廃水処理装置において、膜
分離におけるエネルギーを増大させることなく、膜透過
速度(フラックス)を高く維持し、かつ好気性生物反応
槽の酸素溶解効率を向上せしめる有機性廃水処理装置に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an organic wastewater treatment device, and in particular, an organic wastewater treatment device that performs continuous treatment by solid-liquid separation of an aerobic biological reaction treated liquid using a membrane module. The present invention relates to an organic wastewater treatment device that maintains a high membrane permeation rate (flux) without increasing energy in membrane separation and improves the oxygen dissolution efficiency of an aerobic biological reaction tank.

[従来の技術] 従来、有機性廃水の連続的好気性生物反応処理法として
、好気性生物反応処理液を膜そジニールにより固液分離
する方法が知られている。この方法は、バルキング等の
生物相の変化に影響されることなく、濁質を含まない良
好な水質の処理水が得られることから、工業的に有利な
方法である。
[Prior Art] Conventionally, as a method for continuous aerobic biological reaction treatment of organic wastewater, a method of solid-liquid separation of an aerobic biological reaction treated liquid using a membrane separator is known. This method is industrially advantageous because it is not affected by changes in the biota such as bulking and can provide treated water of good quality that does not contain suspended solids.

この方法は、例えば、第5図<a>に示す如く、原水で
ある有機性廃水を配管11より好気性生物反応槽1に導
入し、好気性生物反応処理液を配管12より膜分離装置
2に導入して膜分iIA埋し、透過水を処理水として配
管13より排出する一方、濃縮水を配管14より生物反
応槽1に循環する方法である。この方法において、膜分
離装置2の膜モジュール2Aとしては、SSを多く含む
生物懸濁液の好気性生物反応処理水を分離処理するため
に、SSによる目詰りの起こり難い、原水流路の大きい
膜モジュール、例えば平膜(プレート・アンド・フレー
ム)型膜モジュール、チューブラ−型膜モジュール等が
用いられる。因みに、集水管の外周にネット状スペーサ
を介して分!18を巻回してなる従来のスパイラル型膜
モジュールでは、目詰りのため、使用不可である。
In this method, for example, as shown in FIG. In this method, the permeated water is introduced into the membrane and buried in the membrane iIA, and the permeated water is discharged from the pipe 13 as treated water, while the concentrated water is circulated through the pipe 14 to the biological reaction tank 1. In this method, the membrane module 2A of the membrane separation device 2 has a large raw water flow path that is less likely to be clogged with SS in order to separate and process the aerobic biological reaction treated water of biological suspension containing a large amount of SS. Membrane modules such as plate-and-frame membrane modules and tubular membrane modules are used. By the way, please use a net-like spacer on the outer periphery of the water collection pipe. A conventional spiral membrane module formed by winding 18 membranes cannot be used due to clogging.

ところで、平膜型膜モジュールのように原木流路の大き
い膜モジュールを備える膜分離装置において、高いフラ
ックスを維持するためには、分離膜面上の原水流速を高
める必要がある。原水流速を高めることは、分離膜面の
ゲル層の生成抑制のためにも有効である。例えば、平服
型膜モジュールやチューブラ−型膜モジュールでは、一
般に、2〜3 m / s程度の高流速を必要とする。
By the way, in a membrane separation apparatus equipped with a membrane module having a large log flow path, such as a flat membrane type membrane module, in order to maintain a high flux, it is necessary to increase the flow rate of raw water on the separation membrane surface. Increasing the flow rate of raw water is also effective for suppressing the formation of a gel layer on the surface of the separation membrane. For example, a plain coat type membrane module or a tubular type membrane module generally requires a high flow rate of about 2 to 3 m/s.

このため、膜分離装置を用いる方法では、好気性生物反
応処理液を車なる沈降分離槽で固液分離する場合に比べ
て、多大なエネルギーを必要とするという不具合があり
た。
For this reason, the method using a membrane separation device has the disadvantage that it requires a large amount of energy compared to the case where the aerobic biological reaction treated liquid is solid-liquid separated in a sedimentation tank such as a car.

従来、このような方法において、エネルギーの有効利用
、回収を目的として、第5図(b)に示す如く、膜分離
装置2への好気性生物反応処理液の導入配管12に、空
気供給管15を設ける方法、或いは、第5図(c)に示
す如く、膜分離装置2の濃縮水を好気性生物反応槽1へ
循環する配管14に、減圧発生吸入装置(エゼクタ−)
16を取り付ける方法が提案されている。
Conventionally, in such a method, for the purpose of effective use and recovery of energy, an air supply pipe 15 is connected to the introduction pipe 12 for the aerobic biological reaction treated liquid to the membrane separation device 2, as shown in FIG. 5(b). Alternatively, as shown in FIG. 5(c), a reduced pressure generating suction device (ejector) is installed in the piping 14 that circulates the concentrated water of the membrane separation device 2 to the aerobic biological reaction tank 1.
16 has been proposed.

