JPH0487539A - Superconducting magnetic bearing motor - Google Patents
Superconducting magnetic bearing motorInfo
- Publication number
- JPH0487539A JPH0487539A JP2196091A JP19609190A JPH0487539A JP H0487539 A JPH0487539 A JP H0487539A JP 2196091 A JP2196091 A JP 2196091A JP 19609190 A JP19609190 A JP 19609190A JP H0487539 A JPH0487539 A JP H0487539A
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- rotor
- shaft body
- superconductor
- rotor shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 claims abstract description 32
- 238000005339 levitation Methods 0.000 claims abstract description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 24
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 15
- 239000007788 liquid Substances 0.000 abstract description 12
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 abstract description 5
- 235000012489 doughnuts Nutrition 0.000 abstract description 3
- 230000004907 flux Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 102200066089 rs267607276 Human genes 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/0408—Passive magnetic bearings
- F16C32/0436—Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
- F16C32/0438—Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2360/00—Engines or pumps
- F16C2360/44—Centrifugal pumps
- F16C2360/45—Turbo-molecular pumps
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
Description
【発明の詳細な説明】
:産業上の利用分野コ
本発明は、超伝導磁気軸受けを有するモーターに関する
ものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application: The present invention relates to a motor having a superconducting magnetic bearing.
:従来の技術=
従来、磁気軸受けとしては真空用のターボ分子ポンプな
どに利用されている複雑なfliJm帰還回路によって
電気的に制御する形式のものが利用されている。:Prior art= Conventionally, as a magnetic bearing, a type that is electrically controlled by a complicated fliJm feedback circuit, which is used in a vacuum turbo molecular pump, etc., has been used.
一方、高温超伝導体のマイスナー効果を利用したモータ
ーとしては、片持ち式では円周方向にN極とS極を交互
に配置した回転子を用いるもの(米国特許第48928
63号)があった。On the other hand, as a motor that utilizes the Meissner effect of high-temperature superconductors, a cantilever type motor uses a rotor in which north and south poles are arranged alternately in the circumferential direction (US Pat. No. 48928
No. 63).
:発明か解決しようとする課[
しかし、前者は複雑な制御回路のため余り小型のものに
は使用されていないし、後者は、回転駆動用の磁石を浮
上用の磁石と共用しているため、回転に伴う磁束密度の
変化のために超伝導体中を磁束が運動し、抵抗を生じる
ため高速回転が困難であった。: Invention or problem to be solved [However, the former is not used for very small devices due to its complicated control circuit, and the latter uses the same magnet for rotational drive as the magnet for levitation. High-speed rotation was difficult because the magnetic flux moved through the superconductor due to changes in magnetic flux density as it rotated, creating resistance.
こ)において、本発明は、複雑な制御用帰還回路が不要
な簡単な構造の磁気軸受けを用いて高速回転可能な小型
モーターを提供することにある。In this respect, it is an object of the present invention to provide a small motor capable of rotating at high speed using a magnetic bearing with a simple structure that does not require a complicated control feedback circuit.
二課題を解決するための手段]
前記課題の解決は、本発明が次の特徴的構成手段を採用
することにより達成される。Means for Solving Two Problems] The above problems are achieved by the present invention adopting the following characteristic configuration means.
本発明の特徴はへ冷却された超伝導体と、該高温超伝導
体に設定されかつ軸方向にN5fflを有する浮上軸受
は用ドーナツ状永久磁石と、該浮上軸受は用ドーナツ状
永久磁石にその一端を嵌合した回転子軸本体と、該回転
子軸本体の@端に取付けた駆動用永久磁石とから威る回
転子と、前記駆動用永久磁石の周辺部に配して回転磁場
を発生させる少なくとも3個の駆動用ソレノイドとから
構成されてなる超伝導磁気軸受はモーターである。The features of the present invention include a superconductor cooled to a high temperature, a levitation bearing set on the high temperature superconductor and having N5ffl in the axial direction, a donut-shaped permanent magnet, and a toroidal permanent magnet attached to the levitation bearing. The rotor is composed of a rotor shaft body fitted at one end, a driving permanent magnet attached to the @ end of the rotor shaft body, and a rotating magnetic field is generated by disposing the rotor around the driving permanent magnet. A superconducting magnetic bearing comprising at least three drive solenoids that act as a motor.
