JPH0483797A - Synthesis of diamond in vapor phase method - Google Patents

Synthesis of diamond in vapor phase method

Info

Publication number
JPH0483797A
JPH0483797A JP19634590A JP19634590A JPH0483797A JP H0483797 A JPH0483797 A JP H0483797A JP 19634590 A JP19634590 A JP 19634590A JP 19634590 A JP19634590 A JP 19634590A JP H0483797 A JPH0483797 A JP H0483797A
Authority
JP
Japan
Prior art keywords
diamond
flame
oxygen
organic compound
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19634590A
Other languages
Japanese (ja)
Other versions
JP2619557B2 (en
Inventor
Kunio Komaki
小巻 邦雄
Isamu Yamamoto
勇 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2196345A priority Critical patent/JP2619557B2/en
Publication of JPH0483797A publication Critical patent/JPH0483797A/en
Application granted granted Critical
Publication of JP2619557B2 publication Critical patent/JP2619557B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To further increase separating out speed of diamond and improve uniformity of quality by introducing an organic compound having a different composition from a burning flame-forming gas or a mixed gas of an organic compound and argon or hydrogen into inner flame part of a burning flame in a box body independently of a burning flame-forming gas. CONSTITUTION:A raw material compound for separating out diamond containing carbon or a mixed gas of said compound and oxygen is burned so as to generate incomplete burning region in a box atmosphere containing oxygen or not containing oxygen to synthesize diamond in a vapor phase method. In said method, the following means is adopted in this invention: namely, an organic compound containing carbon having a composition different from a raw material for burning (jetting hole: 3) or a mixed gas of said organic compound and argon or hydrogen is directly supplied (jetting hole: 2) to an inner flame part 6 to separate out granular or filmy diamond in the box body.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐摩耗性、耐食性、高熱伝導性、高比弾性等の
特性を有し、研磨材、光学材料、超硬工具材、摺動材、
耐蝕材、音響振動材、刃先材用部材等に有用な膜状、粒
状のダイヤモンドの気相法合成に関する。
[Detailed description of the invention] [Industrial application field] The present invention has characteristics such as wear resistance, corrosion resistance, high thermal conductivity, and high specific elasticity, and is useful for abrasive materials, optical materials, cemented carbide tool materials, sliding materials, etc. wood,
This paper relates to the vapor phase synthesis of film-like and granular diamonds useful for corrosion-resistant materials, acoustic vibration materials, cutting edge materials, etc.

〔従来の技術〕[Conventional technology]

ダイヤモンドの合成法としては、超高圧条件下での、鉄
、ニッケル系等の触媒による合成法や爆薬法による黒鉛
の直接変換法が従来より実施されている。
Conventional methods for synthesizing diamond include a synthesis method using an iron- or nickel-based catalyst under ultra-high pressure conditions, and a direct conversion method of graphite using an explosive method.

近年低圧CVD法として、炭化水素または窒素、酸素等
を含む有機化合物と水素との混合ガスを熱フィラメント
、マイクロ波プラズマ、高周波プラズマ、直流放電プラ
ズマ、直流アーク放電等により、励起状態としてダイヤ
モンドを合成する方法が開発された。本出願の発明者ら
は前記CVD法を改良した方法として、ダイヤモンド析
出用原料化合物を不完全燃焼領域を有する様に燃焼させ
、該不完全燃焼領域またはその近傍に設けた基材にダイ
ヤモンドを析出させる燃焼炎法のダイヤモンド合成法を
開発し、第35回応用物理学会関係連合講演会(Kl演
予稿集第2分冊434頁29a−T−1)にて発表し、
特開平1−282193号として開示した。また特願平
1−98058号では、燃焼炎による気相法ダイヤモン
ドを合成する方法において、函体中でのダイヤモンドの
合成法を出願した。
In recent years, low-pressure CVD has been used to synthesize diamond in an excited state using a mixed gas of hydrogen and hydrocarbons or organic compounds containing nitrogen, oxygen, etc., using hot filaments, microwave plasma, high-frequency plasma, DC discharge plasma, DC arc discharge, etc. A method has been developed to do so. The inventors of the present application have improved the CVD method by burning a raw material compound for diamond precipitation in such a way that it has an incomplete combustion region, and depositing diamond on a base material provided in or near the incomplete combustion region. We developed a diamond synthesis method using the combustion flame method, and presented it at the 35th Japan Society of Applied Physics Association Conference (Kl Proceedings Vol. 2, Volume 2, p. 29a-T-1).
It was disclosed as JP-A-1-282193. Furthermore, in Japanese Patent Application No. 1-98058, an application was filed for a method of synthesizing diamond in a box in a method of synthesizing diamond in a vapor phase using a combustion flame.