[発明が解決しようとする課題] 第5図(b)に示す方法では、空気供給管15より比較
的多i(ガス:液容積比=5〜30)の空気を供給する
ことにより、分1liI膜2A面のゲル層の生成を抑制
する効果は多少期待てきるが、平服型やチューブ型の膜
モジュールの場合、供給された空気の液中への溶解効率
が悪い。また、高流速の原水中に多量のガスを供給する
ために、膜モジュールや配管が振動するという欠点かあ
った。
[Problems to be Solved by the Invention] In the method shown in FIG. Although the effect of suppressing the formation of a gel layer on the surface of the membrane 2A can be expected to some extent, in the case of a plain clothes type or tube type membrane module, the dissolution efficiency of the supplied air into the liquid is poor. Another drawback was that the membrane module and piping vibrated because a large amount of gas was supplied into the raw water at a high flow rate.

一方、第5図(c)に示す方法では、エセクター16よ
り供給された空気を好気性生物反応槽で有効利用するこ
とかできる反面、空気泡が膜分離装置2に流入せず、分
11膜2A面へのゲル層の生成を抑制することはできな
いという問題がある。
On the other hand, in the method shown in FIG. 5(c), although the air supplied from the esector 16 can be effectively used in the aerobic biological reaction tank, air bubbles do not flow into the membrane separation device 2, and the There is a problem in that the formation of a gel layer on the 2A surface cannot be suppressed.

本発明は上記従来の問題点を解決し、膜分離におけるエ
ネルギーを増大させることなく、フラックスを高く維持
し、かつ、好気性生物反応槽の酸素溶解効率を向上せし
める有機性廃水処理装置を提供することを目的とする。
The present invention solves the above conventional problems and provides an organic wastewater treatment device that maintains a high flux and improves the oxygen dissolution efficiency of an aerobic biological reactor without increasing energy in membrane separation. The purpose is to

[課題を解決するための手段] 本発明の有機性廃水処理装置は、有機性廃水を好気性生
物反応処理する好気性生物反応槽と、該好気性生物反応
槽の処理液を膜分lII処理する膜分離装置とを備え、
該膜分離装置の濃縮水を好気性生物反応槽に戻すように
した有機性廃水処理装置において、該膜分離装置に導入
される好気性生物反応槽の処理液に空気を供給する空気
供給手段を設け、かつ、前記膜分離装置の膜モジュール
として、集水管の外周に波板形のスペーサを介して分1
m膜を巻回してなるスパイラル型膜モジュールな用いた
ことを特徴とするものである。
[Means for Solving the Problems] The organic wastewater treatment device of the present invention includes an aerobic biological reaction tank that performs aerobic biological reaction treatment on organic wastewater, and a membrane fraction III treatment of the treated liquid in the aerobic biological reaction tank. Equipped with a membrane separation device that
In an organic wastewater treatment device in which concentrated water of the membrane separation device is returned to the aerobic biological reaction tank, an air supply means for supplying air to the treated liquid of the aerobic biological reaction tank introduced into the membrane separation device is provided. In addition, as a membrane module of the membrane separator, a corrugated plate-shaped spacer is provided on the outer periphery of the water collection pipe.
The present invention is characterized by the use of a spiral membrane module formed by winding m membranes.

[作用コ 本発明の有機性廃水処理装置においては、膜分離装置へ
導入される好気性生物反応処理液に空気を供給し、好気
性生物反応処理液と空気との気液混合液を膜分離装置の
膜モジュールに導入する。
[Operation] In the organic wastewater treatment device of the present invention, air is supplied to the aerobic biological reaction treated liquid introduced into the membrane separation device, and the gas-liquid mixture of the aerobic biological reaction treated liquid and air is membrane separated. Introduced into the membrane module of the device.

この膜モジュールは、集水管の外周に波板形のスペーサ
を介して分離膜を巻回してなるスパイラル型膜モジュー
ルであり、気液混合液がこのスパイラル型膜モジュール
内を通過する過程において、該液に含有される空気が効
率良く液中に熔解する。水中に溶解した空気は、透過水
側に逃げることが殆どなく、好気性生物反応に有効利用
される。
This membrane module is a spiral type membrane module in which a separation membrane is wound around the outer periphery of a water collection pipe through a corrugated spacer. Air contained in the liquid is efficiently dissolved into the liquid. Air dissolved in water hardly escapes to the permeate side and is effectively used for aerobic biological reactions.