2作 用:
本発明は前記のような手段を講じ、磁気軸受けを構成す
る浮上用として軸方向にNS極を有するドーナツ状の永
久磁石と駆動のための永久磁石とをそれぞれ回転子軸本
体の両端に設けた。2 Functions: The present invention takes the above-mentioned measures and installs a donut-shaped permanent magnet having an NS pole in the axial direction for levitation and a permanent magnet for driving, which constitute a magnetic bearing, respectively, on the rotor shaft body. Provided at both ends.
本発明において、前記したような高m超伝導体と軸方向
にN54I!を有するドーナツ状の永久磁石によって構
成される磁気軸受けを持ち、駆動用の磁石を前記浮上軸
受は用ドーナツ状永久磁石と盾して設ける理由を以下に
説明する。In the present invention, N54I! The reason why the levitation bearing has a magnetic bearing constituted by a donut-shaped permanent magnet and the drive magnet is provided as a shield from the donut-shaped permanent magnet is explained below.
液体窒素によって冷却されたイツトリウム系の高温超伝
導体の上に永久磁石を乗せると、永久磁石はマイスナー
効果によって高温超伝導体がら反発される。この時、永
久磁石を高温超伝導体に押しつけると磁束がトラヅプさ
れて、永久磁石は空中の一点に安定に保持される。この
とき、超伝導体を通る磁束の空間分布を変fヒさせない
ような永久磁石の運動は抵抗を受けない、すなわち、N
S極を結ぶ軸に対して回転対称な形状の永久磁石の場合
、対#軸を中心とした回転運動に対する抵抗を受けない
、軸方向にNS極を有するドーナツ状の永久磁石を軸受
は用の磁石として用いると、前述のように円周方向の回
転に対して超伝導体からの抵抗力を受けない、また、ド
ーナツ状にすることによって反発力を受ける面積が増加
して回転子軸本体を不動に固定する剛力が増加する0回
転子軸本体の固定は回転子を超伝導体に押しつけること
によって自動的に行なおれ、Flk調整および副脚の必
要はない、従来の浮上用と回転駆動用の磁石を共用でき
るように円周方向にN3[rが並んだ回転子の場合、磁
束分布が回転と共に変化するため超伝導体中の磁束の運
動に対する抵抗力が大きくスムーズに回転しないが、回
転駆動用の磁石は超伝導体から距雛を離して取付けるこ
とによって、回転に伴う磁束分布の変化による抵抗力を
受けないようにすることが可能となる。このように、本
発明の特徴である軸受は用の磁石として軸方向にNS極
を有するドーナツ状の永久磁石を用い、回転駆動用の磁
石を超伝導体から離して取付けることによって超伝導磁
気軸受けの特徴を最大限に引き出す超伝導磁気軸受はモ
ーターが提供される。When a permanent magnet is placed on top of a yttrium-based high-temperature superconductor cooled by liquid nitrogen, the permanent magnet is repelled by the high-temperature superconductor due to the Meissner effect. At this time, when a permanent magnet is pressed against a high-temperature superconductor, the magnetic flux is trapped, and the permanent magnet is stably held at a point in the air. At this time, the motion of the permanent magnet that does not change the spatial distribution of magnetic flux passing through the superconductor is not resisted, that is, N
In the case of a permanent magnet that is rotationally symmetrical with respect to the axis that connects the south pole, a donut-shaped permanent magnet with north and south poles in the axial direction, which is not subject to resistance to rotational movement around the opposite axis, is used as a bearing. When used as a magnet, as mentioned above, there is no resistance force from the superconductor against rotation in the circumferential direction, and by making it into a donut shape, the area receiving the repulsion force increases, making the rotor shaft body The fixation of the rotor shaft body is automatically done by pressing the rotor against the superconductor, and there is no need for Flk adjustment or sub-legs. In the case of a rotor with N3[r arranged in the circumferential direction so that the same magnet can be shared, the magnetic flux distribution changes with rotation, so the resistance to the movement of the magnetic flux in the superconductor is large and the rotor does not rotate smoothly. By attaching the rotational drive magnet at a distance from the superconductor, it is possible to prevent it from receiving resistance due to changes in magnetic flux distribution due to rotation. In this way, the bearing, which is a feature of the present invention, uses a donut-shaped permanent magnet with NS poles in the axial direction as a magnet, and the magnet for rotational drive is mounted away from the superconductor, thereby achieving a superconducting magnetic bearing. The motor is provided with a superconducting magnetic bearing that maximizes the features of the motor.
