JPH0483872A - Production of crystalline silicon film - Google Patents

Production of crystalline silicon film

Info

Publication number
JPH0483872A
JPH0483872A JP20096090A JP20096090A JPH0483872A JP H0483872 A JPH0483872 A JP H0483872A JP 20096090 A JP20096090 A JP 20096090A JP 20096090 A JP20096090 A JP 20096090A JP H0483872 A JPH0483872 A JP H0483872A
Authority
JP
Japan
Prior art keywords
crystalline silicon
silicon film
substrate
plasma
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20096090A
Other languages
Japanese (ja)
Other versions
JP3008455B2 (en
Inventor
Ryuichi Kawase
川瀬 龍一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2200960A priority Critical patent/JP3008455B2/en
Publication of JPH0483872A publication Critical patent/JPH0483872A/en
Application granted granted Critical
Publication of JP3008455B2 publication Critical patent/JP3008455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To form a crystalline silicon thin film having large grain size on a glass substrate at a low temp. by specifying the pressure ratio of hydrogen gas to reaction pressure in the process of forming plasma of hydrogen and the reaction gas containing silicon by use of high frequency excited plasma. CONSTITUTION:The crystalline silicon thin film is formed on a heated substrate by forming plasma of hydrogen and the reaction gas containing silicon by the use of high frequency excited plasma so that a silicon film is deposited by chemical gas phase growing method. The reaction pressure is 0.5-10Torr and the proportion of hydrogen gas as the diluent gas is specified to 50-150 times as that of the reaction gas containing silicon atoms. The heating temp. of the substrate is 400-600 deg.C and the power density of the high frequency excited plasma is 0.05-1.0W/cm<2>. Thereby, a good crystalline silicon thin film can be obtained at a low cost.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ガラス基板あるいはシリコン基板等の基板上
に、プラズマを用いた化学気相成長法により、結晶シリ
コン膜を製造する方法に係り、例えばポリシリコン薄膜
トランジスタを用いた液晶テレビや投写型テレビやプリ
ンタ、イメージスキャナ等に用いられるガラス基板上の
多結晶シリコンを低温で大面積に作製し、より安価なポ
リシリコン膜を提供するに最適な作製方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of manufacturing a crystalline silicon film on a substrate such as a glass substrate or a silicon substrate by chemical vapor deposition using plasma. For example, it is ideal for producing polycrystalline silicon on a large area at low temperature on a glass substrate used in LCD televisions, projection televisions, printers, image scanners, etc. using polysilicon thin film transistors, and providing cheaper polysilicon films. Regarding the manufacturing method.

[従来技術] 従来、非晶質シリコンに比べて結晶シリコンは、電子の
電界効果移動度が数十倍も大きく、例えば、この結晶シ
リコンで薄膜トランジスタを作製した場合、応答速度の
早いスイッチング素子となりうる。しかしながら、結晶
シリコン膜の作製方法として、従来提案されている化学
気相成長法といえば、常圧化学気相成長法(以下は常圧
CVD法という)、減圧化学気相成長法(以下は減圧C
VD法という)、プラズマ化学気相成長法C以下単にプ
ラズマCVD法という)等であり、これらは、結晶シリ
コン薄膜をガラス基板に形成するには、たとえば減圧C
VD法を用いて基板温度を500〜700℃程度として
作製する方法が用いられている。
[Prior Art] Conventionally, crystalline silicon has an electron field effect mobility that is several tens of times higher than that of amorphous silicon. For example, if a thin film transistor is made of this crystalline silicon, it can be used as a switching element with a fast response speed. . However, the conventionally proposed chemical vapor deposition methods for producing crystalline silicon films include atmospheric pressure chemical vapor deposition (hereinafter referred to as normal pressure CVD), low pressure chemical vapor deposition (hereinafter referred to as low pressure CVD), C
VD method), plasma chemical vapor deposition method C (hereinafter simply referred to as plasma CVD method), etc. These methods are used to form a crystalline silicon thin film on a glass substrate using, for example, reduced pressure C.
A method is used in which the VD method is used and the substrate temperature is set at about 500 to 700°C.

しかし、作製温度が高く、ガラス基板等に大面積に均一
に成膜することが困難であった。そこで減圧CVD法や
プラズマCVD法で形成したシリコン薄膜を、固相成長
を用いたり、レーザアニルを行ないシリコン薄膜の結晶
性を向上させている。
However, the production temperature is high, making it difficult to uniformly form a film over a large area on a glass substrate or the like. Therefore, the crystallinity of silicon thin films formed by low pressure CVD or plasma CVD is improved by using solid phase growth or by laser annealing.