即ち、生物処理液を膜分離するモジュールとして波板形
スペーサを有するスパイラル型膜モジュール(コルゲー
トタイプのスパイラル型膜モジュール)を用いると、該
生物処理液中に供給された空気(気体)が効率良く液中
に溶は込む。そして、好気性生物反応処理のための空気
の溶解が、膜分離による固液分m処理と同時に行なわれ
るので、好気性生物反応のための空気溶解に要するエネ
ルギーが大幅に低減される。
That is, if a spiral membrane module (corrugated type spiral membrane module) having a corrugated spacer is used as a module for membrane-separating biological treatment liquid, the air (gas) supplied into the biological treatment liquid can be efficiently Dissolve in the liquid. Since the dissolution of air for the aerobic biological reaction treatment is performed simultaneously with the solid-liquid fraction m treatment by membrane separation, the energy required for dissolving the air for the aerobic biological reaction is significantly reduced.

しかも、本発明で用いられるコルゲートタイプのスパイ
ラル型膜モジュールでは、原水が通過する際に強い乱流
が起こり、SSによる目詰りのほか、膜面へのゲル層の
生成も抑制されるので、低流速域でもフラックスが多い
のである。加えて、本発明においては、気液混合液中の
空気により、このゲル層生成抑制作用がより一層強めら
れ、フラックスがきわめて高く維持される。
Moreover, in the corrugated spiral membrane module used in the present invention, strong turbulence occurs when the raw water passes through, which prevents clogging caused by SS and also suppresses the formation of a gel layer on the membrane surface. There is a lot of flux even in the flow velocity range. In addition, in the present invention, the air in the gas-liquid mixture further strengthens this gel layer formation suppressing effect and maintains the flux at an extremely high level.

なお、コルゲートタイプのスパイラル型膜モジュールは
特願昭62−205809号にて公知である。
Note that a corrugated type spiral membrane module is known from Japanese Patent Application No. 62-205809.

[実施例] 以下に図面を参照して本発明の詳細な説明する。[Example] The present invention will be described in detail below with reference to the drawings.

第1図は本発明の実施例に係る有機性廃水処理装置の系
統図、第7図はコルゲートタイプの膜モジュールの組立
斜視図である。本実施例装置は、膜分離装置2の膜モジ
ュールとして、第7図の如く、集水管21の外周に波板
形のスペーサ22を介して分W1膜23を巻回してなる
スパイラル型膜モジュールを用いている。S1図の装置
のその他の流路構成自体は第5図(b)の従来例と同様
であり、同一符号は同一部分を示している。
FIG. 1 is a system diagram of an organic wastewater treatment apparatus according to an embodiment of the present invention, and FIG. 7 is an assembled perspective view of a corrugated type membrane module. As shown in FIG. 7, the device of this embodiment uses a spiral type membrane module in which a W1 membrane 23 is wound around the outer periphery of a water collection pipe 21 via a corrugated spacer 22 as a membrane module of the membrane separation device 2. I am using it. The rest of the flow path configuration itself of the device shown in FIG. S1 is the same as that of the conventional example shown in FIG. 5(b), and the same reference numerals indicate the same parts.

第1図の装置では、第5図(b)の装置と同様に、原水
は配管11より好気性生物反応槽1に導入され好気性生
物反応処理される。処理液は導入用配管12を経て膜分
離装置2に導入されるが、その間に、供給用配管15よ
り空気が供給され、気液混合液となって膜分離装置2に
導入される。
In the apparatus shown in FIG. 1, raw water is introduced into the aerobic biological reaction tank 1 through the pipe 11 and subjected to an aerobic biological reaction treatment, similar to the apparatus shown in FIG. 5(b). The treatment liquid is introduced into the membrane separator 2 via the introduction pipe 12, and during this time, air is supplied from the supply pipe 15, and the liquid is introduced into the membrane separator 2 as a gas-liquid mixture.

膜分離装置2の透過水は処理水として取り出され、一方
、濃縮水は好気性生物反応alに戻される。
The permeated water of the membrane separator 2 is taken out as treated water, while the concentrated water is returned to the aerobic biological reaction al.

