JP2786721B2 - Synthesis method of diamond by combustion flame - Google Patents

Synthesis method of diamond by combustion flame

Info

Publication number
JP2786721B2
JP2786721B2 JP16884290A JP16884290A JP2786721B2 JP 2786721 B2 JP2786721 B2 JP 2786721B2 JP 16884290 A JP16884290 A JP 16884290A JP 16884290 A JP16884290 A JP 16884290A JP 2786721 B2 JP2786721 B2 JP 2786721B2
Authority
JP
Japan
Prior art keywords
diamond
combustion flame
gas
combustion
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16884290A
Other languages
Japanese (ja)
Other versions
JPH0459697A (en
Inventor
邦雄 小巻
勇 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP16884290A priority Critical patent/JP2786721B2/en
Publication of JPH0459697A publication Critical patent/JPH0459697A/en
Application granted granted Critical
Publication of JP2786721B2 publication Critical patent/JP2786721B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は耐摩耗性、耐触性、高熱伝導性、高比弾性等
の特性を有し、光学材料、超硬工具材、研磨材、摺動
材、音響振動材、刃先材用部材に有用な膜状、粒状のダ
イヤモンドの気相法合成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention has characteristics such as abrasion resistance, touch resistance, high thermal conductivity, and high specific elasticity, and includes optical materials, carbide tool materials, abrasive materials, The present invention relates to a vapor-phase method for synthesizing film-like and granular diamonds useful for sliding materials, acoustic vibration materials, and cutting edge materials.

<従来の技術> ダイヤモンドの合成法としては、超高圧条件下での、
鉄、ニッケル系等の触媒による合成法や爆薬法による黒
鉛の直接変換法が従来より実施されている。
<Conventional technology> As a method for synthesizing diamond, under ultra-high pressure conditions,
Conventionally, a synthesis method using an iron or nickel-based catalyst or a direct conversion method of graphite using an explosive method has been practiced.

近年低圧CVD法として、炭化水素または窒素、酸素等
を含む有機化合物と水素との混合ガスを熱フィラメン
ト、マイクロ波プラズマ、高周波プラズマ、直流放電プ
ラズマ、直流アーク放電等により、励起状態としてダイ
ヤモンドを合成する方法が開発された。
In recent years, as a low-pressure CVD method, diamond has been synthesized as an excited state using a mixed gas of hydrocarbon or an organic compound containing nitrogen, oxygen, etc. and hydrogen by hot filament, microwave plasma, high frequency plasma, DC discharge plasma, DC arc discharge, etc. A way was developed.

本出願の発明者らは前記CVD法を改良した方法とし
て、ダイヤモンド析出用原料化合物を不完全燃焼領域を
有する様に燃焼させ、該不完全燃焼領域またはその近傍
に設けた基材にダイヤモンドを析出させる燃焼炎法のダ
イヤモンド合成法を開発し、第35回応用物理学会関係連
合講演会(講演予稿集代2分冊434頁29a−T−1)にて
発表し、特願昭63−71758として出願した。さらに特願
平1−246382において、燃焼炎の内炎部にアルゴンガス
を燃焼ガスとは別に直接導入することを特徴とする燃焼
炎法透明性ダイヤモンドの合成法として出願した。ひと
続き特願平1−343229号において、燃焼炎の内炎部に燃
焼炎形成ガスとは組成を異にする有機化合物、アルゴン
の単独または混合ガスを燃焼炎形成ガスとは別に導入す
ることを特徴とする燃焼炎法高速析出ダイヤモンドの合
成法として出願した。
As an improved method of the CVD method, the inventors of the present application burn a raw material compound for diamond deposition so as to have an incomplete combustion region, and deposit diamond on a substrate provided in or near the incomplete combustion region. Developed a diamond synthesis method for the combustion flame method, and presented it at the 35th Annual Conference of the Japan Society of Applied Physics (Preliminary Proceedings, 2nd Volume, 434 pages, 29a-T-1) and applied for Japanese Patent Application No. 63-71758. did. Further, in Japanese Patent Application No. Hei 1-246382, an application was filed as a method for synthesizing a transparent diamond using a combustion flame method, wherein argon gas is directly introduced into the inner flame portion of the combustion flame separately from the combustion gas. In Japanese Patent Application No. 1-343229, it has been proposed that an organic compound having a different composition from the combustion flame forming gas, argon alone or a mixed gas, be introduced separately from the combustion flame forming gas into the inner flame portion of the combustion flame. An application was filed as a synthesis method of a high-speed deposition diamond characterized by the combustion flame method.

燃焼炎を用いて第三成分を添加してえ、高速あるいは
高品質のダイヤモンドを得る方法において、燃焼炎の内
炎部のプラズマ空間のラジカル成分を高める手法が求め
られていた。
In a method of obtaining a high-speed or high-quality diamond by adding a third component using a combustion flame, a method of increasing a radical component in a plasma space in an inner flame portion of the combustion flame has been required.

<発明が解決しようとする課題> 前記燃焼炎法のダイヤモンド合成法は原料化合物によ
り、燃焼炎を形成させるのみで、基材上にダイヤモンド
を析出させることが可能であり、従来のCVD法にくらべ
て画期的に優れた方法である。しかし、近年ダイヤモン
ドの需要の増加と共に、簡易な手段でしかも大量の高品
質の膜状あるいは粒状のダイヤモンドに対する要求が高
まつている。
<Problems to be Solved by the Invention> In the diamond synthesis method of the combustion flame method, it is possible to deposit diamond on a base material only by forming a combustion flame with a raw material compound. This is a revolutionary method. However, with the recent increase in demand for diamond, there has been an increasing demand for a large amount of high quality film or granular diamond with simple means.

<課題を解決するための手段> 本発明者等は、燃焼炎法により高品位のダイヤモンド
を高速にて析出させる合成法について鋭意研究の結果、
燃焼領域に有機化合物、水素、アルゴンの単独または混
合ガスを直接導入することが、目的を達成するために必
要であることを確認していたが、さらに進んで燃焼炎の
内炎部のプラズマ空間に前記の第3成分を適切に貫入さ
せこれらの両成分から成るプラズマ空間のラジカル成分
を高める手法を開発して本発明を完成した。
<Means for Solving the Problems> The present inventors have conducted intensive studies on a synthesis method for depositing high-quality diamond at high speed by a combustion flame method,
It has been confirmed that it is necessary to directly introduce an organic compound, hydrogen or argon alone or a mixed gas into the combustion area in order to achieve the purpose, but the plasma space in the inner flame portion of the combustion flame has been further advanced. The present invention has been completed by developing a method of appropriately penetrating the above-mentioned third component into the plasma space and increasing the radical component in the plasma space composed of both components.

即ち本発明の燃焼炎の内炎部、すなわち既に形成され
ているコアー(白心)の近傍の高温プラズマ部へ、外部
より燃焼炎形成ガスとは組成を異にする第3成分である
有機化合物、水素、アルゴンの単独または混合ガスを燃
焼炎形成ガスとは別にある一定以上の角度を持つ交差流
として貫入させることを特徴とする、燃焼炎法高速析出
ダイヤモンドの合成法に関する。
That is, an organic compound which is a third component having a different composition from the combustion flame forming gas from the outside to the internal flame portion of the combustion flame of the present invention, that is, the high temperature plasma portion near the already formed core (white heart). The present invention relates to a method for synthesizing a high-speed deposited diamond by a combustion flame method, wherein a single gas or a mixture gas of hydrogen and argon is introduced as a cross flow having a certain angle or more separately from a combustion flame forming gas.

本発明に使用するダイヤモンド合成用炭素源としては
メタン、エタン、プロパン、ブタン等の飽和炭化水素、
エチレン、プロピレン、ブチレン、アセチレン等の不飽
和炭化水素、ベンゼン、スチレン等の芳香族炭化水素、
エチルアルコール等のアルコール類、アセトン等のケト
ン基を含む化合物、ジエチルエーテル等のエーテル類、
その他アルデヒド化合物、含窒素化合物、一酸化炭素等
全てが使用可能である。
As the carbon source for diamond synthesis used in the present invention, methane, ethane, propane, saturated hydrocarbons such as butane,
Unsaturated hydrocarbons such as ethylene, propylene, butylene, and acetylene; aromatic hydrocarbons such as benzene and styrene;
Alcohols such as ethyl alcohol, compounds containing a ketone group such as acetone, ethers such as diethyl ether,
In addition, all aldehyde compounds, nitrogen-containing compounds, carbon monoxide and the like can be used.

本発明においては前記のダイヤモンド合成用原料ガス
を不完全燃焼領域中又は炎外の非酸化性でかつ炎の近傍
のダイヤモンド析出可能に励起された領域にダイヤモン
ド析出用基材を存在させることが必要である。また前記
のダイヤモンド合成用原料ガスに酸素を添加し、燃焼を
酸素を含まない雰囲気、或は酸素を含む雰囲気中でダイ
ヤモンドを析出状態に励起された不完全燃焼領域を生成
させる。前者の例としては不活性ガス雰囲気中での燃焼
を、また後者の例としては大気開放中での燃焼を例示で
きる。
In the present invention, it is necessary that the diamond synthesizing source gas be present in a non-oxidizing region outside the flame or in a region near the flame that is excited so that diamond can be precipitated, in the incomplete combustion region. It is. In addition, oxygen is added to the source gas for diamond synthesis to generate an incomplete combustion region in which diamond is excited into a precipitated state in an atmosphere containing no oxygen or an atmosphere containing oxygen. The former can be exemplified by combustion in an inert gas atmosphere, and the latter can be exemplified by combustion in open air.

これらのダイヤモンドの気相合成において有機原料化
合物が燃焼炎中で加熱と酸素との反応で分離解離、さら
に反応して、ラジカル化した活性種から例えばC,H,C2
CH,CH2、CH3などが発生する。本発明方法では燃焼炎の
内炎部に燃焼炎形成ガスとは組成を異にする第3成分ガ
スを交差するように貫入することにより高熱により分
解、解離を行なわしめ、クラスター化あるいはラジカル
化して、Cラジカル、C2ラジカル、CHラジカル等の活性
種と衝突を繰り返し、ラジカルの運動量が高められ、全
体としてダイヤモンド生成に好ましい雰囲気となる。こ
の雰囲気における析出ダイヤモンドの性状は著しく向上
し、同時に析出粗度も非常に高められる。
In the vapor phase synthesis of these diamonds, the organic raw material compounds are separated and dissociated by heating and the reaction with oxygen in the combustion flame, and further react, from radicalized active species, for example, C, H, C 2 ,
CH, CH 2 , CH 3 and the like are generated. In the method of the present invention, a third component gas having a composition different from that of the combustion flame forming gas penetrates into the inner flame portion of the combustion flame so as to intersect, thereby causing decomposition and dissociation by high heat, and clustering or radicalization. , C radical, C 2 radical, repeatedly active species and the collision of such CH radical, momentum of radicals is increased, a preferable atmosphere diamond product as a whole. The properties of the precipitated diamond in this atmosphere are remarkably improved, and at the same time, the precipitation roughness is also greatly increased.

ダイヤモンドが析出する領域は燃焼炎中の通常内炎と
称される酸素不足の領域である。一般的に酸素過剰領域
は高熱で、例えばダイヤモンドが形成されても過剰の酸
素によりCO,CO2となり消失する。即ちこの領域ではダイ
ヤモンドは析出しないと考えられる。
The region where diamond is deposited is a region of oxygen deficiency, which is usually referred to as internal flame in the combustion flame. In general, the oxygen-excess region has a high heat. For example, even if diamond is formed, it is converted into CO and CO 2 by excess oxygen and disappears. That is, it is considered that diamond does not precipitate in this region.

尚、ダイヤモンド析出領域は酸素不足であり、比較的
低温である。そしてこの領域においては原料ガスより炭
化水素ラジカル(活性種)の生成の条件に励起すること
が必要である。
Incidentally, the diamond deposition region is deficient in oxygen and has a relatively low temperature. In this region, it is necessary to excite the raw material gas under conditions for producing hydrocarbon radicals (active species).

次にこの様に燃焼状態を調整した本発明の炭化水素等
の添加物の注入法について、酸素−アセチレン系の場合
を例として図面に基ずいて説明する。
Next, the method of injecting the additive such as hydrocarbon of the present invention in which the combustion state is adjusted as described above will be described with reference to the drawings, taking the case of an oxygen-acetylene system as an example.

第1図は本発明の方法を実施するためのバーナーの噴
出口の一例を示すもので、同心円の二重穴で外周穴は原
料ガスと酸素の混合ガスの流出口で外径は3.2mm、内径
は2.8mmである。また中心部の内周穴には第三成分とキ
ャリアガスの流出口で外径は1.4mm、内径は1.0mmであ
る。
FIG. 1 shows an example of an outlet of a burner for carrying out the method of the present invention, in which a concentric double hole and an outer peripheral hole are an outlet of a mixed gas of a raw material gas and oxygen and have an outer diameter of 3.2 mm. The inside diameter is 2.8 mm. The outer diameter of the third component and the outlet of the carrier gas is 1.4 mm and the inner diameter is 1.0 mm in the inner peripheral hole at the center.

第2図は通常市販のバーナーで中心に噴出口があり、
それと同心円の外周穴がある。ガス流出口は平行に設定
され噴出するガス流はほとんど互いに交差することはな
い。この方法では、燃焼炎の高温プラズマ内部へ第三成
分が有効に注入され難い。
Figure 2 is a commercially available burner with a spout at the center,
There is a concentric outer peripheral hole. The gas outlets are set in parallel, and the ejected gas flows hardly cross each other. In this method, it is difficult to effectively inject the third component into the high-temperature plasma of the combustion flame.

第3図は円周穴の第三成分噴射口から注入されるガス
流の流れが、外周穴の燃焼ガスの流れとの交差状態を概
念的に示すものである。この様な交差流においては両者
のガス流が鋭く交差しており、このため原料ガスのコア
近傍の高温プラズマ部へ第三成分のガス流が貫入する形
になり、これらの両成分から成るプラズマ空間のラジカ
ル成分を高めることが期待できる。確かに概念図に基く
交差形態は上記の様にパターン化されるが、実際の燃焼
プラズマ炎は一定の定常流をなす高熱のプラズマ化した
イオンの運動体であるため、同質の燃焼炎を近ずけた場
合一定の交差角を保たないと相互に反発しあう。通常、
燃焼ガスと第三成分との交差角度は10゜〜60゜で、より
好ましくは20゜〜45゜である。
FIG. 3 conceptually shows a state in which the flow of the gas flow injected from the third component injection port in the circumferential hole intersects with the flow of the combustion gas in the outer circumferential hole. In such a cross flow, the two gas flows intersect sharply, so that the gas flow of the third component penetrates into the high-temperature plasma portion near the core of the raw material gas, and the plasma composed of both these components flows. It can be expected to increase the radical component of the space. Certainly, the crossing pattern based on the conceptual diagram is patterned as described above, but the actual combustion plasma flame is a moving body of high-temperature, plasmanized ions that form a constant steady flow, so that a homogeneous combustion flame is close to the combustion flame. If they do not keep a certain crossing angle, they will repel each other. Normal,
The intersection angle between the combustion gas and the third component is 10 ° to 60 °, more preferably 20 ° to 45 °.

また第三成分の流量は燃焼ガスの3%〜130%の範囲
が望ましい。これ未満の場合は原料の第三成分が希薄に
なりその効果が現れず、これを上廻る場合は燃焼炎のプ
ラズマ密度が低下が起こる。
The flow rate of the third component is preferably in the range of 3% to 130% of the combustion gas. If it is less than this, the third component of the raw material will be diluted and its effect will not be exhibited, and if it exceeds this, the plasma density of the combustion flame will decrease.

このことにより、第三成分のラジカル化が促進される
と共に、燃焼炎内の各成分との衝突確率が高まり、一例
を上げると下記の様なラジカル化学反応が起こると考え
られる。
This promotes the radicalization of the third component and increases the probability of collision with each component in the combustion flame. For example, it is considered that the following radical chemical reaction occurs.

{H・C}ラジカル+C2H2→{ダイヤモンド前駆
体} ラジカル+H2 また{H・C}ラジカルと各種のカーボン含有ラジカ
ルと原子状水素との接触により、活性が高まり、より多
く基体に到着することにより、高品位で透明性の高い自
形の発達したダイヤモンドは高速に、且つ広域に成長す
るものと考えられる。
{H • C} radical + C 2 H 2 → {Diamond precursor} Radical + H 2 or {HC} radical, various carbon-containing radicals, and atomic hydrogen increase the activity and reach more substrates By doing so, it is considered that a diamond having a high quality and high transparency and a self-developed diamond grows quickly and in a wide area.

〔実施例1〕 第三図に示されるようにアセチレンバーナー火口を下
向きに固定した。なお外周口は外径3.4mm、内径2.8mm、
中心の第三成分噴射口は外径1.4mm、内径1.0mmである。
なお中央噴出ガスは交差流で燃焼ガス流と30゜の角度で
交差する。次にアセチレン4.5mm/min、酸素4.3/min
(酸素/アセチレン比0.93)、第三成分のプロパン100c
c/minと水素200cc/minを予め混合して中央口からバーナ
ーに供給し、大気中で燃焼炎を形成した。この後第三図
に示すように、20mm角、厚さ0.5mmのMo基板を水冷支持
台に固定し、白心より7mmの距離に移動し固定した。こ
の時の基板温度を光学顕微鏡により観察を行ったとこ
ろ、自形のよく発達したブロッキーなダイヤモンド結晶
が基板全面に分散していることを確認した。さらにこの
ダイヤモンドの顕微鏡ラマン分光分析を行った結果、ラ
マンシフト1333cm-1にダイヤモンド結晶による鋭いピー
ク1本のみを示した。また粒径を測定したところ,100〜
150μmで特に中央部には透明性とあるものが認めら
れ、その収量は20mgであった。
Example 1 As shown in FIG. 3, the acetylene burner crater was fixed downward. The outer opening is 3.4 mm in outer diameter, 2.8 mm in inner diameter,
The center third component injection port has an outer diameter of 1.4 mm and an inner diameter of 1.0 mm.
The central jet gas crosses the combustion gas flow at a 30 ° angle. Next, acetylene 4.5mm / min, oxygen 4.3 / min
(Oxygen / acetylene ratio 0.93), propane 100c as the third component
c / min and 200 cc / min of hydrogen were mixed in advance and supplied to the burner from the central port to form a combustion flame in the atmosphere. Thereafter, as shown in FIG. 3, a 20 mm square, 0.5 mm thick Mo substrate was fixed to a water-cooled support, moved to a distance of 7 mm from the white heart, and fixed. When the substrate temperature at this time was observed with an optical microscope, it was confirmed that a self-shaped and well-developed blocky diamond crystal was dispersed over the entire surface of the substrate. Further, the diamond was subjected to Raman spectroscopic analysis under a microscope. As a result, only one sharp peak due to the diamond crystal was shown at a Raman shift of 1333 cm -1 . When the particle size was measured,
At 150 μm, transparency was found especially at the center, and the yield was 20 mg.

〔比較例1〕 第2図に示された中心の第三成分噴出ガスと燃焼ガス
流とは互いに交差せず平行して流れる様に設定されたバ
ーナーを使用した。なお、基板位置、生成方法は実施例
1と同様で、アセチレン4.5/min、酸素4.2/min、第
三成分のアルゴンを100cc/minでバーナーに供給し30分
間合成を行った。取り出して観察すると20〜30μのダイ
ヤモンドが析出域の周辺に見えれ中央部はやや焼鈍して
いた。なお収量は5.0mgであった。
[Comparative Example 1] A burner set so that the third component ejection gas and the combustion gas flow at the center shown in Fig. 2 flow in parallel without intersecting with each other was used. The substrate position and generation method were the same as in Example 1, and acetylene 4.5 / min, oxygen 4.2 / min, and argon as a third component were supplied to the burner at 100 cc / min, and synthesis was performed for 30 minutes. When taken out and observed, a diamond of 20 to 30μ was seen around the precipitation area, and the central part was slightly annealed. The yield was 5.0 mg.

〔比較例2〕 比較例1と同様に平行流に設定されたバーナー、基板
位置、生成方法でアセチレン4.5/min、酸素4.3/mi
n、第三成分のプロパンを100cc/minで30分間合成を起っ
た。その結果30〜60μの多面体ダイヤモンドが析出した
ものの基板上の所々にグラファイトの生成が見られた。
[Comparative Example 2] In the same manner as in Comparative Example 1, the acetylene was 4.5 / min and the oxygen was 4.3 / mi with the burner, substrate position, and generation method set in parallel flow.
n, The third component propane was synthesized at 100 cc / min for 30 minutes. As a result, formation of graphite was observed in some places on the substrate although polyhedral diamond of 30 to 60μ was deposited.

〔比較例3〕 比較例1と同様に平行流に設定されたバーナー、基板
位置、生成方法でアセチレン4.5/min、酸素4.2/mi
n、第三成分のプロパンを100cc/min、水素200cc/minで4
0分間合成を行った。その結果30〜40μの多面体のダイ
ヤモンドの結晶が得られたが、基板上の析出部周辺にダ
イヤモンドライクカーボン粒や、一部にはグラファイト
が生じた。
[Comparative Example 3] Acetylene 4.5 / min, oxygen 4.2 / mi with a burner, substrate position and generation method set in parallel flow as in Comparative Example 1.
n, 4 propane of the third component at 100 cc / min and 200 cc / min of hydrogen
Synthesis was performed for 0 minutes. As a result, polyhedral diamond crystals of 30 to 40 μm were obtained, but diamond-like carbon particles were formed around the deposition portion on the substrate, and graphite was partially generated.

<発明の効果> 本発明に係るダイヤモンドの合成法によって大量のダ
イヤモンド膜又は粒が高品質かつ均質性高く高速にしか
も比較的容易に作製することができる。
<Effect of the Invention> A large amount of diamond films or grains can be produced with high quality, high homogeneity, high speed, and relatively easily by the diamond synthesis method according to the present invention.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例に使用するバーナーの底面図及
び断面図である。第2図は比較例である平行流を示す概
念図、第3図は実施例である交差流を示す概念図であ
る。
FIG. 1 is a bottom view and a sectional view of a burner used in an embodiment of the present invention. FIG. 2 is a conceptual diagram showing a parallel flow as a comparative example, and FIG. 3 is a conceptual diagram showing a cross flow as an example.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】燃焼炎の内炎部のプラズマ空間に、燃焼炎
形成ガスと第三成分ガスを交差貫入させ、両成分が相互
に混入するプラズマ空間を生じさせることを特徴とする
燃焼炎によるダイヤモンドの合成法。
The present invention is characterized in that a combustion flame forming gas and a third component gas are cross-penetrated into a plasma space of an inner flame portion of a combustion flame to generate a plasma space in which both components are mixed with each other. Diamond synthesis method.
JP16884290A 1990-06-27 1990-06-27 Synthesis method of diamond by combustion flame Expired - Lifetime JP2786721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16884290A JP2786721B2 (en) 1990-06-27 1990-06-27 Synthesis method of diamond by combustion flame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16884290A JP2786721B2 (en) 1990-06-27 1990-06-27 Synthesis method of diamond by combustion flame

Publications (2)

Publication Number Publication Date
JPH0459697A JPH0459697A (en) 1992-02-26
JP2786721B2 true JP2786721B2 (en) 1998-08-13

Family

ID=15875544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16884290A Expired - Lifetime JP2786721B2 (en) 1990-06-27 1990-06-27 Synthesis method of diamond by combustion flame

Country Status (1)

Country Link
JP (1) JP2786721B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7067097B1 (en) * 2002-02-12 2006-06-27 Wojak Gregory J Process for preparing a diamond substance

Also Published As

Publication number Publication date
JPH0459697A (en) 1992-02-26

Similar Documents

Publication Publication Date Title
US5368897A (en) Method for arc discharge plasma vapor deposition of diamond
EP0324538B1 (en) Vapor-phase method for synthesis of diamond
US4989542A (en) Apparatus for synthesizing diamond
Rudder et al. Chemical vapor deposition of diamond films from water vapor rf‐plasma discharges
US8778295B2 (en) Combinatorial synthesis of diamond
JP2786721B2 (en) Synthesis method of diamond by combustion flame
Chen et al. Growth of diamond from CO2-(C2H2, CH4) gas systems, without supplying additional hydrogen gas
JP2752753B2 (en) Synthesis method of diamond by combustion flame
Roy et al. Crystallization of diamond below 1 atm from carbon–metal mixtures
JPH0483797A (en) Synthesis of diamond in vapor phase method
JPS60210597A (en) Gas phase synthesizing method of diamond
JP2581330B2 (en) Synthesis method of diamond by combustion flame
JPH0811719B2 (en) Diamond film manufacturing method
JPS60252720A (en) Production of carbon fiber by vapor phase method
JP2597498B2 (en) Synthesis method of vapor phase diamond
JP2585342B2 (en) Diamond vapor phase synthesis
JP2820604B2 (en) Method and apparatus for synthesizing vapor phase diamond
JPH03112895A (en) Method for synthesizing transparent diamond by combustion flame method
JPH02267193A (en) Method for synthesizing diamond by combustion flame method and gas burner for synthesis
JP2680676B2 (en) Synthesis method of vapor phase diamond
JPH02192491A (en) Method for synthesizing diamond of vapor process
JP2840750B2 (en) Coating method
JPH04317497A (en) Production of thin diamond film
JPS63129099A (en) Production of diamond thin film or diamondlike thin film
JPS63166798A (en) Production of diamond film