ところが、固相成長は500〜700°Cという高温で
、10〜20時間という長時間の焼成を必要とし、また
レーザアニールも同様に長時間の処理を必要とするので
工場の生産性、およびコストの面で問題が多い。
However, solid-phase growth requires baking at a high temperature of 500 to 700°C for a long time of 10 to 20 hours, and laser annealing also requires a long processing time, which reduces factory productivity and costs. There are many problems in terms of.

[発明が解決しようとする課題コ 本発明は、以上のような従来技術に鑑み、任意の基板上
に、基板の加熱温度が比較的低く、したかって大面積に
結晶シリコン膜を成膜できる製造方法を提供しようとす
るものである。
[Problems to be Solved by the Invention] In view of the above-mentioned prior art, the present invention is a manufacturing process that allows the formation of a crystalline silicon film on an arbitrary substrate at a relatively low substrate heating temperature and thus over a large area. It is intended to provide a method.

[課題を解決するための手段] 本発明は、高周波励起プラズマを用いてシリコン原子を
有する反応ガスおよび水素ガスをプラズマ化し、加熱基
板上に化学気相成長法により結晶シリコン膜を製造する
方法において、反応圧力が0.5〜10Torrでシリ
コン原子を有する反応ガスに対して希釈ガスである水素
ガスの比率が50〜150倍であることを特徴とする結
晶シリコン膜薄の製造方法である。
[Means for Solving the Problems] The present invention provides a method for producing a crystalline silicon film on a heated substrate by chemical vapor deposition by converting a reaction gas containing silicon atoms and hydrogen gas into plasma using radio-frequency excited plasma. , a method for producing a thin crystalline silicon film, characterized in that the reaction pressure is 0.5 to 10 Torr and the ratio of hydrogen gas, which is a diluent gas, to the reaction gas containing silicon atoms is 50 to 150 times.

シリコン原子を有する反応ガスとしては、例えばシラン
(SiH4)、ジシラン(S 1zHi)等の水素化物
と四フッ化シラン(SiFa)、四塩化シラン(SiC
Ii)等のハロゲン化物、あるいはS+Ho〜4X4〜
。(X:ハロゲン原子)で表されるシランのハロゲン水
素化物がある。
Examples of reactive gases containing silicon atoms include hydrides such as silane (SiH4) and disilane (S1zHi), and silane tetrafluoride (SiFa) and silane tetrachloride (SiC).
Halides such as Ii), or S+Ho~4X4~
. There is a halogen hydride of silane represented by (X: halogen atom).

また反応圧力はプラズマを用いた反応装置では0.5 
Torr以下になると大面積に均一に薄膜を作製するこ
とが比較的困難になり、10Torr以上になると高周
波の電力密度を高くしないとプラズマの発生が困難とな
る。
In addition, the reaction pressure is 0.5 in a reactor using plasma.
Below Torr, it becomes relatively difficult to produce a thin film uniformly over a large area, and when above 10 Torr, it becomes difficult to generate plasma unless the high frequency power density is increased.

希釈ガスである水素ガスの比率は、反応圧力が2 To
rrで、高周波の電力密度を0.8W/cm”とし、基
板温度を400℃とした場合、5iH−/Hz=1/4
0〜l/100までの範囲で作製したシリコン膜のX線
回折分析の結果を第2図に示した。
The ratio of hydrogen gas, which is a diluent gas, is such that the reaction pressure is 2 To
rr, the high frequency power density is 0.8 W/cm", and the substrate temperature is 400°C, 5iH-/Hz = 1/4
The results of X-ray diffraction analysis of silicon films prepared in the range of 0 to 1/100 are shown in FIG.

第2図によれば、1150以上で結晶化が始まり、1/
100まで徐々に結晶性が向上している。実用範囲の希
釈倍率は50〜150倍であるといえる。
According to Figure 2, crystallization begins at 1150 or higher, and 1/
The crystallinity gradually improves up to 100. It can be said that the dilution ratio in the practical range is 50 to 150 times.

高周波の電力密度は、シリコン膜の結晶性に大きく影響
する。すなわち本発明の結晶シリコン膜の製造方法では
、S i Ha/ Ht= 1 / 80 、反応圧力
2 丁orr、基板温度450℃とした場合では、高周
波の電力密度が0.05〜2.0W/cm”の範囲でシ
リコン膜が結晶化し、その他の条件では非晶質のシリコ
ン膜が堆積した。また特に0.05〜1.OW/ c 
m ”の範囲で結晶粒径が増加した。
The high frequency power density greatly affects the crystallinity of the silicon film. That is, in the method for manufacturing a crystalline silicon film of the present invention, when S i Ha/Ht = 1/80, reaction pressure is 2 tons orr, and substrate temperature is 450°C, the high frequency power density is 0.05 to 2.0 W/. The silicon film was crystallized in the range of 0.05 to 1.cm'', and an amorphous silicon film was deposited under other conditions.
The grain size increased in the range of m''.