本実施例装置で用いられているコルゲートタイプの膜モ
ジュール2Bでは、第7図に示した通り、分M膜23は
同長側辺部が封しられた長い袋状のものであり、袋状の
分11g23の内部にネット状のスペーサ24か装填さ
れている。この膜モジニール2Bを組み立てる場合、袋
状の分離膜23の一方の短辺部が集水管21に係着され
る。
In the corrugated type membrane module 2B used in the device of this embodiment, as shown in FIG. A net-like spacer 24 is loaded inside the portion 11g23. When assembling this membrane Modineal 2B, one short side of the bag-shaped separation membrane 23 is attached to the water collection pipe 21.

(袋の内部が集水管21の内部に連通ずるように、集水
管21の管周面に開口を設けである6)次いで、この袋
状の分MIi23を集水管21の外周に巻回し、この際
、分llI膜23の同志の間に波板状のスペーサ22を
介在させる。
(An opening is provided on the circumferential surface of the water collection pipe 21 so that the inside of the bag communicates with the inside of the water collection pipe 216) Next, this bag-shaped portion MIi 23 is wound around the outer periphery of the water collection pipe 21. At this time, a corrugated spacer 22 is interposed between the 11I films 23.

このようにして組み立てられた膜モジュール2Bにおい
ては、原水は第7図の矢印りの如く巻回体の一方の端面
の部分からスペーサ22に沿って分離膜23同志の間に
人り込み、矢印Mの如く巻回体の他方の端面から流出す
る。そして、原水がスペーサ22に沿って流れている間
に液が分離膜23を透過し、袋状の分1膜23の内部に
入る。袋状の分m膜23の内部において、透過水は、ネ
ット状スペーサ24に沿って集水管21に向って流れ、
遂には該集水管21内に流入し、透過水として膜モジュ
ール2Bから取り出される。
In the membrane module 2B assembled in this manner, the raw water flows from one end surface of the wound body along the spacer 22 to between the separation membranes 23 as shown by the arrow in FIG. It flows out from the other end face of the wound body as shown in M. While the raw water is flowing along the spacer 22, the liquid passes through the separation membrane 23 and enters the bag-shaped separation membrane 23. Inside the bag-shaped membrane 23, permeated water flows toward the water collection pipe 21 along the net-shaped spacer 24,
Finally, it flows into the water collecting pipe 21 and is taken out from the membrane module 2B as permeated water.

かかるコルゲートタイプの膜モジュール2Bにおいては
、気液混合液が波板状スペーサ22に沿う流路に流れ込
む際に、あるいは、このスペーサ22に沿う狭い流路を
流れる間に、該気液混合液中の気泡が細かく剪断され、
微小気泡化し、効率良く液中に溶解する。
In such a corrugated membrane module 2B, when the gas-liquid mixture flows into the channel along the corrugated spacer 22 or while flowing through the narrow channel along the spacer 22, the gas-liquid mixture is The air bubbles are finely sheared,
Forms microbubbles and efficiently dissolves in liquid.

この結果、膜分動装置2内に流れ込んだ気泡混合液中の
空気は、膜モジュール2Bを液と共に流れる間に液中に
十分に溶は込む。空気が十分に溶は込んだ液は、膜モジ
ュール2Bを通過した後、好気性生物反応処理装置に戻
され、ぎわめて効率良く生物処理される。
As a result, the air in the bubble mixture that has flowed into the membrane dividing device 2 is sufficiently dissolved into the liquid while flowing through the membrane module 2B together with the liquid. After the liquid sufficiently dissolved in air passes through the membrane module 2B, it is returned to the aerobic biological reaction treatment device and subjected to extremely efficient biological treatment.

第2図及び第3図は本発明の有機性廃水処理装置の別の
実施例を示す系統図である。第2図及び第3図において
、濃縮水配管14の途中から余剰汚泥の排出用配管17
が分岐している。その他の構成は第1図の装置と同様で
あり、第1図と同一機能を有する部材には同一符号を付
しである。
FIGS. 2 and 3 are system diagrams showing another embodiment of the organic wastewater treatment apparatus of the present invention. In FIGS. 2 and 3, a pipe 17 for discharging excess sludge from the middle of the concentrated water pipe 14
is branching out. The rest of the structure is similar to that of the apparatus shown in FIG. 1, and members having the same functions as those in FIG. 1 are given the same reference numerals.