更に、特願平1−343229においては、燃焼炎の内
炎部に有機化合物または有機化合物とアルゴンの混合ガ
スを導入することにより、良質のダイヤモンドの析出速
度を高める方法を出願した。
Furthermore, Japanese Patent Application No. 1-343229 discloses a method of increasing the rate of precipitation of high-quality diamond by introducing an organic compound or a mixed gas of an organic compound and argon into the inner flame portion of the combustion flame.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

特開平1−282193号の発明は従来法に比べ簡易な
手段でしかも大面積の膜状ダイヤモンドを生成し得る気
相合成法であって、その要点は炭素を含むダイヤモンド
析出用原料化合物を不完全燃焼領域を有するように燃焼
させ、該不完全燃焼領域中、又は該領域の近傍の非酸化
性雰囲気中にダイヤモンドを析出させる方法である。こ
の方法は炭素を含む原料化合物より、燃焼炎を形成させ
るのみで基材上にダイヤモンドを析出させる事が可能で
あり、従来のCVD法に比べ画期的に優れた方法である
。しかし、この方法では雰囲気の気体の影響により、析
出物の質的あるいは量的なコントロールは容易ではない
The invention disclosed in JP-A-1-282193 is a vapor phase synthesis method that is simpler than conventional methods and can produce a large area of diamond film. This is a method in which combustion is performed so as to have a combustion zone, and diamond is precipitated in a non-oxidizing atmosphere in or near the incomplete combustion zone. This method allows diamond to be deposited on a substrate simply by forming a combustion flame from a raw material compound containing carbon, and is a revolutionary method superior to the conventional CVD method. However, in this method, it is not easy to control the quality or quantity of the precipitate due to the influence of gas in the atmosphere.

一方、特願平1−98058号において、函体内にて燃
焼炎による気相法ダイヤモンドを合成することにより不
完全燃焼領域の増加による析出速度の増加が図られ、量
産化への可能性が開かれた。
On the other hand, in Japanese Patent Application No. 1-98058, by synthesizing vapor-phase diamond using combustion flame inside a box, the precipitation rate was increased by increasing the incomplete combustion region, and the possibility of mass production was opened. It was written.

しかしこれら簡易な手段でしかも大量の膜状あるいは粒
状のダイヤモンド析出を行わせることにより、各種基材
へのコーテイング膜、又は大面積あるいは立体形状をは
じめとする自立体等、様々な形状のダイヤモンド膜製品
を実用化するためには、ダイヤモンドの析出速度の一層
の増大と、析出ダイヤモンド品質の均一性向上という課
題が残されていた。
However, by depositing a large amount of film or granular diamond using these simple methods, it is possible to form diamond films of various shapes, such as coating films on various substrates, or free-standing bodies including large areas or three-dimensional shapes. In order to put the product into practical use, there remained the challenges of further increasing the diamond precipitation rate and improving the uniformity of the quality of the precipitated diamonds.

本発明は燃焼炎内ラジカル反応の制御技術の向上により
、上記*gを解決しようとすることを目的としており、
その為の手段を提供するものである。
The purpose of the present invention is to solve the above *g by improving the control technology of radical reactions within combustion flames.
It provides the means for that purpose.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は上記の目的を達成するために鋭意研究した
結果、ダイヤモンド析出用原料化合物を燃焼させるに際
し函体中で雰囲気、圧力の制御を行い、燃焼炎の内炎部
に有機化合物または有機化合物とアルゴンあるいは水素
の混合ガスを燃焼炎形成ガスとは別に導入することによ
り、目的を達成することを確認して本発明を完成した。
As a result of intensive research to achieve the above object, the present inventors controlled the atmosphere and pressure in the box when burning the raw material compound for diamond precipitation, and the organic compound or organic The present invention was completed after confirming that the object could be achieved by introducing a mixed gas of the compound and argon or hydrogen separately from the combustion flame forming gas.

即ち本発明は函体中で燃焼炎の内IA部、すなわち既に
形成されているコアー(白心)の近傍の高温プラズマ部
へ、外部より燃焼炎形成ガスとは組成を異にした有機化
合物または有機化合物とアルゴンあるいは水素の混合ガ
スを燃焼炎形成ガスとは別に直接導入することを特徴と
する、燃焼炎法高速析出ダイヤモンドの合成法に関する
That is, the present invention provides an organic compound having a composition different from that of the combustion flame-forming gas or an organic compound having a composition different from that of the combustion flame-forming gas from the outside into the IA part of the combustion flame, that is, the high-temperature plasma part near the already formed core (white core) in the case. The present invention relates to a combustion flame method for synthesizing rapidly precipitated diamond, which is characterized in that a mixed gas of an organic compound and argon or hydrogen is directly introduced separately from the combustion flame forming gas.