また基板温度の効果であるが、250°Cでも本発明の
作製条件でシリコン膜は結晶化するが、結晶粒径が小さ
く、膜全体の結晶化度も少ない。基板温度を400 ’
C以上にすると結晶粒径が500Å以上で膜全体が結晶
化する。プラズマCVD装置を用いて、S i H4/
 Hz= 1 / 64 、高周波電力密度0.08W
/cm2、圧力2 Torrで堆積したシリコン膜の基
板温度とX線回折による結晶性の関係を第1図に示した
。図によれば、温度が上昇するとともに結晶性も向上し
ている。これはシリコン膜の結晶成長の原子の再配列時
に基板温度が基板表面での原子の拡散エネルギーを増大
させて安定なサイトに結合することを助けているものと
思われる。
Regarding the effect of the substrate temperature, the silicon film is crystallized even at 250° C. under the manufacturing conditions of the present invention, but the crystal grain size is small and the crystallinity of the entire film is also low. Increase the substrate temperature to 400'
When the temperature is higher than C, the entire film is crystallized when the crystal grain size is 500 Å or more. Using a plasma CVD device, S i H4/
Hz = 1/64, high frequency power density 0.08W
Figure 1 shows the relationship between the substrate temperature and the crystallinity determined by X-ray diffraction of a silicon film deposited at /cm2 and a pressure of 2 Torr. According to the figure, as the temperature rises, the crystallinity also improves. This is thought to be due to the substrate temperature increasing the diffusion energy of atoms on the substrate surface during the rearrangement of atoms during crystal growth of the silicon film, helping them to bond to stable sites.

[作用] 本発明の機構は定かではないが、シリコン膜が基板上に
堆積するときの、基板表面のシリコンの未結合手と堆積
に関与するSiラジカルの表面反応に水素ラジカルが関
与して、適度の水素ラジカルの存在下でのみ結晶シリコ
ン膜が堆積すると考えられる。本発明によって従来の固
相成長やレーザアニール等の煩雑で長時間の工程を省く
ことが可能で安価で良好の結晶シリコン薄膜が提供でき
る。
[Operation] Although the mechanism of the present invention is not clear, when a silicon film is deposited on a substrate, hydrogen radicals participate in a surface reaction between dangling bonds of silicon on the substrate surface and Si radicals involved in the deposition. It is believed that a crystalline silicon film is deposited only in the presence of a moderate amount of hydrogen radicals. According to the present invention, it is possible to omit conventional complicated and time-consuming processes such as solid phase growth and laser annealing, and it is possible to provide an inexpensive and good crystalline silicon thin film.

[実施例1 以下、本発明を、実施例にもとづいて詳細に説明するが
、これに限定されるわけではない。
[Example 1] Hereinafter, the present invention will be explained in detail based on Examples, but the present invention is not limited thereto.

(実施例1) コーニング社製のコーニング7059や旭ガラス社製の
NA−20の低膨張ガラスを基板として、基板を洗浄し
た後グロー放電プラズマCVD装置を用いて原料ガスを
S i H4およびH2とし、電力密度Q、lW/cm
”でHz / S r H4−60/1の希釈率とし、
圧力2 Torr、基板温度を400°Cとしてシリコ
ン薄膜を堆積すると、粒径が500人程度の多結晶シリ
コン薄膜を得ることができた。
(Example 1) A low expansion glass such as Corning 7059 manufactured by Corning Co., Ltd. or NA-20 manufactured by Asahi Glass Co., Ltd. was used as a substrate. After cleaning the substrate, raw material gases were converted to Si H4 and H2 using a glow discharge plasma CVD apparatus. , power density Q, lW/cm
” with a dilution rate of Hz/S r H4-60/1,
When a silicon thin film was deposited at a pressure of 2 Torr and a substrate temperature of 400°C, a polycrystalline silicon thin film with a grain size of about 500 grains could be obtained.

この様にして作製した結晶シリコン膜を用いて形成した
薄膜トランジスタの電界効果移動度は、50cm2/ν
・S以上と良好な特性を示した。
The field effect mobility of the thin film transistor formed using the crystalline silicon film produced in this way is 50 cm2/ν
・Showed good characteristics of S or higher.