第2図に示す有機性廃水処理装置と第3図に示す有機性
廃水処理装置とでは、好気性生物反応処理槽(曝気槽)
1への、膜分離装置2の濃縮水の循環用配管14の接続
位置が異なるのみで、その他の構成は同様である。この
ように、本発明において、循環用配管14の接続位置に
は制限はなく、好気性生物反応槽1の上層部であっても
下層部であっても良い。
In the organic wastewater treatment equipment shown in Figure 2 and the organic wastewater treatment equipment shown in Figure 3, an aerobic biological reaction treatment tank (aeration tank) is used.
The only difference is the connection position of the concentrated water circulation pipe 14 of the membrane separation device 2 to the membrane separation device 1, and the other configurations are the same. Thus, in the present invention, there is no restriction on the connection position of the circulation piping 14, and it may be in the upper part or the lower part of the aerobic biological reaction tank 1.

なお、第2図及び第3図においては、好気性生物反応M
1の処理液を膜分離装置2へ導入する導入用配管12の
ポンプPの吸込み側(上流側)にブロワ等により空気を
配管15を経て供給しているが、このようにポンプPの
入口側に空気を供給することにより、掻く低圧の押込み
圧にて空気を導入することができ、また、ポンプを通過
する過程でも空気の溶解を促進することかでき、極めて
有利である。
In addition, in FIGS. 2 and 3, aerobic biological reaction M
Air is supplied via a pipe 15 by a blower or the like to the suction side (upstream side) of the pump P of the introduction pipe 12 that introduces the treated liquid No. 1 into the membrane separation device 2. By supplying air to the pump, the air can be introduced at a low pushing pressure, and the dissolution of the air can also be promoted during the process of passing through the pump, which is extremely advantageous.

この空気供給手段はブロワによる空気圧送方式に限らず
、第4図に示す如く、空気供給部をエゼクタ−形状とし
て大気を自吸するように構成したものであっても良い。
This air supply means is not limited to the air pressure feeding method using a blower, but may be configured such that the air supply section is in the form of an ejector so as to self-suction the atmosphere, as shown in FIG.

エゼクタ一方式の場合には、空気供給管15の空気取り
入れ用開放端を好気性生物反応槽1の水位よりも高い位
置に設けて、ポンプP停止時の液の逆流を防ぐようにす
る。
In the case of a single ejector type, the air intake open end of the air supply pipe 15 is provided at a position higher than the water level of the aerobic biological reaction tank 1 to prevent backflow of liquid when the pump P is stopped.

また、第1〜3図に示す如く、ポンプPの吸込み側に空
気供給管15を接続する場合、ポンプPとしては、空気
を吸い込んでも運転可能なポンプを選ぶ必要がある。こ
のようなポンプとしては、例えば、うず巻ポンプ等を用
いることができる。
Further, as shown in FIGS. 1 to 3, when connecting the air supply pipe 15 to the suction side of the pump P, it is necessary to select a pump that can be operated even when sucking air. As such a pump, for example, a centrifugal pump or the like can be used.

本発明において、処理液中への空気供給量は、好気性生
物反応処理液の送水量の5〜10%(体積比)とするの
が望ましい。本発明に係る膜分離装置2のスパイラル型
膜モジュール2Bは、このような通常の膜モジュールよ
りも少ない空気供給量にて十分に高いフラックスを確保
することができる。なお、空気供給量が10%を超えて
もフラックスの向上にさほどの効果はなく、むしろ、空
気供給のためのエネルギーコストが向上する上に、導入
用配管12の振動等により好ましい運転状態を維持でき
なくなるなどの不具合か生じる場合かある。
In the present invention, the amount of air supplied into the treatment liquid is preferably 5 to 10% (volume ratio) of the amount of water fed to the aerobic biological reaction treatment liquid. The spiral membrane module 2B of the membrane separation apparatus 2 according to the present invention can ensure a sufficiently high flux with a smaller air supply amount than such a normal membrane module. Note that even if the air supply amount exceeds 10%, it will not have much effect on improving the flux, and on the contrary, the energy cost for air supply will increase, and favorable operating conditions will be maintained due to vibration of the introduction pipe 12, etc. There may be problems such as not being able to do it.

本発明において、スパイラル型膜モジュールとしては、
第7図に示す如く、波板形スペーサ22が連続して延在
しかつ蛇行する波条を有することが好ましい。このよう
なスパイラル型膜モジュールであれば、蛇行する波条に
より膜面に沿う流れが撹乱される。これにより濃度分極
が解消されるようになってフラックスがより一層増大さ
れる。
In the present invention, the spiral membrane module includes:
As shown in FIG. 7, it is preferable that the corrugated spacer 22 has continuously extending and meandering corrugations. In such a spiral membrane module, the flow along the membrane surface is disturbed by the meandering ripples. This eliminates concentration polarization and further increases the flux.