本発明に使用するダイヤモンド合成用炭素源としてはメ
タン、エタン、プロパン、ブタン等の飽和炭化水素、エ
チレン、プロピレン、ブチレン、アセチレン等の不飽和
炭化水素、ベンゼン、スチレン等の芳香族炭化水素、エ
チルアルコール等のアルコール類、アセトン等のケトン
基を含む化合物、ジエチルエーテル等のエーテル類、そ
の他アルデヒド化合物、含窒素化合物、−酸化炭素等全
てが使用可能である。
Carbon sources for diamond synthesis used in the present invention include saturated hydrocarbons such as methane, ethane, propane, and butane; unsaturated hydrocarbons such as ethylene, propylene, butylene, and acetylene; aromatic hydrocarbons such as benzene and styrene; Alcohols such as alcohol, compounds containing a ketone group such as acetone, ethers such as diethyl ether, other aldehyde compounds, nitrogen-containing compounds, and carbon oxide can all be used.

本発明においては前記のダイヤモンド合成用原料ガス、
又は(及び)混合ガスの不完全燃焼領域中又は非酸化性
でかつ炎の近傍のダイヤモンド析出可能に励起された領
域にダイヤモンド析出用基材を存在させることが必要で
ある。また炭素を含むダイヤモンド析出用原料化合物を
不完全燃焼領域を有する様に燃焼させる場合に燃焼を酸
素を含まない雰囲気である函体中で行うことによって、
圧力の制御が容易になり、更に不完全燃焼領域の増加と
導入ガスの混合比率の調節により、燃焼炎の質的コント
ロールを行うことが本発明においては必要である。
In the present invention, the above raw material gas for diamond synthesis,
or (and) it is necessary to have a diamond-precipitating substrate present in the region of incomplete combustion of the gas mixture or in a region that is non-oxidizing and is excited to allow diamond precipitation in the vicinity of the flame. In addition, when burning a carbon-containing raw material compound for diamond precipitation so as to have an incomplete combustion region, by carrying out the combustion in a box in an oxygen-free atmosphere,
In the present invention, it is necessary to easily control the pressure, and also to qualitatively control the combustion flame by increasing the incomplete combustion region and adjusting the mixing ratio of the introduced gas.

これらのダイヤモンドの気相合成において有機原料化合
物が燃焼炎中で加熱と酸素との反応で分離解離、さらに
反応して、ラジカル化した活性種から例えばC,H,C
2,CH,CH2,CH3などが発生する。本発明方法
では燃焼炎の内炎部に有機化合物を注入することにより
、高熱による分解、解離を行なわしめ、クラスター化あ
るいはラジカル化して、Cラジカル、C2ラジカル、C
Hラジカル等の活性種と衝突をくり返し、ラジカルの運
動量が高められ、全体としてダイヤモンド生成に好まし
い雰囲気となる。この雰囲気における析出ダイヤモンド
の性状は著しく向上し、同時に析出速度も非常に高めら
れる。
In the gas phase synthesis of these diamonds, organic raw material compounds are separated and dissociated by heating and reaction with oxygen in a combustion flame, and further react to form radicalized active species, such as C, H, C.
2, CH, CH2, CH3, etc. are generated. In the method of the present invention, by injecting an organic compound into the inner flame part of a combustion flame, it is decomposed and dissociated by high heat, clustered or radicalized, and C radical, C2 radical, C
Through repeated collisions with active species such as H radicals, the momentum of the radicals is increased, resulting in an overall atmosphere favorable for diamond production. The properties of the precipitated diamond in this atmosphere are significantly improved, and at the same time the precipitation rate is also greatly increased.

通常燃焼炎法においてはアセチレン、スチレン、アレン
、プロパン等の原料ガスに酸素を添加し、函体内で燃焼
炎を形成し、酸素添加量の調整により不完全燃焼域の体
積を調整することが可能である。
In the normal combustion flame method, oxygen is added to raw material gas such as acetylene, styrene, allene, propane, etc. to form a combustion flame inside the box, and the volume of the incomplete combustion zone can be adjusted by adjusting the amount of oxygen added. It is.

一例をあげるならば、酸素−アセチレン系の場合、02
 / C2H2の比は0.5〜2が好ましく、より好ま
しくは0.7〜1.2である。0.7より少ない場合は
、煤が発生しやすい。これらの場合の不完全燃焼領域で
ある内炎の温度は2000〜3000℃であり、補助励
起手段は必要としない。
To give an example, in the case of oxygen-acetylene system, 02
/C2H2 ratio is preferably 0.5 to 2, more preferably 0.7 to 1.2. If it is less than 0.7, soot is likely to be generated. In these cases, the temperature of the inner flame, which is the incomplete combustion region, is 2000 to 3000°C, and no auxiliary excitation means is required.

一般的にはダイヤモンドの合成温度は1500℃以上が
望ましい。析出基材温度は500〜1200℃で、より
好ましくは800〜1100℃であり、冷却することに
よりこの基材温度範囲に制御可能である。
Generally, it is desirable that the diamond synthesis temperature be 1500°C or higher. The temperature of the substrate for precipitation is 500 to 1200°C, more preferably 800 to 1100°C, and can be controlled within this range by cooling.

ダイヤモンド析出用基材は通常CVD法で用いられるも
のが使用できる。即ちS1ウエハー、S1C焼結体、S
iC粒状物の外にW、  WC,Mo、TiC,TiN
、サーメット、超硬合金鋼、高速度鋼等の形状物及び粒
状物を例示できる。
As the base material for diamond precipitation, those commonly used in CVD methods can be used. That is, S1 wafer, S1C sintered body, S
In addition to iC granules, W, WC, Mo, TiC, TiN
, cermet, cemented carbide steel, high-speed steel, etc., and granular materials can be exemplified.

ダイヤモンドが析出する領域は燃焼炎中の通常内炎と称
される酸素不足の領域である。一般的に酸素過剰領域は
高熱で、例えばダイヤモンドか形成されても過剰の酸素
によりCO,CO2となり消失する。即ちこの領域では
ダイヤモンドは析出しないと考えられる。尚、ダイヤモ
ンド析出領域は酸素不足であり、比較的低温である。そ
してこの領域においては原料ガスより炭化水素ラジカル
(活性種)の生成の条件に励起することが必要である。
The region where diamonds are deposited is an oxygen-deficient region of the combustion flame, commonly referred to as the inner flame. Generally, an oxygen-excessive region is at a high temperature, and even if diamond is formed, for example, the excess oxygen turns into CO and CO2 and disappears. That is, it is considered that diamond does not precipitate in this region. Note that the diamond precipitation region is oxygen deficient and has a relatively low temperature. In this region, it is necessary to excite the raw material gas to conditions that produce hydrocarbon radicals (active species).

函体中では、不完全燃焼領域で形成されたラジカル化し
た活性種及び水素原子、酸素原子の生成及び拡散領域が
調節でき、その結果として外炎部の減少または消失が起
こり、即ちこれが不完全燃焼領域の拡大に連なりダイヤ
モンド析出面積、速度の増大、均質化が可能となる。
In the casing, the generation and diffusion region of radicalized active species and hydrogen atoms and oxygen atoms formed in the incomplete combustion region can be adjusted, resulting in a reduction or disappearance of the outer flame zone, i.e., the incomplete combustion region. As the combustion area expands, it becomes possible to increase the diamond precipitation area, speed, and homogenization.

更に、この様に燃焼状態を調節した本発明の有機化合物
等の添加物の導入法について、酸素−アセチレン系の場
合を例として図面に基ずいて説明する。
Furthermore, the method of introducing additives such as organic compounds according to the present invention that adjust the combustion state in this way will be explained based on the drawings, taking the case of an oxygen-acetylene system as an example.

第一図(a)(bHc)は本発明の方法を実施するため
のバーナーの一例、火口1を示すもので、中心に有機化
合物等からなる添加物の噴出口2があり、周囲にアセチ
レン等燃焼炎形成ガス噴出口3が配置されている。第2
図は前記の火口1をもつバーナーよりの大気中での燃焼
炎を示すもので、燃焼炎は内炎6、外炎7、白心4、中
央のラジカル炎(仮称)5により構成されることが示さ
れている。
Figure 1 (a) (bHc) shows an example of a burner for carrying out the method of the present invention, a crater 1, in which there is a spout 2 for additives made of organic compounds etc. in the center, and acetylene etc. A combustion flame forming gas outlet 3 is arranged. Second
The figure shows a combustion flame in the atmosphere from a burner with the above-mentioned crater 1. The combustion flame is composed of an inner flame 6, an outer flame 7, a white core 4, and a radical flame (tentative name) 5 in the center. It is shown.

ラジカル炎形成のためには添加物の組成が燃焼炎形成ガ
スと異なることが必要である。特に酸素は無酸素か、非
常に少ないことが好ましい。第3図は函体内でバーナー
火口1より、水冷支持台10に担持された析出基材9に
向は前記燃焼炎を吹き付けた場合の燃焼炎の状況を示す
もので、図に示す様に基材に炎がぶつかるために燃焼炎
は図に示すような流れとなり、励起された添加物がC2
ラジカル、CHラジカルを始めとするカーボン含有の活
性種と共に内炎6の内部に封し込められたラジカル炎5
となる。
Radical flame formation requires that the composition of the additive be different from the combustion flame-forming gas. In particular, it is preferable that the amount of oxygen is non-oxygen or very low. FIG. 3 shows the state of the combustion flame when the combustion flame is blown from the burner nozzle 1 inside the box toward the deposition base material 9 supported on the water-cooled support stand 10. As the flame collides with the material, the combustion flame flows as shown in the figure, and the excited additives become C2
A radical flame 5 sealed inside the inner flame 6 together with carbon-containing active species such as radicals and CH radicals.
becomes.

ラジカル炎内においては (H−C)ラジカル十C2H2→ (ダイヤモンド前駆体)ラジカル+H2の反応が起こる
と考えられる。またラジカル炎と内炎とが交錯する混合
炎内では、 (C−H)ラジカルと各種のカーボン含有
ラジカルと原子状水素の接触により、活性が高まり、よ
り多くのダイヤモンド前駆体ラジカルが基材に到着する
。第4図に函体内で調節された炎の形態を示し大気中と
比較する。 (、)は大気中ではコアも大きく完全に外
炎を形成し、内炎部には第三成分の炎が出現する、これ
は函体内ではコアが伸び外炎は裾広がりになり、内炎の
一部が外炎内に拡散する。この形態では混合部ではダイ
ヤモンドの高速析出が期待できる。 (bンは燃焼炎の
酸素成分を(a)の条件よりわずかに高めた。この組成
では大気中では外炎がわずかに残るが、函体内ではコア
も少し伸び、外炎と内炎の混合が進み、均一化さ九てい
るので、均質で大面積のダイヤモンドの析出が可能とな
る。また(c)では燃焼炎の酸素成分を(b)の条件よ
り少し高めた。この組成では大気中では燃焼炎の内外炎
の境界が無くなり、函体中では白心も少しは伸び、外炎
部はかすかに残るものの炎は中心部に集中され、この炎
内では微細で高品質のダイヤモンドが得られる。なお、
本発明方法を実施するにあたり、基体の設置位置は、酸
素−アセチレン系の場合は、白心の先端から0〜20m
m、その他の系の場合は火口から2〜20 m mの位
置に設定するのが好ましい。
It is thought that a reaction of (H-C) radical C2H2→(diamond precursor) radical + H2 occurs in the radical flame. In addition, in a mixed flame in which a radical flame and an inner flame intersect, activity increases due to contact between (C-H) radicals, various carbon-containing radicals, and atomic hydrogen, and more diamond precursor radicals reach the base material. arrive. Figure 4 shows the shape of the flame controlled inside the box and compares it with that in the atmosphere. In the case of (,), the core is large and completely forms an outer flame in the atmosphere, and a third component flame appears in the inner flame.This is because the core stretches inside the box and the outer flame becomes wider, and the inner flame becomes wider. A part of it diffuses into the outer flame. In this form, high-speed precipitation of diamond can be expected in the mixing zone. (In case b, the oxygen content of the combustion flame was slightly higher than in condition (a). With this composition, a slight outer flame remains in the atmosphere, but the core also stretches a little inside the box, causing a mixture of outer flame and inner flame. As the combustion progresses and becomes more uniform, it becomes possible to deposit homogeneous and large-area diamonds.Also, in (c), the oxygen content of the combustion flame was slightly higher than that in (b).With this composition, In this case, the boundary between the inner and outer flames of the combustion flame disappears, the white core also extends a little inside the box, and although the outer flame remains faint, the flame is concentrated in the center, and within this flame, fine, high-quality diamonds are obtained. In addition,
When carrying out the method of the present invention, the installation position of the substrate is 0 to 20 m from the tip of the white center in the case of oxygen-acetylene type.
m, and in the case of other systems, it is preferable to set it at a position of 2 to 20 mm from the crater.

さらに本発明を実施するに際して、供給する添加用のダ
イヤモンド形成原料はC2H2に対して、有機化合物/
 C2H2が3 vo1%−130vo1%が好ましい
Furthermore, when carrying out the present invention, the diamond-forming raw material for addition to be supplied is an organic compound/
C2H2 is preferably 3 vol% to 130 vol%.

有機化合物が少ないとダイヤモンドの析出量が減少し、
多すぎるとグラファイト化しダイヤモンドが得られない
。また、添加用原料にArガスを混入させると、高品位
で自形の発達したダイヤモンドが得られる。Arガスの
混入率はA r /有機化合物が5〜70vo1%、好
ましくは15〜50vo1%である。
When the amount of organic compounds is low, the amount of diamond precipitation decreases,
If it is too large, it will become graphitized and diamonds will not be obtained. Furthermore, when Ar gas is mixed into the raw material for addition, a high-quality diamond with a well-developed automorphic shape can be obtained. The mixing rate of Ar gas is Ar/organic compound of 5 to 70 vol%, preferably 15 to 50 vol%.

函体中の圧力は、0.ITorr−10,000Tor
rで使用でき、望ましくは10Torr−760Tor
r、さらに望ましくは100Torr〜750Torr
である。函体内の圧力が減圧になるに従って炎体積の増
大が起こり、それに従ってダイヤ合成領域が拡大する。
The pressure inside the box is 0. ITorr - 10,000 Torr
r, preferably 10Torr-760Torr
r, more preferably 100 Torr to 750 Torr
It is. As the pressure inside the box decreases, the flame volume increases, and the diamond synthesis area expands accordingly.

一方、減圧になりすぎると炎が消えてしまうと同時に温
度の低下を招く。
On the other hand, if the pressure is reduced too much, the flame will go out and the temperature will drop at the same time.

〔実施例1〕 第2図に示されるように、アセチレンバーナー火口1を
下向きに固定した。なお、バーナーロはスリット内径3
. 4mm、  スリット内径2.9mm、中心の添加
物噴出口は直径0.9mmである。
[Example 1] As shown in FIG. 2, the acetylene burner nozzle 1 was fixed downward. In addition, Burnaro has a slit inner diameter of 3
.. 4 mm, the slit inner diameter is 2.9 mm, and the central additive spout has a diameter of 0.9 mm.

次にアセチレン3.  Oす7タ一/min、酸素2.
8リフタ一/m1n(酸素/アセチレン比0.93)、
  添加物のメタンを5 Q cc/mi口、キャリア
ガスの水素を100 cc/minの流量でバーナーに
供給し、第2図に示す様にまず大気中で燃焼炎を形成し
た。この時第4図(C′)の様に外炎が消失し、中央の
内炎が残った。この後、第3図に示すように20 m 
m角、厚さ0.5mmのMO基材9を水冷支持台上に固
定し、白心より8mmの距離に移動し、固定した。
Next, acetylene 3. Oxygen 7 t/min, oxygen 2.
8 lifter/m1n (oxygen/acetylene ratio 0.93),
Methane as an additive was supplied to the burner at a flow rate of 5 Q cc/mi, and hydrogen as a carrier gas was supplied to the burner at a flow rate of 100 cc/min, and a combustion flame was first formed in the atmosphere as shown in FIG. At this time, the outer flame disappeared and the inner flame in the center remained, as shown in Figure 4 (C'). After this, 20 m as shown in Figure 3.
An MO base material 9 of m square and 0.5 mm thickness was fixed on a water-cooled support, moved to a distance of 8 mm from the white center, and fixed.

この時の函体内の圧力を450 torr、基材温度を
900℃に調整した。20分の反応後、基材堆積物を光
学顕微鏡により観察を行ったところ、自形のよく発達し
た微細で高品質なダイヤモンド結晶が基材中心部に析出
していることを確認した。さらにこのダイヤモンドの顕
微ラマン分光分析を行った結果、ラマンシフト1333
cm−’にダイヤモンド結晶による鋭いピーク1本のみ
を示した。
At this time, the pressure inside the box was adjusted to 450 torr, and the substrate temperature was adjusted to 900°C. After 20 minutes of reaction, the substrate deposit was observed using an optical microscope, and it was confirmed that fine, high-quality diamond crystals with well-developed euhedral shapes were precipitated in the center of the substrate. Furthermore, as a result of microscopic Raman spectroscopy analysis of this diamond, the Raman shift was 1333.
Only one sharp peak due to diamond crystals was shown at cm-'.

また粒径を測定したところ平均2〜5μmの一部透明性
のある細粒であることが認められ、またその収量は0.
012gであった。
When the particle size was measured, it was found that the particles were partially transparent and had an average size of 2 to 5 μm, and the yield was 0.5 μm.
It was 012g.

〔実施例2〕 実施例1と同じバーナー、基材位置でアセチレン3. 
0 リフター/min、   lI!素2. 75 リ
フター/m1n(#素/アセチレン比0.917)、添
加物のメタンを50 cc/min、キャリアガスの水
素をl OOcc/m1nの流量でバーナーに供給し、
第2図に示す様に大気中で燃焼炎を形成した。この時第
4図(b)の様に外炎がわずかに残った。その後実施例
1と同一の生成条件で20分間合成を行った、その結果
基材上の広い面積にわたって平均5〜10μmの自形ダ
イヤの薄膜が得られた、収量は0.023gであった。
[Example 2] Acetylene was used at the same burner and substrate position as in Example 1.
0 lifter/min, lI! Basic 2. 75 lifter/m1n (#element/acetylene ratio 0.917), methane as an additive was supplied to the burner at a flow rate of 50 cc/min, hydrogen as a carrier gas was supplied to the burner at a flow rate of lOOcc/m1n,
A combustion flame was formed in the atmosphere as shown in Figure 2. At this time, a slight external flame remained as shown in Figure 4(b). Thereafter, synthesis was carried out for 20 minutes under the same production conditions as in Example 1. As a result, a thin film of euhedral diamonds with an average size of 5 to 10 μm was obtained over a wide area on the substrate, and the yield was 0.023 g.

〔実施例3〕 実施例1と同じバーナー、基材位置でアセチレン3. 
0リフタ一/min、   I!素2. 7 リフター
/m1n(酸素/アセチレン比0.90)、添加物のメ
タンを50cc/min、キャリアガスの水素を100
 cc/minの流量でバーナーに供給し、第2図に示
す様に大気中で燃焼炎を形成した。この時第4図(a)
の様に完全に外炎を形成した。その後、実施例1と同一
の生成条件で、20分間合成を行った。
[Example 3] Acetylene was used at the same burner and substrate position as in Example 1.
0 lifter/min, I! Basic 2. 7 lifter/mln (oxygen/acetylene ratio 0.90), methane additive at 50cc/min, hydrogen carrier gas at 100cc/min
It was supplied to the burner at a flow rate of cc/min, and a combustion flame was formed in the atmosphere as shown in FIG. At this time, Figure 4(a)
A complete external inflammation was formed. Thereafter, synthesis was performed for 20 minutes under the same production conditions as in Example 1.

その結果、基材上の中央には自形ダイヤが外周部にはダ
イヤモンドライクカーボン(以下DLCと記す)が盛り
上がって析出した。収量は0.048gであった。
As a result, a self-shaped diamond was deposited in the center of the base material, and diamond-like carbon (hereinafter referred to as DLC) was deposited on the outer periphery in a raised manner. Yield was 0.048g.

〔実施例4〕 実施例1と同じバーナー、基材位置でアセチレン3. 
 0 リフター/min、  酸素2. 8 リフター
/m1n(酸素/アセチレン比0.93)、添加物のプ
ロパンを50 cc/minキャリアガスの水素を10
0 cc/minの流量でバーナーに供給し、20分間
合成を行った。
[Example 4] Acetylene 3.
0 lifter/min, oxygen 2. 8 lifter/m1n (oxygen/acetylene ratio 0.93), propane as additive at 50 cc/min, hydrogen as carrier gas at 10 cc/min
The mixture was supplied to the burner at a flow rate of 0 cc/min, and synthesis was performed for 20 minutes.

その結果、基材上の広い範囲にわたって析出が生じた。As a result, precipitation occurred over a wide range on the substrate.

ややDLCの混入した自形ダイヤモンドが主体でその収
量は0.052gであった。
The yield was 0.052 g, mainly consisting of euhedral diamonds with some DLC mixed in.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、簡易な手段によりダイヤモンドを基材
上に析出させることの出来る燃焼炎法の抱える問題点を
解決し、より大面積で均一なダイヤモンド膜を安定的に
基材上に析出させることが可能になった。
According to the present invention, the problems of the combustion flame method, which allows diamond to be deposited on a base material by a simple means, are solved, and a uniform diamond film with a larger area can be stably deposited on the base material. It became possible.

更に析出粒径のコントロール及び析出物の品質、即ちダ
イヤモンドとDLCの混合比の制御が可能になった。
Furthermore, it has become possible to control the precipitate particle size and the quality of the precipitate, that is, the mixing ratio of diamond and DLC.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施するためのバーナーの火口
1の幾つかを示すものであり、第2図は火口1を持つバ
ーナーよりの大気中での燃焼炎を示すもの、第3図は、
函体内でバーナー火口1より、水冷支持体に担持された
析出基材に向は燃焼炎を吹き付けた場合の燃焼炎の状況
、第4図は条件を変えた場合の燃焼炎の状況を示すもの
である。 1、・・・バーナー火口 2、・・・添加物噴出口 3、・・・燃焼炎形成ガス噴出口
FIG. 1 shows some of the vents 1 of a burner for carrying out the method of the invention, FIG. 2 shows the combustion flame in the atmosphere from a burner with vents 1, and FIG. teeth,
Figure 4 shows the state of the combustion flame when the combustion flame is blown onto the deposition base material supported on the water-cooled support from the burner vent 1 inside the box, and the state of the combustion flame when the conditions are changed. It is. 1, Burner crater 2, Additive jet port 3, Combustion flame forming gas jet port

Claims (1)

【特許請求の範囲】[Claims]  炭素を含むダイヤモンド析出用原料化合物あるいは該
化合物と酸素との混合ガスを、酸素を含むか、あるいは
酸素を含まない函体雰囲気中で不完全燃焼領域を有する
ように燃焼させて気相法ダイヤモンドを合成する方法に
おいて、燃焼用原料とは異なる組成の炭素を含む有機化
合物、又は該化合物とアルゴンあるいは水素の混合ガス
を内炎部に直接供給することにより、函体内で粒状また
は薄膜状のダイヤモンドを析出させる気相法ダイヤモン
ドの合成法。
Vapor-phase diamond is produced by burning a carbon-containing raw material compound for diamond precipitation or a mixed gas of the compound and oxygen in a box atmosphere containing or not containing oxygen so as to have an incomplete combustion region. In the synthesis method, granular or thin film diamonds are produced inside the box by directly supplying an organic compound containing carbon with a composition different from that of the combustion raw material, or a mixed gas of this compound and argon or hydrogen to the inner flame. A method for synthesizing diamond by vapor phase precipitation.
JP2196345A 1990-07-26 1990-07-26 Synthesis method of vapor phase diamond Expired - Lifetime JP2619557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2196345A JP2619557B2 (en) 1990-07-26 1990-07-26 Synthesis method of vapor phase diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2196345A JP2619557B2 (en) 1990-07-26 1990-07-26 Synthesis method of vapor phase diamond

Publications (2)

Publication Number Publication Date
JPH0483797A true JPH0483797A (en) 1992-03-17
JP2619557B2 JP2619557B2 (en) 1997-06-11

Family

ID=16356295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2196345A Expired - Lifetime JP2619557B2 (en) 1990-07-26 1990-07-26 Synthesis method of vapor phase diamond

Country Status (1)

Country Link
JP (1) JP2619557B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104991A (en) * 1990-08-22 1992-04-07 Japan Steel Works Ltd:The Production of diamond and device therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203297A (en) * 1988-02-09 1989-08-16 Natl Inst For Res In Inorg Mater Method for synthesizing diamond with combustion flame
JPH0474795A (en) * 1990-07-11 1992-03-10 Sumitomo Electric Ind Ltd Method for vapor phase synthesis of diamond

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203297A (en) * 1988-02-09 1989-08-16 Natl Inst For Res In Inorg Mater Method for synthesizing diamond with combustion flame
JPH0474795A (en) * 1990-07-11 1992-03-10 Sumitomo Electric Ind Ltd Method for vapor phase synthesis of diamond

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104991A (en) * 1990-08-22 1992-04-07 Japan Steel Works Ltd:The Production of diamond and device therefor

Also Published As

Publication number Publication date
JP2619557B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
JP2597497B2 (en) Synthesis method of vapor phase diamond
US5876683A (en) Combustion flame synthesis of nanophase materials
US5491028A (en) Enhanced adherence of diamond coatings
JPH0346437B2 (en)
EP0552249A1 (en) Flame or plasma synthesis of diamond under turbulent and transition flow conditions
WO1996030557A1 (en) Enhanced adherence of diamond coatings employing pretreatment process
Rudder et al. Chemical vapor deposition of diamond films from water vapor rf‐plasma discharges
US5358596A (en) Method and apparatus for growing diamond films
Makris et al. Carbon nanotubes growth by HFCVD: effect of the process parameters and catalyst preparation
JP2619557B2 (en) Synthesis method of vapor phase diamond
JP2752753B2 (en) Synthesis method of diamond by combustion flame
JP2754259B2 (en) Combustion Flame Synthesis Method for Transparent Diamond
JP2786721B2 (en) Synthesis method of diamond by combustion flame
JPH0255294A (en) Method for synthesizing diamond by vapor process
JP2651773B2 (en) Vapor phase diamond synthesis method and synthesis apparatus
JP2581330B2 (en) Synthesis method of diamond by combustion flame
JP2680676B2 (en) Synthesis method of vapor phase diamond
JPH02192491A (en) Method for synthesizing diamond of vapor process
JP2597498B2 (en) Synthesis method of vapor phase diamond
JP2820604B2 (en) Method and apparatus for synthesizing vapor phase diamond
JP2585342B2 (en) Diamond vapor phase synthesis
JPH02267193A (en) Method for synthesizing diamond by combustion flame method and gas burner for synthesis
JPS63117993A (en) Device for synthesizing diamond in vapor phase
JPS63166733A (en) Production of diamond film
Emelyanov et al. EXPERIMENTAL STUDY OF DIAMOND STRUCTURE SYNTHESIS FROM AMIXTURE OF HYDROGEN WITH ETHANOL VAPOR