JPH0482405A - Triplet plane antenna - Google Patents

Triplet plane antenna

Info

Publication number
JPH0482405A
JPH0482405A JP2196903A JP19690390A JPH0482405A JP H0482405 A JPH0482405 A JP H0482405A JP 2196903 A JP2196903 A JP 2196903A JP 19690390 A JP19690390 A JP 19690390A JP H0482405 A JPH0482405 A JP H0482405A
Authority
JP
Japan
Prior art keywords
slot
radiating element
dielectric
antenna
planar antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2196903A
Other languages
Japanese (ja)
Other versions
JP2846081B2 (en
Inventor
Masahiko Ota
雅彦 太田
Hironobu Ishizaka
裕宣 石坂
Hisayoshi Mizugaki
久良 水柿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2196903A priority Critical patent/JP2846081B2/en
Priority to EP91112254A priority patent/EP0468413B1/en
Priority to DE69118037T priority patent/DE69118037T2/en
Priority to KR1019910012825A priority patent/KR100313264B1/en
Priority to KR1019910012825D priority patent/KR930010834B1/en
Publication of JPH0482405A publication Critical patent/JPH0482405A/en
Priority to US07/931,112 priority patent/US5278569A/en
Priority to KR1019940039296A priority patent/KR950003960B1/en
Application granted granted Critical
Publication of JP2846081B2 publication Critical patent/JP2846081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To improve efficiency by specifying position relationship among a radiant element and a slot, shape, and size. CONSTITUTION:The radiant element 4 and the slot 3 are arranged at an equal interval in two directions intersecting orthogonally to each other, respectively, and also, an arranging interval (d) is set at a value of 0.85-0.93 times the free spatial wavelength lambda0 of the center frequency of a frequency band area in use. Also, by forming the shape of the slot 3 in a square whose one side is set at the length of 0.48-0.65 times the wavelength lambda0, the unrequired radiation of a feed line can be suppressed by arranging the phases of waves radiated from neighboring slots, and also, the efficiency of an antenna can be further neightened by employing a parasitic element.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、マイクロ波帯の送受信に用いられるトリプレ
ート型平面アンテナに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a triplate type planar antenna used for transmitting and receiving microwave bands.

(従来の技術) マイクロ波帯に使用されるアンテナとして、パラボラア
ンテナに代わる平面アンテナが開発されるようになって
きた。
(Prior Art) Planar antennas that replace parabolic antennas have been developed as antennas used in the microwave band.

このような平面アンテナとして、第5図(a)および(
b)に示すようなマイクロストリップラインを給電線路
5とし、その先端にパッチ状の放射素子4を設け、給電
線路5および放射素子4共に誘電体2の表面に形成し、
その誘電体2の裏面に地導体1を設けたマイクロストリ
ップパッチアンテナがある。実際に使用するのは、この
ようなバンチ状の放射素子4を多数設け、位相整合・イ
ンピーダンス整合等を行うため、給電線路5の長さや分
岐の位置および線路幅を調整し、多数の放射素子4の間
に給電線路5を配置することによって、アレイ化し、て
いる。
As such a planar antenna, Fig. 5(a) and (
A microstrip line as shown in b) is used as a feed line 5, a patch-shaped radiating element 4 is provided at the tip thereof, and both the feed line 5 and the radiating element 4 are formed on the surface of the dielectric 2,
There is a microstrip patch antenna in which a ground conductor 1 is provided on the back side of the dielectric 2. In actual use, a large number of such bunch-shaped radiating elements 4 are provided, and in order to perform phase matching, impedance matching, etc., the length of the feed line 5, the branch position, and line width are adjusted, and a large number of radiating elements 4 are used. By arranging the feed line 5 between the 4 and 4, an array is formed.

ところが、給電線路5は放射面に露出しているため、分
岐や曲がりの箇所からの不要放射があり放射特性を低下
させている。
However, since the feed line 5 is exposed on the radiation surface, unnecessary radiation is generated from branching and bending points, degrading the radiation characteristics.

このような平面アンテナのアンテナ効率を高める手段と
して、第5図(C)および(d)に示すように、地導体
1と、この地導体1の面上に重ねかつその表面に放射素
子4と給電線路5を含むアンテナ回路を形成した誘電体
2と、誘電体2のアンテナ回路を形成した側に重ねた誘
電体21と、さらに誘電体21の面上に重ねかつ前記放
射素子4の真上に該当する箇所にスロット3を設けた地
導体11とからなるトリプレート型平面アンテナが、昭
和63年電子情報通信学会全国大会予稿B−39r)リ
ブレート線路で給電した窓付きマイクロストリップアン
テナJに開示されている。
As a means of increasing the antenna efficiency of such a planar antenna, as shown in FIGS. 5(C) and (d), a ground conductor 1 and a radiating element 4 which is superimposed on the surface of this ground conductor 1 and a radiating element 4 is placed on the surface thereof. A dielectric 2 on which an antenna circuit including a feed line 5 is formed, a dielectric 21 stacked on the side of the dielectric 2 on which the antenna circuit is formed, and a dielectric 21 stacked on the surface of the dielectric 21 and directly above the radiating element 4. A triplate-type planar antenna consisting of a ground conductor 11 with slots 3 in the corresponding locations is disclosed in 1988 Institute of Electronics, Information and Communication Engineers National Conference Proceedings B-39r) Windowed Microstrip Antenna J Powered by Ribrate Lines has been done.