しかも、原水流路は途切れることなく連続しており、S
Sも引掛かりにくく、原水流路の閉塞も防止される。こ
のようなことから、比較的低い膜面流速、例えば0.5
〜1.0m/sでも、高いフラックスを維持することが
可能とされる。しかも、このような乱流促進機能を有す
る波板形スペーサを備えるスパイラル型膜モジュールに
よれば、より一層高い空気の溶解効率が得られる。
Moreover, the raw water flow path is continuous without interruption, and S
S is also less likely to get caught, and blockage of the raw water flow path is also prevented. For this reason, relatively low membrane flow velocity, e.g. 0.5
It is possible to maintain a high flux even at ~1.0 m/s. Moreover, according to the spiral membrane module including the corrugated spacer having such a turbulent flow promoting function, even higher air dissolution efficiency can be obtained.

本発明の有機性廃水処理装置においては、空気の供給と
膜分離とを同時に行なうことができることから、別途、
空気の供給系路を設ける必要はないが、これを設けても
良いことは言うまでもない。
In the organic wastewater treatment apparatus of the present invention, since air supply and membrane separation can be performed simultaneously, separate
Although it is not necessary to provide an air supply line, it goes without saying that it may be provided.

以下に具体的な実施例を挙げて、本発明をより詳細に説
明する。
The present invention will be explained in more detail with reference to specific examples below.

実施例1.比較例1 好気性生物反応槽及び膜分離装置を用いて、酸素溶解効
率の測定を行なった。なお、各装置の仕様は下記の通り
である。
Example 1. Comparative Example 1 Oxygen dissolution efficiency was measured using an aerobic biological reaction tank and a membrane separation device. The specifications of each device are as follows.

好気性生物反応槽 水深:2m 有効水量:35011 膜分離装置 膜モジュール: 直径100mm、長さ1000mmのスパイラル型膜モ
ジュール。
Aerobic biological reaction tank Water depth: 2m Effective water volume: 35011 Membrane separation device membrane module: Spiral type membrane module with a diameter of 100mm and a length of 1000mm.

波板形スペーサによる有効流路高さは 2.5mm。The effective flow path height due to the corrugated spacer is 2.5mm.

即ち、第1図(実施例1)又は第4図(比較例1)に示
す如く、好気性生物反応[1からの液をポンプPを備え
る導入用配管12を経て膜分離装置2に導入し、膜分S
装置の濃縮水を循環用配管14を経て好気性生物反応a
!1に循環させる系において、好気性生物反応槽1に市
水を投入し、N2ガスにより脱酸素した後、膜面流速1
 m / sで膜分離装置2に導入するにあたり、通気
倍率2vvh (好気性生物反応槽あたりの通気倍率)
で、下記第1表に示す如く、配管15又は16(第4図
ではエゼクタ−)より空気の供給を行ない、溶存酸素の
上昇カーブよりKL、(酸素溶解容量係数)を求めるこ
とにより、酸素溶解効率を求めた。
That is, as shown in FIG. 1 (Example 1) or FIG. 4 (Comparative Example 1), the liquid from the aerobic biological reaction [1] was introduced into the membrane separation device 2 through an introduction pipe 12 equipped with a pump P. , membrane S
The concentrated water of the device is passed through the circulation piping 14 to perform an aerobic biological reaction a.
! In a system where city water is circulated at
When introducing the membrane separator 2 at m/s, the ventilation ratio is 2vvh (airflow ratio per aerobic biological reaction tank).
As shown in Table 1 below, by supplying air from pipe 15 or 16 (ejector in Figure 4) and determining KL (oxygen dissolution capacity coefficient) from the rising curve of dissolved oxygen, I sought efficiency.

第1表 実施例2.比較例2 実施例1及び比較例1の装置を用いて、合成下水(ペプ
トン、グルコース基質)(BOD=1200mg、/4
2)の連続処理を行なった。なお、膜面流速は0.5m
/sとしたこと以外は、同条件で処理を行なフた。得ら
れたフラックスを第2表に示す。
Table 1 Example 2. Comparative Example 2 Using the apparatus of Example 1 and Comparative Example 1, synthetic sewage (peptone, glucose substrate) (BOD = 1200 mg, /4
2) was performed continuously. In addition, the membrane surface flow velocity is 0.5 m
The process was carried out under the same conditions except that /s was set. The obtained flux is shown in Table 2.

第  2 表 比較例3 実施例2において、膜分離装置の膜モジュールとして、
集水管の外周にネット状スペーサを介して分m膜を巻回
してなる通常のスパイラル型膜モジュールを用いたこと
以外は同様にして処理を行なったところ、SSによる目
詰りで運転を継続することができなかった。
Table 2 Comparative Example 3 In Example 2, as a membrane module of the membrane separation device,
When the treatment was carried out in the same manner except that a normal spiral membrane module was used, which consists of a membrane wrapped around the outer periphery of the water collection pipe through a net-like spacer, the operation continued due to clogging due to SS. I couldn't do it.