=実施例コ 本発明の実施例を図面について説明する。= Example code Embodiments of the present invention will be described with reference to the drawings.
第1図は本実施例の概略斜面図である。FIG. 1 is a schematic perspective view of this embodiment.
同図中、Aは本実施例のモーター、1は液体窒素LNを
内容した円筒形液体窒素容器、2は液体窒素容器1内に
設置し液体窒素LNにより冷却される円盤形高温超伝導
体、3は高温超伝導体2中央上に載置したドーナツ状浮
上軸受は用永久磁石、4は下端を浮上軸受は用永久磁石
3に嵌合した置場状回転子軸本体、5は回転子軸本体4
の上端に直径方向に貫着し両端のS極およびN極を突出
した棒状回転駆動用永久磁石、6,7.8は回転駆動用
永久磁石5を取付けた回転子軸本体4の上端部周辺を等
間隔に囲繞し回転磁場を発生する回転駆動用ソレノイド
、9は浮上軸受は用永久磁石3と回転子軸本体4と回転
駆動用永久磁石5とがら成る回転子である。In the figure, A is the motor of this embodiment, 1 is a cylindrical liquid nitrogen container containing liquid nitrogen LN, 2 is a disc-shaped high temperature superconductor installed in the liquid nitrogen container 1 and cooled by the liquid nitrogen LN, 3 is a donut-shaped floating bearing mounted on the center of the high temperature superconductor 2, which is a permanent magnet; 4, the lower end of which is a levitating bearing, is a rotor shaft body fitted with the permanent magnet 3; and 5, a rotor shaft body. 4
Around the upper end of the rotor shaft body 4, a rod-shaped permanent magnet for rotational drive is attached in the upper end in the diametrical direction and has S and N poles protruding from both ends. 9 is a rotor consisting of a permanent magnet 3 for a floating bearing, a rotor shaft body 4, and a permanent magnet 5 for rotational drive.
(適用例1)
920℃、12時間、酸素中において仮焼きを行なった
Y B a 2 Cu 30.高温超伝導体粉末直径6
ae、厚さ1 > 4.ニア1i スして、940”C
,100時間、酸素中で焼結してバルク高温超伝導体2
を作製した。この高温超伝導体2を液体窒素LN中で冷
却して超伝導状態にして、外径2゜8■。(Application example 1) Y B a 2 Cu 30. calcined in oxygen at 920° C. for 12 hours. High temperature superconductor powder diameter 6
ae, thickness 1 > 4. Near 1i, 940”C
, sintered in oxygen for 100 hours to produce bulk high temperature superconductor 2
was created. This high temperature superconductor 2 is cooled in liquid nitrogen LN to a superconducting state and has an outer diameter of 2°8mm.
内径1゜2■、Nさ0.2aoのドーナツ状希土類永久
磁石3を浮上させたところ1.2■の浮上量が得られた
。このドーナツ状永久磁石3を第1図に示すように回転
子軸本体4の一端に固定し、他端の駆動用の永久磁石5
を取付けて超伝導磁気軸受はモーターAの回転子9とし
た。When a donut-shaped rare earth permanent magnet 3 having an inner diameter of 1°2 and a N of 0.2ao was levitated, a flying height of 1.2 was obtained. As shown in FIG. 1, this donut-shaped permanent magnet 3 is fixed to one end of the rotor shaft body 4, and a driving permanent magnet 5 is attached to the other end.
