JPH0486396A - Bearing sealing device for vacuum pump - Google Patents

Bearing sealing device for vacuum pump

Info

Publication number
JPH0486396A
JPH0486396A JP19961890A JP19961890A JPH0486396A JP H0486396 A JPH0486396 A JP H0486396A JP 19961890 A JP19961890 A JP 19961890A JP 19961890 A JP19961890 A JP 19961890A JP H0486396 A JPH0486396 A JP H0486396A
Authority
JP
Japan
Prior art keywords
bearing
stator
vacuum pump
dynamic pressure
gas bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19961890A
Other languages
Japanese (ja)
Inventor
Tatsuji Ikegami
池上 達治
Masashi Iguchi
昌司 井口
Ichiro Aoki
伊知郎 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA SHINKU KIKI SEISAKUSHO KK
Original Assignee
OSAKA SHINKU KIKI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA SHINKU KIKI SEISAKUSHO KK filed Critical OSAKA SHINKU KIKI SEISAKUSHO KK
Priority to JP19961890A priority Critical patent/JPH0486396A/en
Publication of JPH0486396A publication Critical patent/JPH0486396A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/051Axial thrust balancing
    • F04D29/0513Axial thrust balancing hydrostatic; hydrodynamic thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Sliding-Contact Bearings (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

PURPOSE:To run a supplied air in one direction to prevent the clog of a bearing clearance by a fine dust in exhaust gas by asymmetrically forming upper and loser channels in the rotor part outer circumference of a herringbone dynamic pressure type gas bearing. CONSTITUTION:When a rotating body 4 starts to rotate, the atmosphere is run into the channels 6b, 6c of a herringbone dynamic pressure type gas bearing 6 and the channel of a spiral group dynamic pressure type gas bearing 7 through a feed hole 17 to generate a dynamic pressure. A part of the exhaust gas exhausted from a screw channel pump 3 is passed through a filter 9, and most of the dust is caught. But, a fine dust not caught clears the upper end of a first stator 5a and enters between a rotating shaft 4a and the first stator 5a through a screw channel seal 12. As the lower channel 6c is asymmetrically formed longer than the upper channel 6b, however, the air compression is larger in the lower channel 6c, and a large quantity of the air is run. Consequently, the fine dust can be prevented from entering into the bearing 6 together with the exhaust gas.

Description

【発明の詳細な説明】 (1)産業−にの利用分野 本発明は、ICや半導体等の製造その他に使用される真
空ポンプの軸受軸封装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Field of Industrial Application The present invention relates to a bearing sealing device for a vacuum pump used in the manufacture of ICs, semiconductors, etc.

(2)従来の技術 従来の真空ポンプとして第10図の如くハウジング(a
)の内11間にステータ(b)を突設し、ポンプ部(C
)の回転体(d)の回転軸(e)に、前記ステータ(b
)に対向してヘリングボーン動圧型気体軸受(f)とス
パイラルグループ動圧型気体軸受(g)とを設け、これ
ら軸受(f)(g)により軸支して前記回転体(d)を
前記ハウジング(a)内で高速で回転する式のものが知
られている。尚、(h)は前記軸受(f)(g)のエア
ー供給孔、(i)は磁気軸受、N)はモータのステータ
、(k)は該モータのロータ、(9,)はねしシールを
示す。
(2) Prior art A conventional vacuum pump has a housing (a) as shown in Fig. 10.
), a stator (b) is protruded between 11 of the pump parts (C
), the stator (b) is attached to the rotating shaft (e) of the rotating body (d) of
), a herringbone hydrodynamic type gas bearing (f) and a spiral group hydrodynamic type gas bearing (g) are provided opposite to each other, and the rotating body (d) is supported by these bearings (f) and (g), and the rotating body (d) is attached to the housing. A type (a) that rotates at high speed is known. In addition, (h) is the air supply hole of the bearings (f) and (g), (i) is the magnetic bearing, N) is the stator of the motor, (k) is the rotor of the motor, and (9,) is the splash seal. shows.

(3)発明か解決しようとする問題点 この従来の真空ポンプによれば、前記ヘリングボーン動
圧型気体軸受(f)のロータ部(p)の外周に形成した
」−下の溝(nn)  (n)が対称に形成されている
ので、真空ポンプの運転中前記回転軸(e)が第11図
の矢印A方向に回転しているときに、前記ねじシール(
文)を介して侵入する排気ガスの1部とエアー供給孔(
h)からのエアーが前記り下の溝(m)(n)により第
11図の矢印B及びCの如く前記ロータ部(p)の中心
部に集まり、かくてυ1気カス中にタストが存在する場
合に該ダストも該ロータ部(p)の中心部に集まり、該
ダス]・により、前記ヘリングボーン動圧型気体軸受(
f)のミクロンメーI・ル程度の間隙を閉”Aし、前記
回転軸(e)の回転を不能にして真空ポンプの匝転を停
止Fする問題点があった。
(3) Problems to be Solved by the Invention According to this conventional vacuum pump, a lower groove (nn) is formed on the outer periphery of the rotor portion (p) of the herringbone dynamic pressure type gas bearing (f). Since the screw seals (n) are formed symmetrically, when the rotating shaft (e) is rotating in the direction of arrow A in FIG. 11 during operation of the vacuum pump, the screw seals (
part of the exhaust gas entering through the air supply hole (
The air from h) is collected at the center of the rotor part (p) by the grooves (m) and (n) below, as shown by arrows B and C in Fig. 11, and thus tast is present in the υ1 air waste. When this occurs, the dust also collects in the center of the rotor portion (p), and the herringbone hydrodynamic gas bearing (
There was a problem in that the vacuum pump had to close the gap of about micrometer f) to disable rotation of the rotating shaft (e) and stop the rotation of the vacuum pump.

本発明はこのような問題点を解消しポンプの運転を常時
確実に可能にした真空ポンプの軸受軸封装置を提供する
ことを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a bearing sealing device for a vacuum pump that eliminates these problems and allows the pump to operate reliably at all times.

(4)問題点を解決するための手段 この目的を達成すべく本発明はヘリングボーン動圧型気
体軸受のロータ部の外周に形成したI−下の溝を非対称
にしたことを特徴とし、更にダストトラップを回転体と
ステータとの間に介在させて該ステータに設けたことを
特徴とする。
(4) Means for solving the problem In order to achieve this object, the present invention is characterized in that the I-bottom groove formed on the outer periphery of the rotor part of the herringbone hydrodynamic gas bearing is made asymmetrical, and furthermore, the groove is made asymmetrical. The present invention is characterized in that the trap is interposed between the rotating body and the stator and provided on the stator.

(5)作用 ヘリングボーン動圧型気体軸受において、そのロータ部
の外周に形成した上下の溝が非対称であるので、エアー
供給孔からのエアーは、これら−上下の溝の一方の溝に
おけるエアー流量が他方の溝におけるエアー流電より大
となり、かくて全体として一方から他方へのエアーの流
れとなって排気ガス中の微小ダストが前記軸受の間隙に
閉塞するのを防11−する。
(5) Function In a herringbone hydrodynamic gas bearing, the upper and lower grooves formed on the outer periphery of the rotor are asymmetrical, so the air flow from the air supply hole is limited to one of the upper and lower grooves. The air current is larger than the air current in the other groove, thus resulting in an overall air flow from one side to the other, thereby preventing microscopic dust in the exhaust gas from clogging the gap between the bearings.

又回転体とステータとの間に介在するダストトラップ 捕捉されるため、排気ガス中の微小ダストが前記軸受の
間隙に閉塞するのを更に防止する。
Further, since the dust trap interposed between the rotating body and the stator is trapped, minute dust in the exhaust gas is further prevented from clogging the gap between the bearings.

(6)実施例 以ド、本発明を複合真空ポンプに適用した第1実施例を
第1図乃至第5図により説明する。
(6) Embodiment A first embodiment in which the present invention is applied to a compound vacuum pump will now be described with reference to FIGS. 1 to 5.

(1)はハウジング、(2)は動翼(2a)と静翼(2
b)とからなるターボ分子ポンプ、(3)はねじ溝ポン
プ、(4)は該動翼(2a)及びねじ溝ポンプの回転体
、(5a)は前記ハウジング(1)の内周に突設した円
筒状の第1ステータ、(5b)は中央に透孔を有゛する
円板状の第2ステータ、(6)は前記回転体(4)の回
転軸(4a)に嵌入固定されたヘリングホーン動圧型気
体軸受を示し、該ヘリングボーン動圧型気体軸受(6)
は、その各ロータ部(6a)に第2図示の如く回転方向
に対しへの字状に形成された多数の」ニドの溝(6 b
)  (6 c)を有し、これら」−下の溝(6b)(
6c)は第2図のり,<LLの如く」−下の溝(6b)
の長さが下方の溝(6C)の長さより短く形成されて非
対称であり、前記第1ステータ(5a)と極小の間隙を
有して対向して2段に設けられている。
(1) is the housing, (2) is the rotor blade (2a) and the stator blade (2a).
(3) is a thread groove pump; (4) is the rotor blade (2a) and a rotary body of the thread groove pump; (5a) is a turbo molecular pump that projects from the inner periphery of the housing (1); (5b) is a disc-shaped second stator with a through hole in the center; (6) is a herring fitted and fixed to the rotating shaft (4a) of the rotating body (4); Indicates a horn dynamic pressure type gas bearing, the herringbone dynamic pressure type gas bearing (6)
As shown in the second figure, each rotor part (6a) has a large number of grooves (6b) formed in the shape of a letter in the direction of rotation.
) (6 c) and these''-lower grooves (6b) (
6c) is the glue in Figure 2, <LL-like” - bottom groove (6b)
The length of the groove is shorter than that of the lower groove (6C) and is asymmetrical, and is provided in two stages facing the first stator (5a) with an extremely small gap.

(7)はスパイラルグループ動圧型気体軸受を示し、該
スパイラルグループ動圧型気体軸受(7)は、例えば第
4図示の如く上面にスパイラル状の多数の溝(7a)・
・・(7a)が形成された円板と下面に同様のスパイラ
ル状の多数の溝(7a)・・・(7a)が形成された円
板とがl−下に並設され、上面は前記第1ステータ(5
a)の下端面に、下面は第2ステータ(5b)のL端面
に対し極小の間隙を有して対向し前記回転軸(4a)に
嵌入されている。
(7) indicates a spiral group dynamic pressure type gas bearing, and the spiral group dynamic pressure type gas bearing (7) has, for example, a large number of spiral grooves (7a) on the upper surface as shown in the fourth figure.
...(7a) is formed on the lower surface, and a disk having a large number of similar spiral grooves (7a) ...(7a) formed on the lower surface is arranged side by side below, and the upper surface is formed with the above-mentioned. First stator (5
The lower end face of the second stator (5b) faces the L end face of the second stator (5b) with a very small gap therebetween, and is fitted into the rotating shaft (4a).

又前記第1ステータ(5a)の外側に内筒(8a)と外
筒(8b)を固定し、これら内筒(8a)と外筒(8b
)との間にフィルター(9)を介入装着すると共に該外
筒(8b)に透孔(10)を形成して該フィルター(9
)によりダストトラップ (8b)の外周にねし溝を形成し、該ねじ溝の山部を前
記回転体(4)のド面の四部の内周面に近接させてシー
ル用ねじ溝(11)を形成した。
Further, an inner cylinder (8a) and an outer cylinder (8b) are fixed to the outside of the first stator (5a), and these inner cylinder (8a) and outer cylinder (8b) are fixed to the outside of the first stator (5a).
) A filter (9) is inserted between the filter (9) and a through hole (10) is formed in the outer cylinder (8b).
) is used to form a threaded groove on the outer periphery of the dust trap (8b), and the crests of the threaded groove are brought close to the inner circumferential surface of the four parts of the door surface of the rotating body (4) to form a sealing threaded groove (11). was formed.