以上の結果から、本発明の有機性廃水処理装置によれば
、フラックスの増大と同時に好気性生物処理への酸素の
有効利用が図れることか明らかである。
From the above results, it is clear that according to the organic wastewater treatment apparatus of the present invention, it is possible to increase the flux and at the same time effectively utilize oxygen for aerobic biological treatment.

実施例3 実施例2において、通気量を変えて連続処理を行ない、
通気量とフラックスとの関係を調べ、結果を第6図に示
した。
Example 3 In Example 2, continuous treatment was performed by changing the aeration amount,
The relationship between air flow and flux was investigated, and the results are shown in Figure 6.

なお、好気性生物反応槽には別途過剰量の通気を行ない
、ポンプ吸込み側の通気量を変えても溶存酸素濃度等に
影響がでないようにして行なった。
Note that an excessive amount of aeration was separately performed in the aerobic biological reaction tank, so that even if the aeration amount on the pump suction side was changed, the dissolved oxygen concentration etc. were not affected.

第6図より明らかなように、(通気量/送水量)X10
0の割合(体積比)が5〜10%の範囲でフラックスの
良好な回復効果が認められる。
As is clear from Figure 6, (aeration amount/water supply amount) x 10
A good flux recovery effect is observed when the ratio (volume ratio) of 0 is in the range of 5 to 10%.

なお、この割合が10%を超えてもフラックスの著しい
回復効果は誌められす、一方、配管等の振動等が増加し
、好ましい運転状態を維持できないことが判明した。
It has been found that even if this ratio exceeds 10%, a remarkable recovery effect of the flux is not observed, but on the other hand, vibrations of piping, etc. increase, making it impossible to maintain favorable operating conditions.

[発明の効果] 以上詳述した通り、本発明の有機性廃水処理装置によれ
ば、装置全体のエネルギー効率の向上、好気性生物反応
処理への空気の有効利用、酸素溶解効率の向上、膜分離
装置のフラックスの向上、膜面へのゲル層の生成抑制及
び目詰り防止が達成される。従フて、有機性廃水の処理
をより一層低コストにかつ効率的に行なうことが可能と
される。
[Effects of the Invention] As detailed above, according to the organic wastewater treatment device of the present invention, the energy efficiency of the entire device is improved, air is effectively used for aerobic biological reaction treatment, oxygen dissolution efficiency is improved, and membrane This improves the flux of the separation device, suppresses the formation of a gel layer on the membrane surface, and prevents clogging. Therefore, it is possible to treat organic wastewater more efficiently and at lower cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の有機性廃水処理装置の概略を示す系統
図、第2図及び第3図は本発明の有機性廃水処理装置の
実施例を示す系統図、第4図はエゼクタ−構造の一例を
示す断面図、第5図は従来例を示す系統図、第6図は実
施例3の結果を示すグラフ、第7図はスパイラル型膜モ
ジュールの一例を示す組立斜視図である。 1・・・好気性生物反応槽、 2・・・膜分離装置、 2B・・・スパイラル型膜モジュール。
Fig. 1 is a system diagram showing an outline of the organic wastewater treatment device of the present invention, Figs. 2 and 3 are system diagrams showing an embodiment of the organic wastewater treatment device of the present invention, and Fig. 4 is the ejector structure. 5 is a system diagram showing a conventional example, FIG. 6 is a graph showing the results of Example 3, and FIG. 7 is an assembled perspective view showing an example of a spiral membrane module. 1...Aerobic biological reaction tank, 2...Membrane separation device, 2B...Spiral type membrane module.

Claims (1)