The superconducting magnetic bearing was installed as the rotor 9 of motor A.
この回転子9を高温超伝導体2に押しつけることによっ
て、回転子9の回転子軸本体4の安定度を良くして回転
させた。この時の回転子9の浮上量は0.4】であった
、第1図に示すように、回転子9と回転駆動用ソレノイ
ド6.7.8の3個で超伝導磁気軸受はモーターAを構
成した。ソレノイド6.7.8にそれぞれ位相か90°
ずれた正弦波を流して回転磁場を発生させて回転子9を
駆動した。正弦波の周波数を20〜460kHzの範囲
で変化させた場合、回転数500〜11うQQrpmで
回転した。By pressing this rotor 9 against the high temperature superconductor 2, the stability of the rotor shaft body 4 of the rotor 9 was improved and the rotor was rotated. At this time, the flying height of the rotor 9 was 0.4. was configured. Solenoids 6, 7, and 8 each have a phase of 90°
The rotor 9 was driven by flowing a shifted sine wave to generate a rotating magnetic field. When the frequency of the sine wave was changed in the range of 20 to 460 kHz, the rotation speed was 500 to 11 QQ rpm.
(適用例2)
適用例1と同一構成の超伝導磁気軸受はモーターAを真
空チェンバー内で回転させた。真空チェンバー内の真空
度は5mt o r rで、バルク高温超伝導体2の冷
却は高温超伝導体2の下に設けた液体窒素容器1に収容
した液体窒素LNからの熱伝動によって行なった。高温
超伝導体2上部表面の温度は84にで、回転子9を高温
超伝導体2に押しつけた後の回転子9の浮上量は0.3
国であった。最高回転数は2850Orpmであった。(Application Example 2) A superconducting magnetic bearing having the same configuration as Application Example 1 was used to rotate motor A in a vacuum chamber. The degree of vacuum in the vacuum chamber was 5 mtorr, and the bulk high temperature superconductor 2 was cooled by heat transfer from liquid nitrogen LN contained in a liquid nitrogen container 1 provided below the high temperature superconductor 2. The temperature of the upper surface of the high temperature superconductor 2 is 84, and the flying height of the rotor 9 after pressing the rotor 9 against the high temperature superconductor 2 is 0.3.
It was a country. The maximum rotation speed was 2850 rpm.
二発明の効果−
以上説明したように、本発明によれば、高温超伝導体と
軸方向にNSiを有するドーナツ状の永久磁石によって
構成される磁気軸受けを用い、回転駆動用の永久磁石を
超伝導体がら離して取付Cすることによって、高性能の
小型磁気軸受はモーターを容易に構成することができる
。このモーターでは磁気軸受けに間する微調整とが複雑
な制御は一切必要ない、しかも、真空中においても空気
中以上の性能を発揮するモーターを構成することができ
るという利点かある。このような小型の高速回転タイプ
のモーターはジャイロなどの利用において装置の小型化
に貢獄する等優れた効果を奏す2. Effects of the Invention As explained above, according to the present invention, a magnetic bearing composed of a high-temperature superconductor and a donut-shaped permanent magnet having NSi in the axial direction is used to superimpose a permanent magnet for rotational drive. By mounting C separately from the conductor, a high performance compact magnetic bearing can easily be used to construct a motor. This motor does not require any complicated control such as fine adjustment of the magnetic bearing, and it has the advantage that it can be configured to perform even better in a vacuum than in air. These small, high-speed rotation type motors have excellent effects, such as contributing to the miniaturization of devices when used in gyros, etc.
第1図は本発明の実施例を示す概略斜面図である。
A・・・超伝導磁気軸受はモーター
LN・・・液体窒素 1・・・液体窒素容器2・
・・高温超伝導体
3・・・浮上軸受は用永久磁石
4・・・回転子軸本体
5・・・回転駆動用永久磁石
6.7.8・・・回転駆動用ソレノイド9・・・回転子
第1図FIG. 1 is a schematic perspective view showing an embodiment of the present invention. A...Superconducting magnetic bearing is motor LN...Liquid nitrogen 1...Liquid nitrogen container 2.