このようなトリプレート型平面アンテナは、2つの地導
体1および11に挟まれた空間に給電線路5が配置され
ており、第5図(e)に示すように、分岐や曲がりの箇
所からの不要な放射を抑制することが知られている。
In such a triplate type planar antenna, the feed line 5 is arranged in the space between the two ground conductors 1 and 11, and as shown in Fig. 5(e), the feed line 5 is arranged in the space between the two ground conductors 1 and 11. It is known to suppress unnecessary radiation.

(発明が解決しようとする課It) このような従来のトリプレート型平面アンテナは、給電
線路の不要放射の抑制には効果があるものの、スロット
3の面積が小さい止放射効率が低下し、地導体11の無
い第5図(a)および(b)に示すアンテナと比較する
とl〜4dB利得が低い、また、スロット3の面積を広
くすると、前述の給電線路の不要放射を抑制する効果が
低くなり、その影響によってアンテナの利得が低下して
しまった。
(It is a problem to be solved by the invention) Although such a conventional triplate-type planar antenna is effective in suppressing unnecessary radiation from the feed line, the area of the slot 3 is small, so the stopping radiation efficiency is reduced, and the Compared to the antenna shown in FIGS. 5(a) and 5(b) without the conductor 11, the gain is 1 to 4 dB lower. Also, if the area of the slot 3 is increased, the effect of suppressing the unnecessary radiation of the feed line described above is low. As a result, the gain of the antenna decreased.

本発明は、トリプレート型平面アンテナにおいて、利得
に優れたアンテナ効率の高いアンテナを提供することを
目的とする。
An object of the present invention is to provide a triplate type planar antenna with excellent gain and high antenna efficiency.

(課題を解決するための手段) 本発明者らは、隣接するスロットの影響を調べるため、
第2図(a)に示すように、1つの放射素子4に対して
真上にスロット3と、そのスロット3と平行な位置にス
ロット31を有する試料Aと、lフの放射素子4に対し
て真上にスロット3と、そのスロット3の対角線延長上
にスロット32を有する試料Bによって、スロット3と
スロット31または32の間隔dと放射利得との関係を
測定した。
(Means for Solving the Problems) In order to investigate the influence of adjacent slots, the present inventors
As shown in FIG. 2(a), sample A has a slot 3 directly above one radiating element 4 and a slot 31 in a position parallel to the slot 3; The relationship between the distance d between the slot 3 and the slot 31 or 32 and the radiation gain was measured using a sample B having a slot 3 directly above it and a slot 32 diagonally extending from the slot 3.

この結果、第2図(C)に示すように、スロット3とス
ロット3Iまたは32との間隔dが利用する周波数帯域
の中心周波数の波長λeに対して0.72〜0.93倍
のときには、利得がスロット3のみの場合より高くなる
ことを発見した。
As a result, as shown in FIG. 2(C), when the distance d between slot 3 and slot 3I or 32 is 0.72 to 0.93 times the wavelength λe of the center frequency of the frequency band to be used, We found that the gain was higher than with slot 3 alone.

これは、スロット3から放射される電波の位相とスロッ
ト31または32から放射される電波の位相が、間隔d
が利用する周波数帯域の中心周波数の波長λeに対して
0.72〜0.93倍のときにはそろっており、それ以
外の場合には逆になって、利得に影響すると考えられる
This means that the phase of the radio waves radiated from slot 3 and the phase of the radio waves radiated from slot 31 or 32 are separated by an interval d.
When it is 0.72 to 0.93 times the wavelength λe of the center frequency of the frequency band to be used, they are aligned, and in other cases, the opposite is true, and it is considered that the gain is affected.

本発明者らは、また、スロット3の寸法についても第2
図(d)に示すように測定した結果、グラフの上の折れ
線が放射素子数が384のときの特性であり、下の折れ
線が放射素子数1つに換算したときの特性であるが、利
用する周波数帯域の中心周波数の波長λeに対して約0
.59倍のときにピークがあることが分かった。
The present inventors also determined the dimensions of the slot 3 based on the second
As a result of measurement as shown in Figure (d), the upper line of the graph is the characteristic when the number of radiating elements is 384, and the lower line is the characteristic when the number of radiating elements is converted to 1. Approximately 0 for the wavelength λe of the center frequency of the frequency band
.. It was found that there is a peak at 59 times.