【特許請求の範囲】[Claims] (1)有機性廃水を好気性生物反応処理する好気性生物
反応槽と、該好気性生物反応槽の処理液を膜分離処理す
る膜分離装置とを備え、該膜分離装置の濃縮水を好気性
生物反応槽に戻すようにした有機性廃水処理装置におい
て、該膜分離装置に導入される好気性生物反応槽の処理
液に空気を供給する空気供給手段を設け、かつ、前記膜
分離装置の膜モジュールとして、集水管の外周に波板形
のスペーサを介して分離膜を巻回してなるスパイラル型
膜モジュールを用いたことを特徴とする有機性廃水処理
装置。
(1) Equipped with an aerobic biological reaction tank that processes organic wastewater by an aerobic biological reaction, and a membrane separation device that performs membrane separation treatment on the treated liquid of the aerobic biological reaction tank, and that concentrates the concentrated water of the membrane separation device. An organic wastewater treatment device configured to return the water to the aerobic biological reaction tank is provided with an air supply means for supplying air to the treated liquid of the aerobic biological reaction tank introduced into the membrane separation device, and An organic wastewater treatment device characterized in that the membrane module is a spiral membrane module in which a separation membrane is wound around the outer periphery of a water collection pipe with a corrugated spacer interposed therebetween.
JP20094190A 1990-07-27 1990-07-27 Organic wastewater treatment equipment Expired - Lifetime JP3111463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20094190A JP3111463B2 (en) 1990-07-27 1990-07-27 Organic wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20094190A JP3111463B2 (en) 1990-07-27 1990-07-27 Organic wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JPH0487695A true JPH0487695A (en) 1992-03-19
JP3111463B2 JP3111463B2 (en) 2000-11-20

Family

ID=16432845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20094190A Expired - Lifetime JP3111463B2 (en) 1990-07-27 1990-07-27 Organic wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP3111463B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002525197A (en) * 1998-09-25 2002-08-13 ユー・エス・フィルター・ウェイストウォーター・グループ・インコーポレイテッド Cleaning device and cleaning method for filtration membrane module
JP2007136387A (en) * 2005-11-21 2007-06-07 Ngk Insulators Ltd Membrane separation activated sludge treatment system for waste water
JP2009061455A (en) * 2008-12-22 2009-03-26 Asahi Kasei Chemicals Corp Method for treating organic wastewater
JP4599633B2 (en) * 1999-04-15 2010-12-15 栗田工業株式会社 Membrane separator
CN111732186A (en) * 2020-08-27 2020-10-02 湖南叶之能科技有限公司 Roll type membrane aeration bioreactor and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002525197A (en) * 1998-09-25 2002-08-13 ユー・エス・フィルター・ウェイストウォーター・グループ・インコーポレイテッド Cleaning device and cleaning method for filtration membrane module
JP4599633B2 (en) * 1999-04-15 2010-12-15 栗田工業株式会社 Membrane separator
JP2007136387A (en) * 2005-11-21 2007-06-07 Ngk Insulators Ltd Membrane separation activated sludge treatment system for waste water
JP2009061455A (en) * 2008-12-22 2009-03-26 Asahi Kasei Chemicals Corp Method for treating organic wastewater
CN111732186A (en) * 2020-08-27 2020-10-02 湖南叶之能科技有限公司 Roll type membrane aeration bioreactor and preparation method thereof

Also Published As

Publication number Publication date
JP3111463B2 (en) 2000-11-20

Similar Documents

Publication Publication Date Title
US11339068B2 (en) Eductor-based membrane bioreactor
JP5665307B2 (en) Organic waste water treatment apparatus and organic waste water treatment method
TWI447076B (en) Water treatment apparatus, water treatment method, membrane separation active sludge treatment apparatus, membrane separation active sludge treatment method, active sludge treatment apparatus, active sludge treatment method, wastewater treatment apparatu
JPH07155758A (en) Waste water treating device
JPH1076264A (en) Sewage treatment apparatus using immersion type membrane separator
JPH07251043A (en) Filtering method and filter device
JPH07256281A (en) Waste water purifying method and tank
JPH0487695A (en) Organic waste water treating device
WO2010101152A1 (en) Device for membrane separation type activated-sludge treatment and method therefor
JP2014100627A (en) Membrane treatment apparatus and solid-liquid separation method
JP2004322084A (en) Biological filtration system
WO2010055776A1 (en) Water treatment device and water treatment method
JPH10296252A (en) Aeration tank immersed membrane separation activated sludge apparatus
JP2001252679A (en) Waste water treating device and method
JP3052350B2 (en) Organic wastewater treatment equipment
JP2003275546A (en) Apparatus for treating membrane separated waste water
JP3408699B2 (en) Sewage treatment equipment using immersion type membrane separation equipment
JPH1177044A (en) Wastewater treatment apparatus
JPH02135196A (en) Sewage and waste water treating device
JP3535198B2 (en) Wastewater treatment equipment
HU222059B1 (en) Apparatus and method for perfecting of aerating by water sewage treatement
JP2938442B1 (en) Sludge treatment method and treatment system
JPH0398697A (en) Water treatment apparatus
JP2001087763A (en) Immersion type membrane separation device
JPH1190197A (en) Multi-static mixing system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

EXPY Cancellation because of completion of term