(実施例2) また実施例1と同様にガラス基板にグロー放電プラズマ
CVD装!を用いて、原料をSiH4およびH2とし、
HZ/ S + H4= 80 / 1の希釈率で電力
密度0.5W/cm”、圧力I Torr、基板温度を
500 ’Cとしてシリコン’111Mを堆積したとこ
ろ、粒径が1000人の多結晶シリコン薄膜を得ること
ができた。また実施例1と同様に形成した薄膜トランジ
スタの電界効果移動度は100cm2/V−S以上と良
好な特性を示した。
(Example 2) Also, as in Example 1, a glow discharge plasma CVD device was applied to a glass substrate! using SiH4 and H2 as raw materials,
When silicon '111M was deposited at a dilution rate of HZ/S + H4 = 80/1 at a power density of 0.5 W/cm'', a pressure of I Torr, and a substrate temperature of 500'C, the grain size was 1000 nm polycrystalline silicon. A thin film was obtained.Furthermore, the field effect mobility of the thin film transistor formed in the same manner as in Example 1 was 100 cm2/V-S or more, showing good characteristics.

(実施例3) 実施例1と同様にガラス基板にグロー放電プラズマCV
D装置を用いて、原料ガスを5izH6およびH2とし
、H,/S i 、H,= 60 / 1の希釈率で電
力密度0.5W/cm”、圧力5Torr、基板温度を
550℃としてシリコン薄膜を堆積したところ、粒径が
1000人の多結晶シリコン薄膜を得ることができた。
(Example 3) Glow discharge plasma CV was applied to a glass substrate in the same manner as in Example 1.
Using apparatus D, a silicon thin film was prepared using source gases of 5iz H6 and H2, a dilution rate of H,/S i , H, = 60/1, a power density of 0.5 W/cm'', a pressure of 5 Torr, and a substrate temperature of 550°C. When deposited, a polycrystalline silicon thin film with a grain size of 1000 nm could be obtained.

また実施例1と同様に形成した薄膜トランジスタの電界
効果移動度は100cm”/V −S以上と良好な特性
を示した。
Further, the field effect mobility of the thin film transistor formed in the same manner as in Example 1 was 100 cm''/V -S or more, which showed good characteristics.

[発明の効果] 以上に述べたように、本発明は、高周波励起プラズマを
用いてシリコン原子を有する反応ガスおよび水素をプラ
ズマ化し、反応圧力を0.5〜lOT。
[Effects of the Invention] As described above, in the present invention, a reaction gas containing silicon atoms and hydrogen are turned into plasma using high-frequency excited plasma, and the reaction pressure is 0.5 to 1OT.

rrでシリコン原子を有する反応ガスと希釈ガスの水素
の比率を1150〜1/150としてプラズマ化学気相
成長を行なうと、ガラス基板上に低温で比較的簡単に粒
径の大きな結晶シリコン薄膜を形成可能である。20粒
径の大きな結晶シリコン薄膜を用いれば、トランジスタ
特性の良好な結晶シリコン薄膜トランジスタの形成が可
能であり、大面積の薄膜形成も可能なことから、大面積
のデイスプレィや駆動回路を 同時に形成したアクティ
ブ・マトリクス方式のLCDの作製が節単になり、工場
の生産性が向上し、製品のコストも低減できる。
When plasma chemical vapor deposition is performed at rr with a ratio of reactant gas containing silicon atoms to hydrogen in the diluent gas of 1150 to 1/150, a crystalline silicon thin film with large grain size can be formed relatively easily on a glass substrate at low temperature. It is possible. By using a crystalline silicon thin film with a large grain size, it is possible to form a crystalline silicon thin film transistor with good transistor characteristics, and it is also possible to form a thin film over a large area. - Fabrication of matrix-type LCDs becomes economical, improving factory productivity and reducing product costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の製造方法によりガラス基板の温度を
変えて堆積した結晶シリコン膜のX線回折分析を示すグ
ラフ図である。第2図は、本発明の製造方法によりガラ
ス基板上に反応ガス(SiH,)と水素(H2)の比率
を変えて堆積した結晶シリコン膜のX線回折分析を示す
グラフ図である。 特  許  出  願  人 凸版印刷1株式会社 代表者 鈴木和夫
FIG. 1 is a graph showing an X-ray diffraction analysis of a crystalline silicon film deposited by changing the temperature of a glass substrate according to the manufacturing method of the present invention. FIG. 2 is a graph showing X-ray diffraction analysis of crystalline silicon films deposited on a glass substrate by the manufacturing method of the present invention with varying ratios of reactive gas (SiH, ) and hydrogen (H2). Patent application: Toppan Printing 1 Co., Ltd. Representative: Kazuo Suzuki