尚、(12)は前記回転軸(4a)に嵌入固定されたね
じ溝シール、(13a)はモータのステータ、(13b
)は該モータのロータ、(14)は固定用ナツト、(1
5)は吸入口、(16)は排出[1、(17)はエアー
供給孔、(18)はエアー排気口を示す。
In addition, (12) is a thread groove seal fitted and fixed to the rotating shaft (4a), (13a) is a stator of the motor, and (13b)
) is the rotor of the motor, (14) is the fixing nut, (1
5) is an inlet, (16) is an exhaust port [1, (17) is an air supply hole, and (18) is an air exhaust port.

次に、1−記実施例の真空ポンプの動作を説明する。Next, the operation of the vacuum pump of Example 1 will be explained.

モータに通電すると回転体(4)に回転力が生じ回転を
始める。この回転によりヘリングボーン動圧型気体軸受
(6)の溝(6b)(6c)及びスパイラルグループ動
圧型気体軸受(7)の溝(7a)内に供給孔(17)か
ら大気が流入して動圧を発生し、ラジアル方向及びスラ
スI・方向の軸受性能を有し回転する。この回転により
ねし溝ポンプ(3)から排気された排気ガスの1部は第
5図の如く透孔(10)を経てタストトラップ 通過し、該フィルター(9)により排気ガス中のダスト
の大部分を捕捉する。ところが捕捉されない微小なダス
トは、損気ガスと共に第1ステータ(5a)の」1端を
越えねじ溝シール(12)を経て回転軸(4a)と該第
1ステータ(5a)間に侵入しようとするが、ヘリング
ボーン動圧型気体軸受(6)において、そのロータ部(
6a)の上下の溝(6 b)  (6 c)は下方の溝
(6c)がに方の溝(6b)より長く形成されているの
で、エアー供給孔(17)からのエアーにより長く形成
されている下方の溝(6c)の方が短く形成されている
」一方の溝(6b)よりエアー圧縮が大となり、かくて
」−方の溝(6b)より下方の溝(6C)において多量
のエアーが流れ、かくて第2図の矢印の方向□にエアー
が流れ、このエアーの流れによりヘリングボーン動圧型
気体軸受(6)へ排気ガスと共に微小なダストが侵入す
ることが妨げられ、従って回転体(4)は長時間にわた
って安定した回転を継続する。
When the motor is energized, rotational force is generated in the rotating body (4) and it begins to rotate. Due to this rotation, air flows into the grooves (6b) (6c) of the herringbone hydrodynamic gas bearing (6) and the groove (7a) of the spiral group hydrodynamic gas bearing (7) through the supply hole (17), causing the dynamic pressure It rotates with bearing performance in the radial direction and thrust direction. A part of the exhaust gas exhausted from the groove pump (3) due to this rotation passes through the through hole (10) and the dust trap as shown in Fig. 5, and the filter (9) removes the dust in the exhaust gas. Capture parts. However, the minute dust that is not captured tries to enter between the rotating shaft (4a) and the first stator (5a) through the threaded groove seal (12) along with the air-loss gas. However, in the herringbone hydrodynamic gas bearing (6), the rotor part (
The upper and lower grooves (6 b) (6 c) in 6a) are formed longer by the air from the air supply hole (17) because the lower groove (6c) is longer than the side groove (6b). The lower groove (6c), which is formed shorter, compresses more air than the one groove (6b), which is shorter. The air flows in the direction □ of the arrow in Figure 2, and this air flow prevents minute dust from entering the herringbone hydrodynamic gas bearing (6) together with the exhaust gas, thus preventing the rotation. The body (4) continues to rotate stably for a long time.

第6図は本発明の第2実施例を示し、該第2実施例にお
いては、ヘリングボーン動圧型気体軸受(6)の各ロー
タ部(6a)に形成の上下の溝(6 b)  (6 c
)の傾き角度β1、β2を相違させており、特に下方の
溝(6C)におけるエアー圧縮が最大となってエアー流
量を最大にする最適な傾き角度β20Pに下方の溝(6
C)を形成し、1一方の溝(6b)の傾き角度β1をこ
の最適な傾き角度β岬と相違させることにより、第6図
の矢印の方向にエアーが流れ、前記第1実施例と同様に
ヘリングボーン動圧型気体軸受(6)へ損気ガスと共に
微小なダストが侵入することが妨げられる。
FIG. 6 shows a second embodiment of the present invention, in which upper and lower grooves (6 b) (6 c.
) are made different inclination angles β1 and β2, and in particular, the lower groove (6C) is set to the optimal inclination angle β20P that maximizes air compression and maximizes air flow rate.
C) and by making the inclination angle β1 of one of the grooves (6b) different from this optimum inclination angle β, air flows in the direction of the arrow in FIG. 6, which is the same as in the first embodiment. This prevents minute dust from entering the herringbone hydrodynamic gas bearing (6) together with the air-loss gas.

第7図は本発明の第3実施例を示し、該第3実施例にお
いては、ヘリングボーン動圧型気体軸受(6)のロータ
部(6a)に形成の上下の溝(6 b)(6c)(7)
溝の深さり,、  hlを相違させており、特に下方の
溝(6C)におけるエアーの圧縮が最大となってエアー
流量を最大にする最適な溝深さh2Qpに一ド方の溝(
6C)を形成し、上方の溝(6b)の溝深さhlをこの
最適な溝深さhl。、と相違させることにより、第7図
の矢印の方向にエアーが流れ、前記第1実施例と同様に
ヘリングボーン動圧型気体軸受(6)へ排気ガスと共に
微小なダストが侵入することが妨げられる。
FIG. 7 shows a third embodiment of the present invention, in which upper and lower grooves (6 b) (6 c) are formed in the rotor portion (6 a) of a herringbone hydrodynamic gas bearing (6). (7)
The depths of the grooves, hl are different, and the optimum groove depth h2Qp, which maximizes air compression and maximizes the air flow rate in the lower groove (6C), is set to the lower groove (6C).
6C) and set the groove depth hl of the upper groove (6b) to this optimum groove depth hl. , the air flows in the direction of the arrow in FIG. 7, and as in the first embodiment, minute dust is prevented from entering the herringbone hydrodynamic gas bearing (6) together with the exhaust gas. .

尚前記実施例では、本発明を複合真空ポンプに適用した
例を示したが、ターボ分子ポンプ、ねじ溝真空ポンプ、
その他種々の真空ポンプに適用してもよい。
In the above embodiment, an example in which the present invention was applied to a compound vacuum pump was shown, but it can also be applied to a turbo molecular pump, a thread groove vacuum pump,
It may also be applied to various other vacuum pumps.

(7)発明の効果 このように本発明によると、ヘリングホーン動圧型気体
軸受のロータ部の外周に形成した−十一下の溝を非対称
に形成したので、該気体軸受に供給されたエアーは一方
向に流れて排気ガス中の微小タストの閉塞を防止し、更
に、回転体とステータとの間にダストトラップ 該ダストトラップ 大部分を捕捉するようにしたので、排気ダスト中の微小
ダストが前記軸受の間隙に閉塞するのを更に防止し、か
くて回転体が長時間にわたって安定した回転を継続でき
る効果を有する。
(7) Effects of the Invention As described above, according to the present invention, the -11-lower grooves formed on the outer periphery of the rotor portion of the Herringhorn hydrodynamic gas bearing are asymmetrically formed, so that the air supplied to the gas bearing is The flow in one direction prevents the blockage of microscopic dust in the exhaust gas, and further traps most of the dust in the dust trap between the rotating body and the stator, so that the microscopic dust in the exhaust gas is This has the effect of further preventing the gap between the bearings from being blocked and thus allowing the rotating body to continue stable rotation for a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の真空ポンプの第1実施例の断面図、第
2図はその要部の断面図、第3図は第2図の■−■線截
線面断面図4図はスパイラルグループ動圧型気体軸受部
分の平面図、第5図はタストトラ・ンプ部分の断面図、
第6図は本発明の第2実施例の要部の断面図、第7図は
本発明の第3実施例の要部の断面図、第8図は第7図の
■−■線截線面断面図9図は第7図のIX−IXX線断
断面図第10図は従来の真空ポンプの1例の断面図、第
11図はへリングポーン動圧型気体軸受部分の断面図で
ある。 (1)・・・ハウジング (2)(3)・・・ポンプ部 (4)・・・回転体 (4a)・・・回転軸 (5 a)  (5 b)・・・ステータ(6)・・・
ヘリングボーン動圧型気体軸受(6a)・・・ロータ部 (6b)(6c)・・・溝 (7)・・・スパイラルグループ動圧型気体軸受(9)
・・・ダストトラップ
Fig. 1 is a cross-sectional view of the first embodiment of the vacuum pump of the present invention, Fig. 2 is a cross-sectional view of its main parts, Fig. 3 is a cross-sectional view taken along the line ■-■ in Fig. 2, and Fig. 4 is a spiral cross-sectional view. A plan view of the group dynamic pressure type gas bearing section, Figure 5 is a cross-sectional view of the tastotramp section,
FIG. 6 is a sectional view of the main part of the second embodiment of the present invention, FIG. 7 is a sectional view of the main part of the third embodiment of the invention, and FIG. 9 is a cross-sectional view taken along the line IX-IXX in FIG. 7; FIG. 10 is a cross-sectional view of an example of a conventional vacuum pump; and FIG. 11 is a cross-sectional view of a Hering Pone hydrodynamic gas bearing portion. (1)... Housing (2) (3)... Pump part (4)... Rotating body (4a)... Rotating shaft (5 a) (5 b)... Stator (6)...・・・
Herringbone hydrodynamic gas bearing (6a)...Rotor part (6b) (6c)...Groove (7)...Spiral group hydrodynamic gas bearing (9)
...Dust trap

Claims (5)

【特許請求の範囲】[Claims] (1)ハウジングの内周にステータを突設し、ポンプ部
の回転体の回転軸に、前記ステータに対向してヘリング
ボーン動圧型気体軸受とスパイラルグループ動圧型気体
軸受とを設け、これら軸受により軸支して前記回転体を
前記ハウジング内で高速で回転する式の真空ポンプにお
いて、前記ヘリングボーン動圧型気体軸受のロータ部の
外周に形成した上下の溝を非対称にしたことを特徴とす
る真空ポンプの軸受軸封装置。
(1) A stator is provided protruding from the inner periphery of the housing, and a herringbone hydrodynamic gas bearing and a spiral group hydrodynamic gas bearing are provided on the rotating shaft of the rotating body of the pump section, facing the stator, and these bearings A vacuum pump of a type in which the rotating body is pivotally supported and rotates at high speed within the housing, characterized in that the upper and lower grooves formed on the outer periphery of the rotor portion of the herringbone dynamic pressure gas bearing are asymmetrical. Pump bearing sealing device.
(2)前記ロータ部の外周に形成した上下の溝の長さを
互に異らしめたことを特徴とする特許請求の範囲第1項
記載の真空ポンプの軸受軸封装置。
(2) The bearing sealing device for a vacuum pump according to claim 1, wherein the lengths of the upper and lower grooves formed on the outer periphery of the rotor portion are made different from each other.
(3)前記ロータ部の外周に形成した上下の溝の傾き角
度を互に異らしめたことを特徴とする特許請求の範囲第
1項記載の真空ポンプの軸受軸封装置。
(3) The bearing sealing device for a vacuum pump according to claim 1, wherein the upper and lower grooves formed on the outer periphery of the rotor portion have different inclination angles.
(4)前記ロータ部の外周に形成した上下の溝の深さを
互いに異らしめたことを特徴とする特許請求範囲第1項
記載の真空ポンプの軸受軸封装置。
(4) The bearing sealing device for a vacuum pump according to claim 1, wherein the depths of the upper and lower grooves formed on the outer periphery of the rotor portion are different from each other.
(5)ダストトラップを前記回転体と前記ステータとの
間に介在させて該ステータに設けたことを特徴とする特
許請求範囲第1項記載の真空ポンプの軸受軸封装置。
(5) A bearing sealing device for a vacuum pump according to claim 1, characterized in that a dust trap is provided on the stator and interposed between the rotating body and the stator.
JP19961890A 1990-07-27 1990-07-27 Bearing sealing device for vacuum pump Pending JPH0486396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19961890A JPH0486396A (en) 1990-07-27 1990-07-27 Bearing sealing device for vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19961890A JPH0486396A (en) 1990-07-27 1990-07-27 Bearing sealing device for vacuum pump

Publications (1)

Publication Number Publication Date
JPH0486396A true JPH0486396A (en) 1992-03-18

Family

ID=16410850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19961890A Pending JPH0486396A (en) 1990-07-27 1990-07-27 Bearing sealing device for vacuum pump

Country Status (1)

Country Link
JP (1) JPH0486396A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039090A (en) * 2000-07-26 2002-02-06 Ibiden Co Ltd Pressure generating equipment and turbo molecular pump
JP2002147385A (en) * 2000-11-08 2002-05-22 Osaka Vacuum Ltd Seal structure of turbo-molecular pump
JP2005207333A (en) * 2004-01-23 2005-08-04 Koyo Seiko Co Ltd Pump
JP2011038564A (en) * 2009-08-07 2011-02-24 Alphana Technology Co Ltd Disk driving device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039090A (en) * 2000-07-26 2002-02-06 Ibiden Co Ltd Pressure generating equipment and turbo molecular pump
JP2002147385A (en) * 2000-11-08 2002-05-22 Osaka Vacuum Ltd Seal structure of turbo-molecular pump
JP4691242B2 (en) * 2000-11-08 2011-06-01 株式会社大阪真空機器製作所 Turbo molecular pump seal structure
JP2005207333A (en) * 2004-01-23 2005-08-04 Koyo Seiko Co Ltd Pump
JP2011038564A (en) * 2009-08-07 2011-02-24 Alphana Technology Co Ltd Disk driving device
US8757883B2 (en) 2009-08-07 2014-06-24 Samsung Electro-Mechanics Japan Advanced Technology Co., Ltd. Disk drive device

Similar Documents

Publication Publication Date Title
KR100408946B1 (en) Turbomolecular vacuum pumps with low susceptibility to particulate buildup
US6155574A (en) Sealing device
CA1273327A (en) Liquid ring vacuum pump
CA1300579C (en) Vacuum pump
JPH03222895A (en) Thread-grooved vacuum pump
EP1736218B1 (en) A gas separation apparatus, a front wall and a separation rotor thereof
JPH09170589A (en) Turbo molecular pump
JP6185957B2 (en) Vacuum pump
JP3228446B2 (en) Wesco pump
JPH0486396A (en) Bearing sealing device for vacuum pump
EP0579629A1 (en) Grit protector.
US4872690A (en) Seal cavity protector
JPS60182394A (en) Turbomolecular pump
RU2168070C2 (en) Molecular vacuum pump
JP2004501317A (en) Fuel pump with low influence of pollutants
JPH02502840A (en) molecular vacuum pump
JPH05141389A (en) Vacuum pump
JPH03237297A (en) Turbo-molecular pump
JPH02236068A (en) Shaft seal device
JPS582495A (en) Voltex flow pump device
JP2628351B2 (en) Compound molecular pump
JPH1030729A (en) Mechanical seal
JP2002285987A (en) Small-size vacuum pump
JPS5822444Y2 (en) Seal device in rotating fluid machinery
JPS6316938Y2 (en)