さらにまた、放射素子4の真上に無給電素子6を用いた
第4図(a)および(b)の構造にした場合には、第2
図(e)に示すように、スロット3の寸法と利得の特性
のうちスロット3の寸法が小さい方において、無給電素
子6がない場合に比べて利得が高くなることも発見した
Furthermore, when using the structure shown in FIGS. 4(a) and 4(b) using the parasitic element 6 directly above the radiating element 4, the second
As shown in Figure (e), it was also discovered that among the characteristics of the size and gain of the slot 3, when the size of the slot 3 is smaller, the gain is higher than when there is no parasitic element 6.

本発明は以上の知見によってなされたものであり、本発
明のトリプレート型平面アンテナは、第1図(a)およ
び(b)に示すように、地導体lと、この地厚体1の面
上に重ねかつその表面に放射素子4と給電線路5を含む
アンテナ回路を形成した誘電体2と、誘電体2のアンテ
ナ回路を形成した側に重ねた誘電体21と、さらに誘電
体21の面上に重ねかつ前記放射素子4の真上に該当す
る箇所にスロット3を設けた地導体11とからなるトリ
プレート型平面アンテナにおいて、前記放射素子4およ
びスロット3を互いに直交する2方向にそれぞれ等間隔
に配列すると共に、前記2方向の配列間隔dを、利用す
る周波数帯域の中心周波数の自由空間波長λ。に対して
0.85〜0.93倍にしたことを特徴とする。
The present invention has been made based on the above knowledge, and the triplate type planar antenna of the present invention, as shown in FIGS. A dielectric 2 which is stacked on top and has an antenna circuit including a radiating element 4 and a feed line 5 formed on its surface, a dielectric 21 which is stacked on the side of the dielectric 2 on which the antenna circuit is formed, and a surface of the dielectric 21. In a triplate type planar antenna consisting of a ground conductor 11 that is stacked on top of the ground conductor 11 and has a slot 3 located directly above the radiating element 4, the radiating element 4 and the slot 3 are arranged equally in two directions perpendicular to each other. The free space wavelength λ of the center frequency of the frequency band to be used is determined by the arrangement interval d in the two directions. It is characterized by being 0.85 to 0.93 times larger.

ここで、前述の実験からは配列間隔dを、利用する周波
数帯域の中心周波数の自由空間波長λ。
Here, from the above experiment, the arrangement interval d is the free space wavelength λ of the center frequency of the frequency band to be used.

に対して0.72〜0.93倍であるときに、利得が高
くなることを発見したが、実際に配列するときには、第
1図(C)に示すように、スロット3に対しては、隣接
するスロットは31のみならずスロット32の影響も考
慮しなければならず、1つのスロット3に対して周囲の
8つのスロットの影響を考慮して利得が高くなるのは、
0.82〜0.93倍の範囲であった。
It was found that the gain becomes high when the gain is 0.72 to 0.93 times larger than The influence of not only the adjacent slot 31 but also the slot 32 must be considered, and the reason why the gain increases by considering the influence of the eight surrounding slots for one slot 3 is as follows.
It was in the range of 0.82 to 0.93 times.

また、本発明のトリプレート型平面アンテナは、前記ス
ロット3の形状に、利用する周波数帯域の中心周波数の
自由空間波長λeに対して0.48〜0.65倍の長さ
をその一辺の長さとする正方形を用いたことを特徴とす
る。
Further, in the triplate type planar antenna of the present invention, the length of one side of the slot 3 is 0.48 to 0.65 times the free space wavelength λe of the center frequency of the frequency band to be used. It is characterized by the use of a square shape.

このとき、前記スロット3の形状に、利用する周波数帯
域の中心周波数の自由空間波長λeに対して0.48〜
0.65倍の長さをその直径とする円形としてもよい。
At this time, the shape of the slot 3 is set to 0.48 to 0.48 to
It may also be a circle whose diameter is 0.65 times the length.

C以下余白) さらにまた、本発明のトリプレート型平面アンテナは、
第4図(a)および(b)に示すように、前述のような
アンテナにおいて、前記スロット3を有する地導体11
の面上に重ねた誘電体22と、前記放射素子4およびス
ロット3の真上の位置に該当する誘電体22の表面に形
成した無給電素子6とを有することを特徴とする。
(Blank below C) Furthermore, the triplate planar antenna of the present invention is
As shown in FIGS. 4(a) and 4(b), in the above-described antenna, a ground conductor 11 having the slot 3
, and a parasitic element 6 formed on the surface of the dielectric 22 at a position directly above the radiating element 4 and the slot 3.

このときに、前記放射素子4を、ペア配列にしてもよい
At this time, the radiating elements 4 may be arranged in pairs.

本発明の放射素子としては、直線偏波の場合には、第3
図(a)および(b)に示す円形や方形のバッチ状放射
素子を使用することができる。
As the radiating element of the present invention, in the case of linearly polarized waves, the radiating element
Circular or rectangular batch-shaped radiating elements as shown in Figures (a) and (b) can be used.

また、円偏波の場合には、第3図(c)および(d)に
示すような円形や方形のパッチ状放射素子に901の位
相の異なる給電線路を接続した2点給電の放射素子を使
用することができ、また、これに代わるものとして、縦
・横の比を変えたいわゆる摂動を設けた1点給電式の放
射素子として第3図(e)および(r)に示す形状のも
のを使用することができる。
In the case of circularly polarized waves, a two-point feeding radiating element consisting of a circular or rectangular patch-shaped radiating element connected to a feeding line 901 with different phases as shown in Fig. 3(c) and (d) is used. Alternatively, a single-point feeding type radiating element with a so-called perturbation in which the vertical-to-horizontal ratio is changed has the shapes shown in Figure 3 (e) and (r). can be used.

無給電素子の形状は、第4図(c)および(d)に示す
ような、円形や方形等一般に放射素子に用いる形状なら
ばどのような形状でも使用しうる。
The shape of the parasitic element may be any shape generally used for a radiating element, such as a circle or a square as shown in FIGS. 4(c) and 4(d).

(作用) 本発明のトリプレート型平面アンテナは、前述のとおり
、隣接するスロットから放射される電波の位相を揃える
ことができる配置としたことによって、従来の給電線路
の不要放射を抑制する特徴を維持した上で、利得を高め
ることができ、また、アンテナ効率の高いスロット寸法
および効率を高める無給電素子の採用によってさらにア
ンテナ効率を高めることができる。
(Function) As mentioned above, the triplate type planar antenna of the present invention has the feature of suppressing unnecessary radiation of the conventional feed line by having an arrangement that allows the phases of radio waves radiated from adjacent slots to be aligned. The antenna efficiency can be further increased by employing a slot size with high antenna efficiency and a parasitic element that increases efficiency.

実施例1 第1図(a)および(b)に示すように、地導体1とし
て厚さ3mmで、140mmX140mmの大きさのア
ルミニウム板を用い、この地導体Iの面上に重ねる誘電
体2として、厚さ2mmで比誘電率的1.1のポリエチ
レンフオームを用い、その表面に厚さ25pmのポリエ
チレンフィルムに銅箔を貼り合わせた基板を用い、その
基板には放射素子4と給電線路5を含むアンテナ回路を
銅箔の不要な箇所をエツチング除去してアンテナ回路を
形成し、さらにその表面に誘電体21として前記誘電体
2と同様の材料で厚さ2mmのものを使用し、さらに誘
電体21の面上に前記放射素子4の真上に該当する箇所
にスロット3を設けた地fi体11として、厚さ0.5
mmのアルミニウム板を用いた。
Example 1 As shown in FIGS. 1(a) and (b), an aluminum plate with a thickness of 3 mm and a size of 140 mm x 140 mm was used as the ground conductor 1, and as the dielectric material 2 overlaid on the surface of the ground conductor I. , a polyethylene foam with a thickness of 2 mm and a dielectric constant of 1.1 is used, and a substrate is used on the surface of which a copper foil is bonded to a polyethylene film with a thickness of 25 pm, and a radiating element 4 and a feed line 5 are mounted on the substrate. An antenna circuit including the antenna circuit is formed by etching unnecessary parts of the copper foil, and a dielectric 21 made of the same material as the dielectric 2 and having a thickness of 2 mm is used on the surface of the antenna circuit. A ground fi body 11 with a slot 3 provided at a location directly above the radiating element 4 on the surface of 21 has a thickness of 0.5 mm.
An aluminum plate of mm was used.

このときに、放射素子4およびスロット3の数は!6で
あり、この放射素子4およびスロット3を互いに直交す
る2方向にそれぞれ等間隔に配列すると共に、前記2方
向の配列間隔dを、利用する周波数帯域の中心周波数で
ある1l−85GH2の自由空間波長λ* 22− 5
mmに対して0゜89倍とし、スロット3の形状は正方
形とし、−辺の長さを0.51λeとじたので13mm
となった。
At this time, the number of radiating elements 4 and slots 3 is! 6, the radiating elements 4 and slots 3 are arranged at equal intervals in two directions perpendicular to each other, and the arrangement interval d in the two directions is set to the free space of 1l-85GH2, which is the center frequency of the frequency band to be used. Wavelength λ* 22-5
mm is 0°89 times, the shape of slot 3 is square, and the length of the - side is 0.51λe, so it is 13mm.
It became.

このアンテナの利得は、19.5dBであり、放射素子
1つに換算すると、放射素子Iっにスロット1つの場合
に比べ約3dB利得が高くなった。
The gain of this antenna was 19.5 dB, and when converted to one radiating element, the gain was about 3 dB higher than when there was one slot per radiating element.

実施例2 実施例17作成したアンテナを24個並べ、第1図(d
)に示すように、中央に給電点を設けたアレーアンテナ
とした結果、このアンテナの利得は、33.2dBであ
って、放射素子1つに換算すると、放射素子1つにスロ
ット1つの場合に比べ約3−3dB利得が高くなった。
Example 2 24 antennas prepared in Example 17 were arranged and shown in Fig. 1(d).
), as a result of using an array antenna with a feeding point in the center, the gain of this antenna is 33.2 dB, and when converted to one radiating element, the gain is 33.2 dB. The gain was about 3-3dB higher than that.

実施例3 前記スロット3の形状に、利用する周波数帯域の中心周
波数の自由空間波長λeに対して0.5l倍の長さをそ
の直径とする円形とした以外は、実施例1と同様にアン
テナを作成した。結果は、実施例1とほぼ同様であった
Example 3 The antenna was constructed in the same manner as in Example 1, except that the shape of the slot 3 was a circle whose diameter was 0.5 l times the free space wavelength λe of the center frequency of the frequency band to be used. It was created. The results were almost the same as in Example 1.

実施例4 実施例1で作成したアンテナを用いて、第4図(a)お
よび(b)に示すように、スロット3を有する地導体1
1の面上に、誘電体22として、厚さ2mmの誘電体2
と同様の材料を用い、この誘電体22の表面に、前記放
射素子4およびスロット3の真上の位置に該当する箇所
に、無給電素子6を設け、大きさは放射素子4と同じ大
きさとし、厚さ25I1mのポリエチレンフィルムに銅
箔を貼り合わせた基板を用いて、不要な箇所をエツチン
グ除去して作成した。
Example 4 Using the antenna prepared in Example 1, a ground conductor 1 having a slot 3 was constructed as shown in FIGS. 4(a) and (b).
1 with a thickness of 2 mm as a dielectric 22.
A parasitic element 6 is provided on the surface of the dielectric 22 at a position directly above the radiating element 4 and the slot 3, using the same material as the radiating element 4, and having the same size as the radiating element 4. , using a substrate made of copper foil laminated to a polyethylene film with a thickness of 25I1m, and removing unnecessary parts by etching.

結果は、実施例1と同様の利得が得られた。As a result, the same gain as in Example 1 was obtained.

(発明の効果) 以上に説明したように、本発明によって、給電線路の不
要放射を抑制することについては、従来のトリプレート
型平面アンテナと同等の特性を維持した上で、利得の高
い平面アンテナを提供することができた。
(Effects of the Invention) As explained above, the present invention can suppress unnecessary radiation from the feed line by using a high-gain planar antenna while maintaining the same characteristics as the conventional triplate planar antenna. were able to provide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の一実施例を示す上面図、第1図
(b)は第1図(a)のAA断面図、第1WJ (c 
)は本発明の詳細な説明するための上面概略図、第1図
(d)は本発明の他の実施例を示す上面図、第2図(a
)および(b)は本発明の詳細な説明するための試料の
上面図、第2図(c)は本発明の詳細な説明するための
スロット間隔と放射利得の関係を示す線図、第2図(c
l)は本発明の詳細な説明するためのスロット寸法と放
射利得の関係を示す線図、第2図(e)は本発明の原理
を示す無給電素子を用いたときと用いないときの放射特
性を比較する線図、第3図(a)〜(f)は本発明に用
いることができた放射素子の形状を示す上面図、第4図
(a)は本発明の他の実施例を示す断面図、第4図(b
)は第4図(a)の上面図、第4図(C)および(d)
は本発明に使用できた無給電素子の形状を示す上面図、
第5図(a)は従来例を示す上面図、第5図(b)は第
5図(a)のAA断面図、第5図(c)は他の従来例を
示す上面図、第5図(d)は第5図(c)のAA断面図
、第5図(e)は従来例の特徴を説明するための断面図
である。 符号の説明 1.11.地導体  2,21.22−誘電体3.31
.32.スロット 4、放射素子   5.給電線路 6.1!#給電業子 図面の浄書(内容に変更なし) (a) (b) 第 図 給電点 (n) 第 図 (c) 第 図 (蟲) (b) スロットビ・ソチ (d/l、) (c) 第 図 (ci) (畠) (b) (c) (d) 第 図 スロット寸法 (4/ζ) (e) (b) (d) 第 図 (a) (c) (e) 手続補正書(方式) %式% 2、発明の名称 トリプレート型平面アンテナ 3、補正をする者 事件との関係    特許出願人 住  所  東京都新宿区西新宿二丁目1番1号名  
称(445)日立化成工業株式会社代表者 横 山 亮
 次 4、代理人 居  所  東京都新宿区西新宿二丁目1番1号6、補
正の対象 図面 7、補正の内容
FIG. 1(a) is a top view showing one embodiment of the present invention, FIG. 1(b) is a sectional view taken along line AA in FIG. 1(a), and 1st WJ (c
) is a schematic top view for explaining the present invention in detail, FIG. 1(d) is a top view showing another embodiment of the present invention, and FIG.
) and (b) are top views of the sample for detailed explanation of the present invention, FIG. 2(c) is a diagram showing the relationship between slot spacing and radiation gain for detailed explanation of the present invention, and FIG. Figure (c
1) is a diagram showing the relationship between slot size and radiation gain to explain the present invention in detail, and FIG. Diagrams for comparing characteristics, Figures 3(a) to (f) are top views showing the shape of the radiating element that can be used in the present invention, and Figure 4(a) is a diagram showing another example of the present invention. A sectional view shown in FIG. 4 (b
) is a top view of Fig. 4(a), Fig. 4(C) and (d)
is a top view showing the shape of a parasitic element that can be used in the present invention,
FIG. 5(a) is a top view showing a conventional example, FIG. 5(b) is a sectional view taken along the line AA in FIG. 5(a), and FIG. 5(c) is a top view showing another conventional example. FIG. 5(d) is a sectional view taken along the line AA in FIG. 5(c), and FIG. 5(e) is a sectional view for explaining the characteristics of the conventional example. Explanation of symbols 1.11. Ground conductor 2, 21.22-dielectric 3.31
.. 32. Slot 4, radiating element 5. Power supply line 6.1! #Engraving of the power supply facility drawing (no changes to the content) (a) (b) Figure power supply point (n) Figure (c) Figure (mushi) (b) Slot Bi Sochi (d/l,) (c ) Figure (ci) (Hatake) (b) (c) (d) Figure slot size (4/ζ) (e) (b) (d) Figure (a) (c) (e) Procedural amendment (Method) % formula % 2. Name of the invention: Tri-plate planar antenna 3. Relationship with the person making the amendment: Patent applicant address: 2-1-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo.
Name (445) Hitachi Chemical Co., Ltd. Representative: Ryoji Yokoyama 4, Agent address: 2-1-1-6 Nishi-Shinjuku, Shinjuku-ku, Tokyo, Drawing subject to amendment 7, Contents of amendment

Claims (1)

【特許請求の範囲】 1、地導体(1)と、この地導体(1)の面上に重ねか
つその表面に放射素子(4)と給電線路(5)を含むア
ンテナ回路を形成した誘電体(2)と、誘電体(2)の
アンテナ回路を形成した側に重ねた誘電体(21)と、
さらに誘電体(21)の面上に重ねかつ前記放射素子(
4)の真上に該当する箇所にスロット(3)を設けた地
導体(11)とからなるトリプレート型平面アンテナに
おいて、前記放射素子(4)およびスロット(3)を互
いに直交する2方向にそれぞれ等間隔に配列すると共に
、前記2方向の配列間隔dを、利用する周波数帯域の中
心周波数の自由空間波長λ_eに対して0.85〜0.
93倍にしたことを特徴とするトリプレート型平面アン
テナ。 2、前記スロット(3)の形状に、利用する周波数帯域
の中心周波数の自由空間波長λ_eに対して0.48〜
0.65倍の長さをその一辺の長さとする正方形を用い
たことを特徴とする請求項1に記載のトリプレート型平
面アンテナ。 3、前記スロット(3)に形状に、利用する周波数帯域
の中心周波数の自由空間波長λ_eに対して0.48〜
0.65倍の長さをその直径とする円形を用いたことを
特徴とする請求項1に記載のトリプレート型平面アンテ
ナ。 4、前記スロット(3)を有する地導体(11)の面上
に重ねた誘電体(22)と、前記放射素子(4)および
スロット(3)の真上の位置に該当する誘電体(22)
の表面に形成した無給電素子(6)とを有することを特
徴とする請求項1〜3のうちいずれかに記載のトリプレ
ート型平面アンテナ。 5、前記放射素子(4)を、ペア配列にしたことを特徴
とする請求項1〜4のうちいずれかに記載のトリプレー
ト型平面アンテナ。
[Claims] 1. A ground conductor (1), and a dielectric material overlaid on the surface of the ground conductor (1) and on which an antenna circuit including a radiating element (4) and a feed line (5) is formed. (2), a dielectric (21) stacked on the side of the dielectric (2) on which the antenna circuit is formed,
Further, the radiating element (
4), in which the radiating element (4) and the slot (3) are arranged in two directions orthogonal to each other. They are arranged at equal intervals, and the arrangement interval d in the two directions is 0.85 to 0.0.
A triplate type planar antenna characterized by a 93x magnification. 2. The shape of the slot (3) should be 0.48 to 0.48 to the free space wavelength λ_e of the center frequency of the frequency band to be used.
2. The triplate planar antenna according to claim 1, wherein a square shape is used, the length of one side of which is 0.65 times the length of the square. 3. The shape of the slot (3) is 0.48 to 0.48 to the free space wavelength λ_e of the center frequency of the frequency band to be used.
The triplate type planar antenna according to claim 1, characterized in that a circular shape is used whose diameter is 0.65 times the length. 4. A dielectric material (22) superimposed on the surface of the ground conductor (11) having the slot (3), and a dielectric material (22) located directly above the radiating element (4) and the slot (3). )
4. The triplate planar antenna according to claim 1, further comprising a parasitic element (6) formed on the surface of the triple plate antenna. 5. The triplate type planar antenna according to any one of claims 1 to 4, wherein the radiating elements (4) are arranged in pairs.
JP2196903A 1990-07-25 1990-07-25 Triplate type planar antenna Expired - Lifetime JP2846081B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2196903A JP2846081B2 (en) 1990-07-25 1990-07-25 Triplate type planar antenna
DE69118037T DE69118037T2 (en) 1990-07-25 1991-07-22 Flat antenna with high gain and high efficiency
EP91112254A EP0468413B1 (en) 1990-07-25 1991-07-22 Plane antenna with high gain and antenna efficiency
KR1019910012825D KR930010834B1 (en) 1990-07-25 1991-07-25 Flat antenna with high gain and design efficiency
KR1019910012825A KR100313264B1 (en) 1990-07-25 1991-07-25 Flat Antenna with High Gain and High Antenna Efficiency
US07/931,112 US5278569A (en) 1990-07-25 1992-08-17 Plane antenna with high gain and antenna efficiency
KR1019940039296A KR950003960B1 (en) 1990-07-25 1994-12-30 Plane antenna with high-gain and antenna efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2196903A JP2846081B2 (en) 1990-07-25 1990-07-25 Triplate type planar antenna

Publications (2)

Publication Number Publication Date
JPH0482405A true JPH0482405A (en) 1992-03-16
JP2846081B2 JP2846081B2 (en) 1999-01-13

Family

ID=16365566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2196903A Expired - Lifetime JP2846081B2 (en) 1990-07-25 1990-07-25 Triplate type planar antenna

Country Status (4)

Country Link
EP (1) EP0468413B1 (en)
JP (1) JP2846081B2 (en)
KR (3) KR930010834B1 (en)
DE (1) DE69118037T2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098054A1 (en) * 2005-03-16 2006-09-21 Hitachi Chemical Co., Ltd. Planar antenna module, triplate planar array antenna, and triplate line-waveguide converter
JP2007036930A (en) * 2005-07-29 2007-02-08 Japan Radio Co Ltd Circularly-polarized wave patch antenna and circularly-polarized wave array antenna

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9504231L (en) 1995-11-27 1997-05-28 Ericsson Telefon Ab L M Queue system for transmitting information packets
US5990836A (en) * 1998-12-23 1999-11-23 Hughes Electronics Corporation Multi-layered patch antenna
DE10131283A1 (en) 2001-06-28 2003-01-09 Philips Corp Intellectual Pty Phased array antenna
US6947008B2 (en) 2003-01-31 2005-09-20 Ems Technologies, Inc. Conformable layered antenna array
BR0317194A (en) * 2003-01-31 2005-11-29 Ems Technologies Inc Conformable set of layered antennas
US7345632B2 (en) 2003-02-12 2008-03-18 Nortel Networks Limited Multibeam planar antenna structure and method of fabrication
EP1622221A1 (en) * 2004-02-11 2006-02-01 Sony Deutschland GmbH Circular polarised array antenna
KR101589872B1 (en) 2015-04-21 2016-02-01 주식회사 아이두잇 Flat antenna and system for transporting satellite signal comprising such flat antenna
US11367959B2 (en) 2015-10-28 2022-06-21 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US10374315B2 (en) 2015-10-28 2019-08-06 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US10476164B2 (en) 2015-10-28 2019-11-12 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US11283189B2 (en) 2017-05-02 2022-03-22 Rogers Corporation Connected dielectric resonator antenna array and method of making the same
US11876295B2 (en) * 2017-05-02 2024-01-16 Rogers Corporation Electromagnetic reflector for use in a dielectric resonator antenna system
CN110754017B (en) 2017-06-07 2023-04-04 罗杰斯公司 Dielectric resonator antenna system
US11616302B2 (en) 2018-01-15 2023-03-28 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US10892544B2 (en) 2018-01-15 2021-01-12 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US11031697B2 (en) 2018-11-29 2021-06-08 Rogers Corporation Electromagnetic device
GB2594171A (en) 2018-12-04 2021-10-20 Rogers Corp Dielectric electromagnetic structure and method of making the same
US11482790B2 (en) 2020-04-08 2022-10-25 Rogers Corporation Dielectric lens and electromagnetic device with same
CN111883938B (en) * 2020-07-31 2022-06-14 广州程星通信科技有限公司 Single feed point array combined phased array antenna

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621304A (en) * 1985-06-25 1987-01-07 コミユニケイシヨンズ サテライト コ−ポレ−シヨン Microstrip antenna array and manufacture thereof
JPS6365703A (en) * 1986-09-05 1988-03-24 Matsushita Electric Works Ltd Planar antenna
JPS63199503A (en) * 1987-02-13 1988-08-18 Nippon Hoso Kyokai <Nhk> Microstrip antenna
JPS6434002A (en) * 1987-07-30 1989-02-03 Sony Corp Plane antenna
JPH01198806A (en) * 1988-06-06 1989-08-10 Matsushita Electric Works Ltd Planar antenna
JPH02168703A (en) * 1988-09-02 1990-06-28 Toshiba Corp Plane antenna and its production

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920002227B1 (en) * 1988-05-13 1992-03-20 야기 안테나 가부시끼가이샤 Micro-strip array antenna
JP2898659B2 (en) * 1989-08-25 1999-06-02 日立化成工業株式会社 Microstrip patch antenna with slot plate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621304A (en) * 1985-06-25 1987-01-07 コミユニケイシヨンズ サテライト コ−ポレ−シヨン Microstrip antenna array and manufacture thereof
JPS6365703A (en) * 1986-09-05 1988-03-24 Matsushita Electric Works Ltd Planar antenna
JPS63199503A (en) * 1987-02-13 1988-08-18 Nippon Hoso Kyokai <Nhk> Microstrip antenna
JPS6434002A (en) * 1987-07-30 1989-02-03 Sony Corp Plane antenna
JPH01198806A (en) * 1988-06-06 1989-08-10 Matsushita Electric Works Ltd Planar antenna
JPH02168703A (en) * 1988-09-02 1990-06-28 Toshiba Corp Plane antenna and its production

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098054A1 (en) * 2005-03-16 2006-09-21 Hitachi Chemical Co., Ltd. Planar antenna module, triplate planar array antenna, and triplate line-waveguide converter
US7411553B2 (en) 2005-03-16 2008-08-12 Hitachi Chemical Co., Ltd. Planar antenna module, triple plate planar, array antenna, and triple plate feeder-waveguide converter
KR100859638B1 (en) * 2005-03-16 2008-09-23 히다치 가세고교 가부시끼가이샤 Planar antenna module, triplate planar array antenna, and triplate line-waveguide converter
EP2190066A2 (en) 2005-03-16 2010-05-26 Hitachi Chemical Co., Ltd. Planar antenna module, triple plate planar array antenna, and triple plate feeder - waveguide converter
US8253511B2 (en) 2005-03-16 2012-08-28 Hitachi Chemical Co., Ltd. Triple plate feeder—waveguide converter having a square resonance patch pattern
JP2007036930A (en) * 2005-07-29 2007-02-08 Japan Radio Co Ltd Circularly-polarized wave patch antenna and circularly-polarized wave array antenna
JP4562611B2 (en) * 2005-07-29 2010-10-13 日本無線株式会社 Circularly polarized patch antenna and circularly polarized array antenna

Also Published As

Publication number Publication date
EP0468413A3 (en) 1992-08-12
KR920003578A (en) 1992-02-29
DE69118037D1 (en) 1996-04-25
EP0468413B1 (en) 1996-03-20
EP0468413A2 (en) 1992-01-29
DE69118037T2 (en) 1996-08-01
KR100313264B1 (en) 2001-12-28
KR930010834B1 (en) 1993-11-12
JP2846081B2 (en) 1999-01-13
KR950003960B1 (en) 1995-04-21

Similar Documents

Publication Publication Date Title
JPH0482405A (en) Triplet plane antenna
US5594455A (en) Bidirectional printed antenna
US10749272B2 (en) Dual-polarized millimeter-wave antenna system applicable to 5G communications and mobile terminal
US5510803A (en) Dual-polarization planar antenna
US5187490A (en) Stripline patch antenna with slot plate
KR960016369B1 (en) Planar antenna
CA2241128A1 (en) Wide band printed phase array antenna for microwave and mm-wave applications
EP0891643A1 (en) Dual polarization antenna array with very low cross polarization and low side lobes
KR101954819B1 (en) A 1d tightly coupled dipole array antenna
JPH1028012A (en) Planar antenna
JP2003514422A (en) Printed antenna
CA2182334C (en) Mini-cap radiating element
US20240079787A1 (en) High gain and fan beam antenna structures
JP3273402B2 (en) Printed antenna
CN114976665A (en) Broadband dual-polarized dipole antenna loaded with stable frequency selective surface radiation
JP2002330024A (en) Slot antenna
US3605104A (en) Parasitic loop counterpoise antenna
US11050151B2 (en) Multi-band antenna
JP3782278B2 (en) Beam width control method of dual-polarized antenna
US6930647B2 (en) Semicircular radial antenna
JP3185406B2 (en) Planar antenna
US11063357B2 (en) Dual-band antenna for global positioning system
JP2833301B2 (en) Dual-polarized planar antenna
JP3004439B2 (en) Planar antenna
JPH05267930A (en) Vertical/horizontal polarized wave shared plane antenna

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071030

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081030

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101030

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101030

Year of fee payment: 12