JPH0484736A - Method for measuring particle size distribution - Google Patents

Method for measuring particle size distribution

Info

Publication number
JPH0484736A
JPH0484736A JP2200601A JP20060190A JPH0484736A JP H0484736 A JPH0484736 A JP H0484736A JP 2200601 A JP2200601 A JP 2200601A JP 20060190 A JP20060190 A JP 20060190A JP H0484736 A JPH0484736 A JP H0484736A
Authority
JP
Japan
Prior art keywords
particle size
size distribution
refractive index
sample
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2200601A
Other languages
Japanese (ja)
Inventor
Hideki Yamamoto
山本 英毅
Sadaichi Taniguchi
谷口 定一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2200601A priority Critical patent/JPH0484736A/en
Publication of JPH0484736A publication Critical patent/JPH0484736A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to determine accurate particle size distribution by dispersing the same sample into two solvents having the different refractive indexes, measuring the angle distributions of the intensities of the scattered light beams from both solvents, and finding the refractive index of a particle. CONSTITUTION:A sample W is uniformly dispersed into a solvent. The sample W is made to flow into a cell 1 under this state. A laser beam having the specified cross section is emitted from an emitting optical system comprising a laser light source 2 and a beam expander 3. The scattered light beams from the sample W are outputted through semiconductor photosensors P1 - Pn of a ring detector 5 and a photosensor Ps for measuring the sideward scattered light. The particle size distribution is outputted from a computor 12 based on the various kinds of relative refractive idexes for the scattering angle thetaof each photosensor and the memories of the theoritical scattered-light intensities of various kinds of particle diameters D. Thus, the accurate particle size distribu tion can be determined.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、粉体の粒度分布を測定するための方法とくに
光散乱式の粒度分布測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for measuring the particle size distribution of powder, particularly a light scattering type particle size distribution measuring method.

〈従来の技術〉 粉体の粒度分布を測定する方法は、遠心沈降式とレーザ
回折/光散乱式がある。前者は遠心力を与えながら粒子
を沈降させ。
<Prior Art> Methods for measuring the particle size distribution of powder include a centrifugal sedimentation method and a laser diffraction/light scattering method. The former causes particles to settle while applying centrifugal force.

沈降速度の差からストークスの式を用いて粒度分布を測
定するもので9粒子が小さい場合は、沈降速度が遅いた
め測定に時間がかかるく20〜30分程度)という欠点
がある。後者は回折光/散乱光強度の角度分布を測定し
、これと粒子が大きなところはフラウンホーファ回折の
理論値を、また粒子が小さなところ(10μm以下)で
はMie散乱の理論値を用いて短時間(2〜3分程度)
に測定しようとするものである。
The particle size distribution is measured using the Stokes equation based on the difference in sedimentation rate, and if the particles are small, the sedimentation rate is slow and the measurement takes time (about 20 to 30 minutes). The latter measures the angular distribution of the intensity of diffracted light/scattered light, and uses the theoretical value of Fraunhofer diffraction for large particles, and the theoretical value of Mie scattering for small particles (10 μm or less) for a short time ( (about 2-3 minutes)
This is what we are trying to measure.

〈発明が解決しようとする課題〉 Mie散乱の理論値は2粒子の溶媒に対する相対屈折率
により変わるため、予め溶媒と粒子の屈折率を入力して
9粒度分布を計算する必要がある。しかしながら粉体粒
子の屈折率は未知の場合が多く2文献などで分っている
物質の屈折率を参考にして、適当な値を入れているのが
現状であり、入力する屈折率の値より2粒度分布の粒子
径の範囲や分布の形が変ることになる。本発明は、この
ような点に鑑みてなされたもので。
<Problems to be Solved by the Invention> Since the theoretical value of Mie scattering changes depending on the relative refractive index of the two particles with respect to the solvent, it is necessary to input the refractive index of the solvent and the particles in advance to calculate the nine particle size distribution. However, the refractive index of powder particles is often unknown, and the current practice is to enter an appropriate value by referring to the refractive index of substances known in literature, etc. 2. The particle size range and shape of the particle size distribution will change. The present invention has been made in view of these points.

正確な粒度分布を測定する方法の提供を目的としている
The purpose is to provide a method for measuring accurate particle size distribution.

く課題を解決するための手段〉 上記の目的を達成するため9本発明では同一の試料をそ
れぞれ屈折率がかなり異なる二種類の溶媒例えば 水(n+−1,33)とシクロヘキサノン(n2吋1.
45)に分散させ、それぞれ散乱光強度の角度分布を測
定し、これらのデータを例えばコンピュータに記憶させ
る。また、このとき使用した二つの溶媒の屈折率nl+
n2は予めコンピュータに入力してお(。
Means for Solving the Problems> In order to achieve the above objects, the present invention uses the same sample in two solvents, each having a considerably different refractive index, such as water (n+-1,33) and cyclohexanone (n2-1,33).
45), measure the angular distribution of the scattered light intensity, and store these data in, for example, a computer. Also, the refractive index nl+ of the two solvents used at this time
Enter n2 into the computer in advance (.

コンピュータでは、上記の二組のデータが入力されると
9粒子の屈折率Mを種々の値に仮定して、まず溶媒1を
用いたときの種々の屈折率に対する粒度分布を計算する
When the above two sets of data are input, the computer assumes various values for the refractive index M of the nine particles, and first calculates the particle size distribution for various refractive indexes when using solvent 1.

計算は溶媒1の屈折率n+に対する相対屈折率mI=M
/n1をパラメータとして。
Calculation is relative refractive index mI=M with respect to refractive index n+ of solvent 1
/n1 as a parameter.

溶媒1を用いたときの散乱光強度の角度分布の実測デー
タとMieの理論より行う。
This is performed based on actually measured data of the angular distribution of scattered light intensity when using Solvent 1 and Mie's theory.

つづいて、同様に溶媒2を用いたときの種々の屈折率に
対する粒度分布を計算する。
Subsequently, particle size distributions for various refractive indexes when using Solvent 2 are calculated in the same manner.

実際の粉体の粒度分布は、用いる溶媒の種類には無関係
なはずであるから、各溶媒に対する粒度分布が最もよく
一致する屈折率を求めれば、それが粒子の実際の屈折率
であり、その屈折率に対する粒度分布が実際の粒度分布
となる。
The actual particle size distribution of the powder should be unrelated to the type of solvent used, so if you find the refractive index that best matches the particle size distribution for each solvent, that is the actual refractive index of the particles. The particle size distribution with respect to the refractive index becomes the actual particle size distribution.

各溶媒での粒度分布が一致するかの判定はコンピュータ
によるパターン解析により求めることができるので、二
種類の溶媒での測定が終了した後、これらの動作はすべ
てコンピュータにより処理され、最終結果だけが出力さ
れる。
It is possible to determine whether the particle size distributions in each solvent match by pattern analysis using a computer, so after the measurements with the two types of solvents are completed, all these operations are processed by the computer, and only the final results are analyzed. Output.

く実 麓 例〉 第1図は2本発明実施例の構成図を示す平面図である。Kumi foothill example FIG. 1 is a plan view showing the configuration of two embodiments of the present invention.

試料粒子Wは溶媒中に均一に分散された状態でセル1内
に流される。セル1の後方には波長780n−のレーザ
光源2とビームエキスパンダ3からなる照射光光学系が
配設されており、測定セル1内の試料粒子Wに所定断面
を有するレーザービームを照射することができる。測定
セル1の前方の照射光光軸上には試料粒子Wによる散乱
光を集光するためのフーリエ交換レンズ4が配設されて
いるとともに、その焦点位置にはリングディテクタ5が
配設されている。
Sample particles W are flowed into the cell 1 in a state in which they are uniformly dispersed in a solvent. An irradiation light optical system consisting of a laser light source 2 with a wavelength of 780n- and a beam expander 3 is arranged behind the cell 1, and is capable of irradiating sample particles W in the measurement cell 1 with a laser beam having a predetermined cross section. I can do it. A Fourier exchange lens 4 for condensing light scattered by sample particles W is disposed on the optical axis of the irradiated light in front of the measurement cell 1, and a ring detector 5 is disposed at the focal position of the Fourier exchange lens 4. There is.

リングディテクタ5はそれぞれ照射光の光軸を中心とし
て互いに異なる半径のn個のリング状の半導体フォトセ
ンサPl*P2+・・・Pnから構成されている。
The ring detector 5 is composed of n ring-shaped semiconductor photosensors Pl*P2+...Pn, each having a different radius around the optical axis of the irradiated light.

6は光量モニタ用ディテクタである。6 is a detector for monitoring the amount of light.

測定セル10側方には、側方(90°)散乱光測定用フ
ォトセンサPsおよび暗電流測定用フォトセンサPb2
が配設されている。
On the sides of the measurement cell 10, there are a photosensor Ps for measuring lateral (90°) scattered light and a photosensor Pb2 for measuring dark current.
is installed.

フォトセンサP I + P 2*・・・Pnの出力(
iI・・・1n−1t 1 n )およびP s * 
P bの出力(ts、1b2)は前置増幅器8を介して
、感度補正用増幅器9に入っている。
Photosensor P I + P 2 *... Output of Pn (
iI...1n-1t1n) and Ps*
The output (ts, 1b2) of P b enters a sensitivity correction amplifier 9 via a preamplifier 8.

感度補正用増幅器9は各ホトセンサに同じ強度の光が当
たったときと同じ出力になるように調整されている。こ
の出力はマルチプレクサ10を介して順次A/D変換器
11によってディジタル化されてコンピューター2に送
り込まれるように構成されている。
The sensitivity correction amplifier 9 is adjusted so that the output is the same as when each photo sensor is illuminated with light of the same intensity. This output is sequentially digitized by an A/D converter 11 via a multiplexer 10 and sent to the computer 2.

コンピューター2は各フォトセンサの散乱角θに対する
2種々の相対屈折率mO−;Mは粒子の屈折率、nは溶
媒の屈折率)と種々の粒径りに対する理論散乱光強度の
数値表を記憶しており2mを入力して、試料測定を行う
と粒度分布を出力できるプログラムをもっている。
The computer 2 stores numerical tables of two different relative refractive indexes (mO-; M is the refractive index of the particles, n is the refractive index of the solvent) for the scattering angle θ of each photosensor and theoretical scattered light intensity for various particle sizes. It has a program that can output the particle size distribution by inputting 2m and performing sample measurement.

第2図および第3図はそれぞれ、試料として、カオリン
およびチタン白を用い、第1溶媒として水(屈折率1.
33)、第2溶媒としてシクロヘキサノン(屈折率1.
447)を用いたときに、未知試料の屈折率を種々仮定
して粒度分布を求めた結果である。溶媒として水を用い
た場合の粒度分布と、溶媒としてシクロヘキサノールを
用いた場合の粒度分布がほぼ一致する試料の屈折率を知
るために、各仮定の屈折率に対して2粒度分布累計が5
0%になる粒子径D50%を求め。
Figures 2 and 3 use kaolin and titanium white as samples, respectively, and water (refractive index 1.
33), cyclohexanone (refractive index 1.
447), the particle size distribution was obtained by assuming various refractive indexes of the unknown sample. In order to find out the refractive index of a sample whose particle size distribution when water is used as a solvent and the particle size distribution when cyclohexanol is used as a solvent are almost the same, the cumulative total of two particle size distributions is 5 for each assumed refractive index.
Find the particle diameter D50% at which it becomes 0%.

各溶媒での仮定屈折率とD50%の関係を求めた結果を
第4図に示す。
FIG. 4 shows the results of determining the relationship between the assumed refractive index and D50% for each solvent.

第4図から仮定した屈折率の変化により粒子の形(D5
0%)が変わり、すなわちMieの散乱理論に従ってい
るところで、かつ2つの溶媒で粒度分布の形(D50%
)が一致する屈折率を求めれば、それが粒子の屈折率と
なる。その屈折率における粒度分布が、目的とする試料
の粒度分布となる。
The particle shape (D5
0%) changes, i.e. according to Mie's scattering theory, and the shape of the particle size distribution (D50%) changes in the two solvents.
) is the refractive index of the particle. The particle size distribution at that refractive index becomes the particle size distribution of the target sample.

〈発明の効果〉 以上説明したように、従来は適当な屈折率を仮定して粒
度分布を求めていたため。
<Effects of the Invention> As explained above, the particle size distribution has conventionally been determined assuming an appropriate refractive index.

仮定する屈折率がまちがっていれば、第2図あるいは第
3図から分かるように、まちがった粒度分布の結果を与
えることになる。しかしながら本発明によれば、二種類
の屈折率の興なる溶媒を用いて、散乱光強度の角度分布
のデータを測定し、その結果をコンピュータに送り、M
ieの理論によるシュミレーションを行うことにより、
簡単に粒子の屈折率を知ることができ、その屈折率を用
いて1粒度分布を決定することができるので、正しい粒
度分布の結果を得ることができる。
If the assumed refractive index is incorrect, it will give an incorrect particle size distribution result, as can be seen from FIG. 2 or 3. However, according to the present invention, data on the angular distribution of scattered light intensity is measured using two types of solvents with different refractive indexes, the results are sent to a computer, and M
By performing simulations based on IE theory,
Since the refractive index of particles can be easily known and the particle size distribution can be determined using that refractive index, accurate particle size distribution results can be obtained.

■ PI、P2・・・ s b2 測定セル レーザ光源 リングディテクタ フォトセンサ(前方散乱光用) フォトセンサ(側方散乱光用) 暗電流測定用フォトセンサ■ PI, P2... s b2 measurement cell laser light source ring detector Photo sensor (for forward scattered light) Photo sensor (for side scattered light) Photosensor for dark current measurement

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の構成を示す平面図、第2図、
第3図はそれぞれカオリンおよびチタン白の各種の屈折
率を仮定した場合の粒度分布測定結果を示す図であり。 第4図は二種類の溶媒での粒度分布測定結果から粒子の
屈折率を求める方法を示す図である。 覇建沓命瞭左(8) 型祁委奢−ね(武) 嘘 蒙J¥赴埜睡肱(区) ロ蔓沓命−舷(ぺ)
FIG. 1 is a plan view showing the configuration of an embodiment of the present invention, FIG.
FIG. 3 is a diagram showing the results of particle size distribution measurements assuming various refractive indexes of kaolin and titanium white, respectively. FIG. 4 is a diagram showing a method for determining the refractive index of particles from the results of particle size distribution measurements using two types of solvents. Hakenkutsu life clear left (8) Type Qi commission - ne (bu) lie Meng J ¥ 赴埜悱 (ku) ro Tsuru kutsu life - ship (pe)

Claims (1)

【特許請求の範囲】 (a)同一の試料をそれぞれ屈折率の異なる二つの溶媒
1、2に分散させ、この両者について散乱光強度の角度
分布を測定する工程 (b)溶媒1の屈折率n_1に対する相対屈折率m_1
=M/n_1(但し、Mは粒子の屈折率)をパラメータ
として、溶媒1を用いたときの散乱光強度の角度分布の
測定値((a)工程での測定値)とMieの理論から種
々の屈折率Mに対する粒度分布を求める工程(c)(b
)工程と同様にして溶媒2を用いたときの種々の屈折率
Mに対する粒度分布を求める工程 (d)(b)(c)の工程で求めた各溶媒に対する粒度
分布が最も一致する屈折率における粒度分布を目的とす
る試料の粒度分布と判定する工程 とからなる粒度分布測定方法
[Claims] (a) Step of dispersing the same sample in two solvents 1 and 2 having different refractive indexes and measuring the angular distribution of scattered light intensity for both (b) Refractive index n_1 of solvent 1 relative refractive index m_1
= M/n_1 (where M is the refractive index of the particles) as a parameter, the measured value of the angular distribution of scattered light intensity when using solvent 1 (measured value in step (a)) and various values based on Mie's theory Steps (c) and (b) of determining the particle size distribution with respect to the refractive index M of
Step (d) of determining the particle size distribution for various refractive indices M when using solvent 2 in the same manner as in step (d) (b) and (c). A particle size distribution measuring method consisting of a step of determining the particle size distribution of a sample whose purpose is to determine the particle size distribution.
JP2200601A 1990-07-27 1990-07-27 Method for measuring particle size distribution Pending JPH0484736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2200601A JPH0484736A (en) 1990-07-27 1990-07-27 Method for measuring particle size distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2200601A JPH0484736A (en) 1990-07-27 1990-07-27 Method for measuring particle size distribution

Publications (1)

Publication Number Publication Date
JPH0484736A true JPH0484736A (en) 1992-03-18

Family

ID=16427078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2200601A Pending JPH0484736A (en) 1990-07-27 1990-07-27 Method for measuring particle size distribution

Country Status (1)

Country Link
JP (1) JPH0484736A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5400139A (en) * 1992-09-28 1995-03-21 Shimadzu Corporation Method and apparatus for estimating a mixing proportion of different powdery contents
WO2013041428A1 (en) * 2011-09-19 2013-03-28 Siemens Aktiengesellschaft Detection of particles contained in a gas
JP2016114613A (en) * 2016-02-15 2016-06-23 株式会社堀場製作所 Particle size distribution measuring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5400139A (en) * 1992-09-28 1995-03-21 Shimadzu Corporation Method and apparatus for estimating a mixing proportion of different powdery contents
WO2013041428A1 (en) * 2011-09-19 2013-03-28 Siemens Aktiengesellschaft Detection of particles contained in a gas
JP2016114613A (en) * 2016-02-15 2016-06-23 株式会社堀場製作所 Particle size distribution measuring apparatus

Similar Documents

Publication Publication Date Title
Strokotov et al. Polarized light‐scattering profile—advanced characterization of nonspherical particles with scanning flow cytometry
US4134679A (en) Determining the volume and the volume distribution of suspended small particles
CN104089855A (en) Method and device for measuring particles by polarized light scattering
JP5517000B2 (en) Particle size measuring device and particle size measuring method
KR20180000015A (en) High accuracy real-time particle counter
WO2009067043A1 (en) Method for measuring particle size in a liquid and device for carrying out said method
Soini et al. A new design of the flow cuvette and optical set‐up for the scanning flow cytometer
CN105300930A (en) Dual-channel water turbidity detection method
JPS62168033A (en) Particle analyzing device
JPH0484736A (en) Method for measuring particle size distribution
CN108872152B (en) Particle refractive index measuring method, computer device and computer readable storage medium
CN108645817B (en) Multi-type mixed particle mass concentration online measurement method
JPH0462455A (en) Particle size distribution measuring instrument
EP0853760B1 (en) Method and apparatus for measuring particle size at low concentration
JP2002243624A (en) Particle diameter distribution measuring instrument
JPS6166947A (en) Flow cell for particle analysis
JPS5970944A (en) Apparatus for measuring particle diameter
JP2876253B2 (en) Particle size distribution analyzer
JPH0277636A (en) Particle measuring device
JPH02173550A (en) Particle size distribution measuring instrument
JPH03122550A (en) Method and apparatus of measuring grain
JPH02193041A (en) Particle size distribution apparatus
JPH0266425A (en) Measuring instrument for distribution of grain size
RU206033U1 (en) DEVICE FOR DETERMINING THE NUMBER OF PARTICLES AND DISTRIBUTING THEM AT VELOCITY IN LIQUID BIOLOGICAL MEDIA
WO2022168554A1 (en) Photometric device