・・High-temperature superconductor 3 ・・Leaving bearing uses permanent magnet 4 ・Rotor shaft body 5 ・Permanent magnet for rotational drive 6.7.8 ・Solenoid for rotational drive 9 ・Rotation Child figure 1
Claims (1)
されかつ軸方向にNS極を有するドーナツ状浮上軸受け
用永久磁石と、該浮上軸受け用永久磁石にその一端を嵌
合した回転子軸本体と、該回転子軸本体の他端に取付け
た回転駆動用永久磁石とから成る回転子と、前記回転駆
動用永久磁石の周辺部に配して回転磁場を発生させる少
なくとも3個の回転駆動用ソレノイドとから構成される
ことを特徴とする超伝導磁気軸受けモーター1. A cooled high-temperature superconductor, a donut-shaped levitation bearing permanent magnet set on the high-temperature superconductor and having an NS pole in the axial direction, and a rotating magnet whose one end is fitted to the levitation bearing permanent magnet. A rotor consisting of a child shaft body and a permanent magnet for rotational drive attached to the other end of the rotor shaft body, and at least three magnets arranged around the permanent magnet for rotational drive to generate a rotating magnetic field. A superconducting magnetic bearing motor characterized by comprising a rotary drive solenoid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2196091A JPH0487539A (en) | 1990-07-26 | 1990-07-26 | Superconducting magnetic bearing motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2196091A JPH0487539A (en) | 1990-07-26 | 1990-07-26 | Superconducting magnetic bearing motor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0487539A true JPH0487539A (en) | 1992-03-19 |
Family
ID=16352065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2196091A Pending JPH0487539A (en) | 1990-07-26 | 1990-07-26 | Superconducting magnetic bearing motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0487539A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04191520A (en) * | 1990-07-27 | 1992-07-09 | Shikoku Sogo Kenkyusho:Kk | Superconducting bearing device |
-
1990
- 1990-07-26 JP JP2196091A patent/JPH0487539A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04191520A (en) * | 1990-07-27 | 1992-07-09 | Shikoku Sogo Kenkyusho:Kk | Superconducting bearing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5126317A (en) | Bearing system employing a superconductor element | |
US4892863A (en) | Electric machinery employing a superconductor element | |
JPH05321935A (en) | Permanent-magnet floating bearing with magnet body synthesized by large number of discrete magnet body and composite magnetic substance synthesized by large numberof discrete magnet | |
US4843268A (en) | Asymmetric field electromagnetic motor | |
US5434462A (en) | High-power electrical machinery | |
CN109450218A (en) | Spherical motor based on magnetic resistance minimum principle | |
JPH0487539A (en) | Superconducting magnetic bearing motor | |
JPS61203860A (en) | 3-degrees-of-freedom dc motor | |
US4080540A (en) | Low-powdered stepping motor | |
JP3942845B2 (en) | Superconducting motor | |
JPH01190256A (en) | Motor | |
RU2611566C2 (en) | Dc motor with sliding contacts | |
JP2001268957A (en) | Body of rotation and quantum motor | |
CN113346639B (en) | Stator permanent magnet type spherical motor based on magnetic flux switching | |
JPH04119221A (en) | Superconductive magnetic bearing | |
KR100323850B1 (en) | Disk type two phase vibration motor | |
JP3114175B2 (en) | Shaft and bearing | |
JP2971557B2 (en) | Power storage device | |
JPH11262239A (en) | Magnetic force rotating apparatus | |
JPH07327338A (en) | Superconducting levitation rotary system | |
JP2735653B2 (en) | Superconducting rotating assembly | |
JP2970764B2 (en) | motor | |
JPH07107720A (en) | Motor with discoid rotor section | |
JPS6318976A (en) | Motor | |
JPH01247822A (en) | Support construction for rotary shaft |