Claims (4)

【特許請求の範囲】[Claims] (1)高周波励起プラズマを用いてシリコン原子を有す
る反応ガスおよび水素ガスをプラズマ化し、加熱基板上
に化学的気相成長法によりシリコン膜を堆積させる結晶
シリコン膜の製造方法において、反応圧力が0.5〜1
0Torrで、シリコン原子を有する反応ガスに対する
希釈ガスである水素ガスの比率が50〜150倍である
ことを特徴とする結晶シリコン膜の製造方法。
(1) A method for manufacturing a crystalline silicon film in which a reactive gas containing silicon atoms and hydrogen gas are turned into plasma using radio-frequency excited plasma, and a silicon film is deposited on a heated substrate by chemical vapor deposition, in which the reaction pressure is 0. .5-1
A method for manufacturing a crystalline silicon film, characterized in that the ratio of hydrogen gas, which is a diluent gas, to a reaction gas containing silicon atoms is 50 to 150 times at 0 Torr.
(2)基板の加熱温度が400〜600℃である請求項
(1)記載の結晶シリコン膜の製造方法。
(2) The method for manufacturing a crystalline silicon film according to claim (1), wherein the heating temperature of the substrate is 400 to 600°C.
(3)高周波励起プラズマの高周波の電力密度が、0.
05〜1.0W/cm^2である請求項(1)記載の結
晶シリコン膜の製造方法。
(3) The high frequency power density of the high frequency excited plasma is 0.
2. The method for producing a crystalline silicon film according to claim 1, wherein the electric power is 0.05 to 1.0 W/cm^2.
(4)シリコン原子を有する反応ガスがSiH_4ある
いはSi_2H_6である請求項(1)記載の結晶シリ
コン膜の製造方法。
(4) The method for producing a crystalline silicon film according to claim 1, wherein the reactive gas containing silicon atoms is SiH_4 or Si_2H_6.
JP2200960A 1990-07-27 1990-07-27 Method for manufacturing crystalline silicon film Expired - Fee Related JP3008455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2200960A JP3008455B2 (en) 1990-07-27 1990-07-27 Method for manufacturing crystalline silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2200960A JP3008455B2 (en) 1990-07-27 1990-07-27 Method for manufacturing crystalline silicon film

Publications (2)

Publication Number Publication Date
JPH0483872A true JPH0483872A (en) 1992-03-17
JP3008455B2 JP3008455B2 (en) 2000-02-14

Family

ID=16433174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2200960A Expired - Fee Related JP3008455B2 (en) 1990-07-27 1990-07-27 Method for manufacturing crystalline silicon film

Country Status (1)

Country Link
JP (1) JP3008455B2 (en)

Also Published As

Publication number Publication date
JP3008455B2 (en) 2000-02-14

Similar Documents

Publication Publication Date Title
JPH06204137A (en) Manufacture of polycrystalline silicon thin film
JPS6364993A (en) Method for growing elemental semiconductor single crystal thin film
KR970006723B1 (en) Formation of polycrystalline silicon thin films with large grain
JPH0556852B2 (en)
JPH03292741A (en) Manufacture of thin film semiconductor device
JP3320180B2 (en) Method for manufacturing thin film transistor
JPH0483872A (en) Production of crystalline silicon film
JPH05315269A (en) Forming method for thin film
JPH03289140A (en) Manufacture of thin film semiconductor device
KR20070055899A (en) Method for forming silicon film by two step deposition
AU632204B2 (en) Method for forming a deposited film
JP3116403B2 (en) Method for manufacturing thin film transistor
JPH04318973A (en) Thin film transistor and manufacture thereof
JPH0562913A (en) Deposition film forming method
JP2649221B2 (en) Deposition film formation method
JPH04298023A (en) Manufacture of single crystal silicon thin film
KR0151821B1 (en) Process for chemical vapor deposition of silicon with suppressed particle formation
JPH04180617A (en) Manufacture of large crystal grain-sized polycrystal silicon and thin film semiconductor using same
JPH01128515A (en) Formation of polycrystalline silicon film
KR19980068689A (en) Manufacturing method of polysilicon thin film
JPH04267324A (en) Semiconductor thin-film substrate and its manufacture
JPH0437119A (en) Crystalline silicone substrate and manufacture thereof
JPS63175417A (en) Manufacture of silicon crystalline thin film
JPH0594952A (en) Manufacture of polycrystalline silicon film
JPH03289129A (en) Manufacture of thin film semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees