JPH0481889B2 - - Google Patents
Info
- Publication number
- JPH0481889B2 JPH0481889B2 JP62012928A JP1292887A JPH0481889B2 JP H0481889 B2 JPH0481889 B2 JP H0481889B2 JP 62012928 A JP62012928 A JP 62012928A JP 1292887 A JP1292887 A JP 1292887A JP H0481889 B2 JPH0481889 B2 JP H0481889B2
- Authority
- JP
- Japan
- Prior art keywords
- capacitor
- coil
- bandpass filter
- pattern
- resonators
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003990 capacitor Substances 0.000 claims description 44
- 239000000758 substrate Substances 0.000 claims description 21
- 238000010586 diagram Methods 0.000 description 9
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
Landscapes
- Filters And Equalizers (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Description
産業上の利用分野
本発明はUHF帯を含みそれ以上の周波数領域
で好適に使用されるバンドパスフイルタに関す
る。
従来技術とその問題点
上記の周波数領域におけるバンドパスフイルタ
のフイルタ特性としては比較的高い尖鋭度(以
下、Qという)をもつことが要求され、従来は誘
電体同軸共振器を多段に接続したものが一般的で
あつた。
ところで、上記誘電体同軸共振器はコンデンサ
とコイルとからなる直列回路に別のコンデンサを
並列接続した等価回路であらわされるものである
が、バンドパスフイルタとして使用する場合は、
別途コンデンサ等の結合手段が必要となり、構造
上複雑化し、大型化すると共に、組立作業も手間
がかかるという欠点があつた。
出願人はこれに関連する発明として共振器回路
を構成する導電パターンを一枚の基板上に形成
し、かつ該共振器回路を複数個容量結合させるこ
とによつて、コンパクト化を実現したものを特願
昭61−97317にて既に提案した。
しかし、上記出願発明は、コンパクトにはなつ
たもののフイルタ特性の面においては必ずしもそ
の「Q」が満足し得るものとは言い難く、尚改良
の余地が残されていた。
本発明はこのような問題点に鑑みてなされたも
のであつて、コンパクトであつて、かつフイルタ
特性をより向上させたバンドパスフイルタを提供
することを目的とする。
問題点を解決するための手段
上記目的を達成するために本発明のバンドパス
フイルタは、誘電体基板の表裏両面の2箇所に
夫々対向してコンデンサ電極パターンが形成さ
れ、この電極パターンとその間の誘電体基板とで
第1、第2のコンデンサを形成し、一方、上記基
板の表面に存する2つのコンデンサ電極の間及び
裏面に存する2つのコンデンサ電極の間にコイル
パターンが形成され、上記第1のコンデンサと、
この両側に直列に接続された上記コンデンサパタ
ーンによつて構成されるコンデンサとでLC直列
回路を形成し、かつ該LC直列回路に上記第2の
コンデンサが並列に接続されてなる共振器複数個
を容量結合すると共に、共振器間の少なくとも1
箇所をコイルによつて接続したことを要旨として
いる。
実施例
以下、図示の実施例に基づき本発明を詳説す
る。
第1図は本発明の一実施例としてのバンドパス
フイルタの構成を示し、図イは正面図、図ロは側
面図、図ハは背面図である。図中、1は例えば
FRDR材等からなる誘電体基板で、その表面1a
と裏面1bには夫々コの字状をした導電パターン
2〜5が形成され、かつ表面1a側の導電パター
ン2と導電パターン4とは略凹状に形成された導
電パターン6を介して接続されている。上記導電
パターン2〜5は2つのコンデンサ電極パターン
2a,2b,3a,3b,4a,4b,5a,5
bと1つのコイルパターン2c,3c,4c,5
cとからなる。このうち、コンデンサ電極パター
ン2aと3a,2bと3b,4aと5a,4bと
5bとは誘電体基板1を介して対向しており、基
板1の誘電率、厚み及びコンデンサ電極パターン
の対向面積によつて決定されるコンデンサ容量C
1,C2,C3,C4を有している。一方、コイ
ルパターン2c,3c,4c,5cは夫々対向し
ない位置に高周波的に形成され、夫々のコイルパ
ターンはインダクタンスL1,L2,L3,L4
を有している。また、前記コンデンサ電極パター
ン2〜5のうち基板表面1a側のコンデンサ電極
パターン2a,4aは互いに接近する方向に延設
部2d,4dが形成されると共に、該延設部2
b,4b間で所定容量のコンデンサCsを有する
ように基板裏面1b側には導電パターン7が形成
される。8,9は入出力用のリード端子、10,
11は接地用の端子を示す。
しかして、上記導電パターン2,3(或いは導
電パターン4,5)は、第2図に示すような等価
回路で表され、共振器Qを構成している。すなわ
ち、該共振器Qは第1のコンデンサC1(C3)
の両側にコイルL1,L2(L3,L4)を接続し
てなるLC直列回路に第2のコンデンサC2
(C4)が並列接続されたものである。
第3図は第1図に示すバンドパスフイルタを価
回路で表したものである。すなわち、該バンドパ
スフイルタは、第2図の等価回路を持つ2個の共
振器Q1,Q2が上記コンデンサCsによつて容
量結合され、かつ共振器Q1とQ2が接続コイル
L5によつて接続されてなる。図中、L10,L
11はリード端子10,11の有するインダクタ
ンスである。このバンドパスフイルタは、コンデ
ンサCsの容量を変えることにより容量結合の度
合を変更でき、従つてこれによつて通過帯域幅を
調整することができる。第4図は上記構成のバン
ドパスフイルタの周波数特性を示し、第5図は接
続コイルL5を設けなかつた例を示す。中心周波
数は共に504MHzである。この両図の比較から明
らかなように共振器Q1,Q2が接続コイルL5
に接続されることにより中心周波数の両側に極
P,Pが形成され、接続コイルL5が設けられて
いない場合に比し、急峻な特性が得られることが
確認された。しかも、上述の如く該バンドパスフ
イルタは第3図の等価回路を有する導電パターン
からなるので、嵩張ることもなくコンパクトなも
のとなり、製造時においても手間がかからない。
この第4図のような周波数特性を得るための基板
1及び導電パターン2〜7の寸法等は次の通りで
ある。
(イ) 誘電体基板:厚み0.4mm、縦横寸法12×14mm、
誘電率80
(ロ) 導電パターン(各パターンとも同じ):
コンデンサ電極パターン2a,2b
l1=6.5(mm)
l2=1.5(mm)
l3=6.5(mm)
l4=3.5(mm)
C1=20(PF)
C2=44(PF)
コイルパターン2c,3c
l5=5.6(mm)
L1=L2=2.49(nH)
コンデンサ電極パターン2d,4d,7
l6=l7=1.5(mm)
l8=0.5(mm)
l9=1.3(mm)
Cs=1.0(PF)
コイルパターン6
l10=l11=1.5(mm)
l12=l13=l14=1.0(mm)
l15=3.5(mm)
L5=3.0(nH)
尚、コイルパターンの幅Wはインダクタンス値
には関係しないが、幅が大である程抵抗分が小さ
くなるので、Qが高くなり好ましいといえる。こ
の実施例ではW=1.5(mm)としている。
第6図は他の実施例(第2の実施例)として第
2図に示す等価回路をもつ共振器を3段に結合し
た場合の例を示す。この実施例ではコの字状をし
た3個の導電パターン2,4,12と3,5,1
3が一枚の誘電体基板1の表裏両面1a,1bに
夫々所定間隔をおいて形成されると共に、表面1
a側の導電パターン2,12は導電パターン6を
介して接続されている。さらに上記導電パターン
2,4,12は、その一部を延長して延設部2
d,4d,12d,12eを形成し、かつこの延
設部2d,4d,12d,12eと一部対向する
導電パターン17,14を基板裏面1bに形成し
ている。第7図は第6図のバンドパスフイルタを
等価回路であらわしたものである。すなわち、上
記基板1の表裏両面に形成された導電パターン2
と3,4と5,12と13で共振器Q1,Q2,
Q3を構成し、延設部2d,4d,12d,12
eと導電パターン7,14とで結合用のコンデン
サCs1,Cs2を構成すると共に、共振器Q1,Q3
は接続コイルL5で互いに接続される。図中、C
5,C6,L6,L7は共振器Q3を構成するコ
ンデンサ及びコイル、L15はリード端子15の
もつコイル成分である。第8図は上記バンドパス
フイルタの周波数特性を示し、コイルL5を設け
なかつた場合を示す。中心周波数は共に400MHz
である。この図から明らかなように接続コイルL
5を設けることにより、中心周波数の両端に2個
の極P,Pが形成され、急峻な特性が得られたの
が確認された。このような周波数特性を得るため
のバンドパスフイルタの導電パターン6の各部寸
法は次の通りである。
l16=1.0(mm)
l17=3.5(mm)
L5=2.0(nH)
第10図はさらに別の実施例(第3の実施例)
を示したものであつて、第2の実施例と同様、第
2図の等価回路をもつ共振器を3段結合し、か
つ、表面1a側の導電パターン12の一部に矩形
状の突設部16を設けると共に、該突設部16と
対向するように裏面1b側の導電パターン5にも
同様な突設部17を設け、さらに該突設部16,
17を電気的に接続する貫通孔18を設けたもの
である。尚、該貫通孔18には銀等の導電ペース
トが充填される。第11図は第10図のバンドパ
スフイルタの等価回路を示したものである。上記
突設部16,17でもつてコイルL5か形成され
ている。第12図はその周波数特性を示したもの
である。この図から明らかなように中心周波数
405Hzの両側に極P,Pが形成され、急峻な周波
数特性が得られるのが判る。以下に導電パターン
16,17の各部寸法を示す。
l18=1.0(mm)
l19=2.5(mm)
貫通孔18=0.5(mmφ)
L5=2.0(nH)
このように共振器間をコイルで接続することに
より、急峻な特性が得られたのが確認された。ま
た、本発明に係るバンドパスフイルタは、共振器
を導電パターンで形成したので3段以上の多段に
接続しても嵩張ることもなくコンパクトなものと
なる。
尚、本発明は上記実施例に限定されるものでは
なく要旨を逸脱しない範囲において設計変更可能
なことは勿論である。例えば、共振器の段数につ
いても限定されることがなく、一枚の基板上に3
個以上の共振器を多段接続することも可能であ
る。さらに、リード端子の導出個所も任意であ
り、共振器の間隔を変えることによつて帯域幅を
変えることも可能である。また、第2及び第3図
の実施例において、極Pの周波数はリード端子1
5を第6図及び第10図に示す如く矢印A方向に
移動させることにより、任意に選べることがで
き、用途に応じたフイルタ特性を有するバンドパ
スフイルタを得ることができる。また、導電パタ
ーンの形成も銀ペースト等をクスリーン印刷する
ことにより容易に行なうことができ、さらに共振
器間の接続個所についても少なくとも1箇所あれ
ば良くの接続個所を2箇所以上に設定してもよい
ことはいうまでもない。
発明の効果
以上詳述したように本発明のバンドパスフイル
タは、第1のコンデンサの両側に直列にコイルが
接続されたLC直列回路に並列に第2のコンデン
サが接続された等価回路をもつ共振器複数個を容
量結合すると共に、共振器間の少なくとも1箇所
をコイルによつて接続した構成としたもので、中
心周波数の両側に極が形成され、急峻なフイルタ
特性を得ることができる。またコンデンサ電極パ
ターン及びコイルパターンは誘電体基板の表裏両
面共同一パターンで形成したので、製造に際して
同一パターンの印刷マスクを使用でき、安価に製
造することができる。
加えて、誘電体同軸共振器と異なり、共振器の
構成要素であるコンデンサの容量を単独で変更調
整することができるので、インピーダンスマツチ
ングがとりやすいといつた効果がある。
INDUSTRIAL APPLICATION FIELD The present invention relates to a bandpass filter that is suitably used in a frequency range including the UHF band and beyond. Prior art and its problems The filter characteristics of a bandpass filter in the above frequency range are required to have relatively high sharpness (hereinafter referred to as Q), and in the past, dielectric coaxial resonators were connected in multiple stages. was common. By the way, the above-mentioned dielectric coaxial resonator is represented by an equivalent circuit consisting of a series circuit consisting of a capacitor and a coil and another capacitor connected in parallel, but when used as a bandpass filter,
A separate coupling means such as a capacitor is required, resulting in a complicated structure, an increase in size, and a time-consuming assembly process. The applicant has proposed a related invention in which a conductive pattern constituting a resonator circuit is formed on a single substrate, and a plurality of resonator circuits are capacitively coupled, thereby realizing compactness. This was already proposed in patent application No. 1983-97317. However, although the invention as filed above has become more compact, it cannot be said that its "Q" is necessarily satisfactory in terms of filter characteristics, and there is still room for improvement. The present invention has been made in view of these problems, and an object of the present invention is to provide a bandpass filter that is compact and has improved filter characteristics. Means for Solving the Problems In order to achieve the above object, the bandpass filter of the present invention has a capacitor electrode pattern formed at two opposing locations on both the front and back surfaces of a dielectric substrate, and a gap between the electrode pattern and the capacitor electrode pattern. First and second capacitors are formed with the dielectric substrate, and a coil pattern is formed between the two capacitor electrodes on the front surface of the substrate and between the two capacitor electrodes on the back surface of the substrate, and and a capacitor of
The capacitor formed by the capacitor pattern connected in series on both sides forms an LC series circuit, and the second capacitor is connected in parallel to the LC series circuit to form a plurality of resonators. At least one capacitive coupling between the resonators
The gist is that the points were connected by coils. EXAMPLES Hereinafter, the present invention will be explained in detail based on illustrated examples. FIG. 1 shows the configuration of a bandpass filter as an embodiment of the present invention, in which FIG. A is a front view, FIG. B is a side view, and FIG. C is a rear view. In the figure, 1 is for example
A dielectric substrate made of FRDR material etc., whose surface 1a
U-shaped conductive patterns 2 to 5 are formed on the back surface 1b, respectively, and the conductive patterns 2 and 4 on the front surface 1a are connected via a conductive pattern 6 formed in a substantially concave shape. There is. The conductive patterns 2 to 5 are two capacitor electrode patterns 2a, 2b, 3a, 3b, 4a, 4b, 5a, 5.
b and one coil pattern 2c, 3c, 4c, 5
It consists of c. Of these, the capacitor electrode patterns 2a and 3a, 2b and 3b, 4a and 5a, and 4b and 5b are opposed to each other with the dielectric substrate 1 in between, and the dielectric constant and thickness of the substrate 1 and the opposing area of the capacitor electrode patterns are The capacitor capacity C determined accordingly
1, C2, C3, and C4. On the other hand, the coil patterns 2c, 3c, 4c, and 5c are formed using high frequency at positions that do not face each other, and each coil pattern has an inductance of L1, L2, L3, and L4.
have. Further, among the capacitor electrode patterns 2 to 5, the capacitor electrode patterns 2a and 4a on the substrate surface 1a side are formed with extending portions 2d and 4d in a direction approaching each other.
A conductive pattern 7 is formed on the back side of the substrate 1b so as to have a capacitor Cs of a predetermined capacity between capacitors b and 4b. 8, 9 are input/output lead terminals, 10,
11 indicates a grounding terminal. The conductive patterns 2 and 3 (or the conductive patterns 4 and 5) are represented by an equivalent circuit as shown in FIG. 2, and constitute a resonator Q. That is, the resonator Q is connected to the first capacitor C1 (C3)
A second capacitor C2 is connected to the LC series circuit formed by connecting coils L1 and L2 (L3, L4) on both sides of the
(C4) are connected in parallel. FIG. 3 shows the bandpass filter shown in FIG. 1 in terms of a value circuit. That is, in the bandpass filter, two resonators Q1 and Q2 having the equivalent circuit shown in FIG. 2 are capacitively coupled by the capacitor Cs, and the resonators Q1 and Q2 are connected by a connecting coil L5. It becomes. In the figure, L10,L
11 is an inductance that the lead terminals 10 and 11 have. In this bandpass filter, the degree of capacitive coupling can be changed by changing the capacitance of the capacitor Cs, and therefore the passband width can be adjusted thereby. FIG. 4 shows the frequency characteristics of the bandpass filter having the above configuration, and FIG. 5 shows an example in which the connecting coil L5 is not provided. The center frequency of both is 504MHz. As is clear from the comparison of these two figures, the resonators Q1 and Q2 are connected to the connected coil L5.
It was confirmed that poles P and P are formed on both sides of the center frequency by connecting to the coil L5, and steeper characteristics can be obtained than in the case where the connecting coil L5 is not provided. Moreover, as described above, since the bandpass filter is made of a conductive pattern having the equivalent circuit shown in FIG. 3, it is compact without being bulky, and requires no effort during manufacture.
The dimensions of the substrate 1 and the conductive patterns 2 to 7 to obtain the frequency characteristics shown in FIG. 4 are as follows. (a) Dielectric substrate: thickness 0.4 mm, length and width dimensions 12 x 14 mm,
Dielectric constant 80 (b) Conductive pattern (same for each pattern): Capacitor electrode pattern 2a, 2b l1 = 6.5 (mm) l2 = 1.5 (mm) l3 = 6.5 (mm) l4 = 3.5 (mm) C1 = 20 (PF ) C2 = 44 (PF) Coil pattern 2c, 3c l5 = 5.6 (mm) L1 = L2 = 2.49 (nH) Capacitor electrode pattern 2d, 4d, 7 l6 = l7 = 1.5 (mm) l8 = 0.5 (mm) l9 = 1.3 (mm) Cs = 1.0 (PF) Coil pattern 6 l10 = l11 = 1.5 (mm) l12 = l13 = l14 = 1.0 (mm) l15 = 3.5 (mm) L5 = 3.0 (nH) In addition, the width of the coil pattern W is not related to the inductance value, but the larger the width, the smaller the resistance, and therefore the higher the Q, which is preferable. In this embodiment, W=1.5 (mm). FIG. 6 shows another embodiment (second embodiment) in which resonators having the equivalent circuit shown in FIG. 2 are coupled in three stages. In this embodiment, three U-shaped conductive patterns 2, 4, 12 and 3, 5, 1 are used.
3 are formed on both the front and back surfaces 1a and 1b of one dielectric substrate 1 at predetermined intervals, and
The conductive patterns 2 and 12 on the a side are connected via the conductive pattern 6. Furthermore, the conductive patterns 2, 4, and 12 are partially extended to form extension portions 2.
d, 4d, 12d, and 12e, and conductive patterns 17 and 14 are formed on the back surface 1b of the substrate, partially facing the extended portions 2d, 4d, 12d, and 12e. FIG. 7 shows an equivalent circuit representation of the bandpass filter shown in FIG. 6. That is, the conductive pattern 2 formed on both the front and back surfaces of the substrate 1
and 3, 4 and 5, 12 and 13 make resonators Q1, Q2,
Configuring Q3, extending portions 2d, 4d, 12d, 12
e and conductive patterns 7 and 14 constitute coupling capacitors Cs 1 and Cs 2 , and also form resonators Q1 and Q3.
are connected to each other by a connecting coil L5. In the diagram, C
5, C6, L6, and L7 are capacitors and coils forming the resonator Q3, and L15 is a coil component of the lead terminal 15. FIG. 8 shows the frequency characteristics of the bandpass filter, and shows the case where the coil L5 is not provided. Both center frequencies are 400MHz
It is. As is clear from this diagram, the connected coil L
5, two poles P and P were formed at both ends of the center frequency, and it was confirmed that steep characteristics were obtained. The dimensions of each part of the conductive pattern 6 of the bandpass filter for obtaining such frequency characteristics are as follows. l16 = 1.0 (mm) l17 = 3.5 (mm) L5 = 2.0 (nH) Figure 10 is yet another example (third example)
Similar to the second embodiment, three stages of resonators having the equivalent circuit shown in FIG. 16, and a similar protrusion 17 is also provided on the conductive pattern 5 on the back side 1b so as to face the protrusion 16, and the protrusion 16,
17 is provided with a through hole 18 for electrically connecting it. Note that the through hole 18 is filled with a conductive paste such as silver. FIG. 11 shows an equivalent circuit of the bandpass filter shown in FIG. 10. The protrusions 16 and 17 also form a coil L5. FIG. 12 shows its frequency characteristics. As is clear from this figure, the center frequency
It can be seen that poles P and P are formed on both sides of 405 Hz, resulting in steep frequency characteristics. The dimensions of each part of the conductive patterns 16 and 17 are shown below. l18 = 1.0 (mm) l19 = 2.5 (mm) Through hole 18 = 0.5 (mmφ) L5 = 2.0 (nH) It was confirmed that by connecting the resonators with the coil in this way, steep characteristics were obtained. It was done. Further, since the bandpass filter according to the present invention has a resonator formed of a conductive pattern, it is compact and does not become bulky even when connected in three or more stages. It should be noted that the present invention is not limited to the above-mentioned embodiments, and it goes without saying that the design can be changed within the scope of the invention. For example, there is no limit to the number of resonator stages, and three resonator stages can be placed on one substrate.
It is also possible to connect more than one resonator in multiple stages. Furthermore, the lead terminals can be led out at any point, and the bandwidth can be changed by changing the spacing between the resonators. In addition, in the embodiments shown in FIGS. 2 and 3, the frequency of the pole P is
By moving 5 in the direction of arrow A as shown in FIGS. 6 and 10, a bandpass filter can be selected arbitrarily and has filter characteristics suitable for the purpose. In addition, the conductive pattern can be easily formed by screen printing silver paste, etc., and the connection between the resonators can be made at least one connection point, but it is possible to set two or more connection points. Needless to say, it's a good thing. Effects of the Invention As detailed above, the bandpass filter of the present invention has a resonance circuit having an equivalent circuit in which a second capacitor is connected in parallel to an LC series circuit in which coils are connected in series on both sides of a first capacitor. In this configuration, a plurality of resonators are capacitively coupled, and at least one point between the resonators is connected by a coil, so that poles are formed on both sides of the center frequency, and steep filter characteristics can be obtained. Further, since the capacitor electrode pattern and the coil pattern are formed with the same pattern on both the front and back surfaces of the dielectric substrate, a printing mask with the same pattern can be used during manufacturing, and manufacturing can be performed at low cost. In addition, unlike a dielectric coaxial resonator, the capacitance of the capacitor, which is a component of the resonator, can be changed and adjusted independently, making impedance matching easier.
第1図は本発明の一実施例(第1の実施例)と
してのバンドパスフイルタを示し、図イは正面
図、図ロは側面図、図ハは背面図、第2図は第1
図のフイルタを構成する共振器の等価回路図、第
3図は第1図のフイルタの等価回路図、第4図は
第1の実施例におけるバンドパスフイルタの周波
数特性図、第5図はコイルを接続しなかつた場合
の一例を示す周波数特性図、第6図イは第2の実
施例を示すバンドパスフイルタの正面図、図ロは
その側面図、図ハは背面図、第7図はその等価回
路図、第8図は第2の実施例におけるバンドパス
フイルタの周波数特性図、第9図はコイルを接続
しなかつた場合の一例を示す周波数特性図、第1
0図イは第3の実施例を示すバンドパスフイルタ
の正面図、図ロは側面図、図ハは背面図、第11
図はそのフイルタの等価回路図、第12図は第3
の実施例における周波数特性図である。
1……誘電体基板、2a,2b,3a,3b,
4a,4b,5a,5b……コンデンサ電極パタ
ーン、2c,3c,4c,5c……コイルパター
ン、C1,C3,C5……第1のコンデンサ、
C2,C4,C6……第2のコンデンサ、L1,L
2,L3,L4,L5,L6,L7……コイル、
Q1,Q2,Q3……共振器。
Fig. 1 shows a bandpass filter as an embodiment (first embodiment) of the present invention, in which Fig. A is a front view, Fig. B is a side view, Fig. C is a back view, and Fig. 2 is a
Fig. 3 is an equivalent circuit diagram of the resonator constituting the filter in Fig. 1, Fig. 4 is a frequency characteristic diagram of the bandpass filter in the first embodiment, Fig. 5 is a coil 6A is a front view of the bandpass filter showing the second embodiment, FIG. 6B is a side view, FIG. Its equivalent circuit diagram, FIG. 8 is a frequency characteristic diagram of the bandpass filter in the second embodiment, FIG. 9 is a frequency characteristic diagram showing an example when the coil is not connected, and FIG.
Figure 0 A is a front view of the bandpass filter showing the third embodiment, Figure B is a side view, Figure C is a rear view, and Figure 11 is a front view of the bandpass filter showing the third embodiment.
The figure is an equivalent circuit diagram of the filter, and Figure 12 is the third
FIG. 3 is a frequency characteristic diagram in an example of FIG. 1...Dielectric substrate, 2a, 2b, 3a, 3b,
4a, 4b, 5a, 5b...capacitor electrode pattern, 2c, 3c, 4c, 5c...coil pattern, C1, C3, C5...first capacitor,
C2, C4, C6...Second capacitor, L1, L
2, L3, L4, L5, L6, L7...Coil,
Q1, Q2, Q3...resonator.
Claims (1)
てコンデンサ電極パターンが形成され、この電極
パターンとその間の誘電体基板とで第1、第2の
コンデンサを形成し、一方、上記基板の表面に存
する2つのコンデンサ電極の間及び裏面に存する
2つのコンデンサ電極の間にコイルパターンが形
成され、上記第1のコンデンサと、この両側に直
列に接続された上記コンデンサパターンによつて
構成されるコンデンサとでLC直列回路を形成し、
かつ該LC直列回路に上記第2のコンデンサが並
列に接続されてなる共振器複数個を容量結合する
と共に、共振器間の少なくとも1箇所をコイルに
よつて接続したことを特徴とするバンドパスフイ
ルタ。1 Capacitor electrode patterns are formed at two opposite locations on the front and back surfaces of the dielectric substrate, and the electrode patterns and the dielectric substrate therebetween form first and second capacitors, while the surface of the substrate A coil pattern is formed between two capacitor electrodes on the back side and between two capacitor electrodes on the back side, and the capacitor is configured by the first capacitor and the capacitor pattern connected in series on both sides of the first capacitor. form an LC series circuit with
A bandpass filter characterized in that a plurality of resonators each having the second capacitor connected in parallel to the LC series circuit are capacitively coupled, and at least one point between the resonators is connected by a coil. .
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP4685686 | 1986-03-04 | ||
| JP61-46856 | 1986-03-04 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS63171010A JPS63171010A (en) | 1988-07-14 |
| JPH0481889B2 true JPH0481889B2 (en) | 1992-12-25 |
Family
ID=12758979
Family Applications (11)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP9731586A Expired - Lifetime JPH061876B2 (en) | 1986-03-04 | 1986-04-25 | Band pass filter |
| JP9731386A Granted JPS6310809A (en) | 1986-03-04 | 1986-04-25 | Resonator |
| JP9731786A Pending JPS6310813A (en) | 1986-03-04 | 1986-04-25 | Band pass filter |
| JP9731686A Expired - Lifetime JPS6310812A (en) | 1986-03-04 | 1986-04-25 | Band pass filter |
| JP9731186A Granted JPS6310807A (en) | 1986-03-04 | 1986-04-25 | Resonator |
| JP9731286A Granted JPS6310808A (en) | 1986-03-04 | 1986-04-25 | Resonator |
| JP9731486A Pending JPS6310810A (en) | 1986-03-04 | 1986-04-25 | Resonator |
| JP1292987A Granted JPS63171011A (en) | 1986-03-04 | 1987-01-22 | Band-pass filter |
| JP1292787A Granted JPS63171009A (en) | 1986-03-04 | 1987-01-22 | Band-pass filter |
| JP1292887A Granted JPS63171010A (en) | 1986-03-04 | 1987-01-22 | Band-pass filter |
| JP1293087A Granted JPS63171012A (en) | 1986-03-04 | 1987-01-22 | Band-pass filter |
Family Applications Before (9)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP9731586A Expired - Lifetime JPH061876B2 (en) | 1986-03-04 | 1986-04-25 | Band pass filter |
| JP9731386A Granted JPS6310809A (en) | 1986-03-04 | 1986-04-25 | Resonator |
| JP9731786A Pending JPS6310813A (en) | 1986-03-04 | 1986-04-25 | Band pass filter |
| JP9731686A Expired - Lifetime JPS6310812A (en) | 1986-03-04 | 1986-04-25 | Band pass filter |
| JP9731186A Granted JPS6310807A (en) | 1986-03-04 | 1986-04-25 | Resonator |
| JP9731286A Granted JPS6310808A (en) | 1986-03-04 | 1986-04-25 | Resonator |
| JP9731486A Pending JPS6310810A (en) | 1986-03-04 | 1986-04-25 | Resonator |
| JP1292987A Granted JPS63171011A (en) | 1986-03-04 | 1987-01-22 | Band-pass filter |
| JP1292787A Granted JPS63171009A (en) | 1986-03-04 | 1987-01-22 | Band-pass filter |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP1293087A Granted JPS63171012A (en) | 1986-03-04 | 1987-01-22 | Band-pass filter |
Country Status (1)
| Country | Link |
|---|---|
| JP (11) | JPH061876B2 (en) |
Families Citing this family (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH01208008A (en) * | 1988-02-15 | 1989-08-22 | Murata Mfg Co Ltd | Resonator and its manufacture and method for adjusting frequency characteristic in resonator |
| JPH01208009A (en) * | 1988-02-15 | 1989-08-22 | Murata Mfg Co Ltd | Band-pass filter and its manufacture and method for adjusting frequency characteristic of same |
| JPH0753300Y2 (en) * | 1988-03-15 | 1995-12-06 | 株式会社村田製作所 | Substrate LC filter |
| JPH0767059B2 (en) * | 1989-01-19 | 1995-07-19 | 株式会社村田製作所 | LC filter |
| JPH0353610A (en) * | 1989-07-20 | 1991-03-07 | Murata Mfg Co Ltd | Band pass filter |
| JP2819641B2 (en) * | 1989-08-11 | 1998-10-30 | 株式会社村田製作所 | Bandpass filter |
| WO1991003545A1 (en) * | 1989-09-11 | 1991-03-21 | Nitto Denko Corporation | Carrier for culturing microorganism, carrier for controlling insect pest prepared therefrom, and method of controlling insect pest |
| JP2616070B2 (en) * | 1989-12-13 | 1997-06-04 | 株式会社村田製作所 | Bandpass filter |
| JP2616106B2 (en) * | 1990-03-05 | 1997-06-04 | 株式会社村田製作所 | Resonator |
| DE4203961C2 (en) * | 1991-02-15 | 1995-05-24 | Murata Manufacturing Co | Bandpass filter |
| JP2682282B2 (en) * | 1991-08-21 | 1997-11-26 | 株式会社村田製作所 | Multilayer chip LC filter |
| US5276419A (en) * | 1992-02-18 | 1994-01-04 | The United States Of America As Represented By The Secretary Of The Air Force | Air-code magnetic flux guide |
| JPH0823210A (en) * | 1994-07-08 | 1996-01-23 | Toko Inc | Dielectric filter and its characteristic adjustment method |
| JPH0832309A (en) * | 1994-07-15 | 1996-02-02 | Toko Inc | Dielectric filter and its characteristic adjustment method |
| JPH0980712A (en) * | 1995-09-12 | 1997-03-28 | Fuji Photo Film Co Ltd | Silver halide color photographing sensitive material |
| WO1999001930A2 (en) * | 1997-07-03 | 1999-01-14 | Infineon Technologies Ag | Band-pass filter |
| JP4535817B2 (en) * | 2003-09-26 | 2010-09-01 | 京セラ株式会社 | Thin film capacitors, thin film capacitor arrays and electronic components |
| JP5003013B2 (en) * | 2006-04-25 | 2012-08-15 | 株式会社日立製作所 | Silicon light-emitting diode, silicon phototransistor, silicon laser, and manufacturing method thereof. |
| FR3033103A1 (en) * | 2015-02-24 | 2016-08-26 | Univ Paris Diderot Paris 7 | THREE DIMENSIONAL ELECTRICAL RESONATOR DEVICE OF INDUCTANCE-CAPACITY TYPE |
| JP7489199B2 (en) * | 2020-02-17 | 2024-05-23 | Tdk株式会社 | Multilayer Filter |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3999150A (en) * | 1974-12-23 | 1976-12-21 | International Business Machines Corporation | Miniaturized strip-line directional coupler package having spirally wound coupling lines |
| JPS5340120U (en) * | 1976-09-11 | 1978-04-07 | ||
| JPS5542429U (en) * | 1978-09-09 | 1980-03-19 | ||
| JPS5954310A (en) * | 1982-09-21 | 1984-03-29 | Murata Mfg Co Ltd | Lumped constant filter |
-
1986
- 1986-04-25 JP JP9731586A patent/JPH061876B2/en not_active Expired - Lifetime
- 1986-04-25 JP JP9731386A patent/JPS6310809A/en active Granted
- 1986-04-25 JP JP9731786A patent/JPS6310813A/en active Pending
- 1986-04-25 JP JP9731686A patent/JPS6310812A/en not_active Expired - Lifetime
- 1986-04-25 JP JP9731186A patent/JPS6310807A/en active Granted
- 1986-04-25 JP JP9731286A patent/JPS6310808A/en active Granted
- 1986-04-25 JP JP9731486A patent/JPS6310810A/en active Pending
-
1987
- 1987-01-22 JP JP1292987A patent/JPS63171011A/en active Granted
- 1987-01-22 JP JP1292787A patent/JPS63171009A/en active Granted
- 1987-01-22 JP JP1292887A patent/JPS63171010A/en active Granted
- 1987-01-22 JP JP1293087A patent/JPS63171012A/en active Granted
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0481891B2 (en) | 1992-12-25 |
| JPS6310812A (en) | 1988-01-18 |
| JPS6310811A (en) | 1988-01-18 |
| JPH0481886B2 (en) | 1992-12-25 |
| JPS6310807A (en) | 1988-01-18 |
| JPS6310810A (en) | 1988-01-18 |
| JPH061876B2 (en) | 1994-01-05 |
| JPS63171010A (en) | 1988-07-14 |
| JPS6310809A (en) | 1988-01-18 |
| JPS6310813A (en) | 1988-01-18 |
| JPS63171011A (en) | 1988-07-14 |
| JPS6310808A (en) | 1988-01-18 |
| JPH0481885B2 (en) | 1992-12-25 |
| JPS63171009A (en) | 1988-07-14 |
| JPS63171012A (en) | 1988-07-14 |
| JPH0481884B2 (en) | 1992-12-25 |
| JPH0481890B2 (en) | 1992-12-25 |
| JPH0481888B2 (en) | 1992-12-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPH0481889B2 (en) | ||
| US4894629A (en) | Bandpass filter having magnetically coupled resonators | |
| US4754242A (en) | Resonator | |
| US5376908A (en) | Interdigital strip line filter having a plurality of different width resonant electrodes | |
| JPH01151311A (en) | Lc filter | |
| JPS63305609A (en) | Band pass filter | |
| JPS6230402A (en) | Band elimination filter | |
| JPS63284916A (en) | Resonator | |
| JP2517105B2 (en) | Filter device | |
| JPS63312707A (en) | Band-pass filter | |
| JPH0481887B2 (en) | ||
| JPS63284917A (en) | Resonator | |
| JPH03234102A (en) | Polar low-pass filter | |
| JPH0832308A (en) | Dielectric filter and its characteristic adjustment method | |
| JPH0722806A (en) | Multilayer filter | |
| JPS6390818A (en) | Resonator | |
| JPH03205903A (en) | Polar type low-pass filter | |
| JPH0758511A (en) | Dielectric filter | |
| JPH04220001A (en) | Dielectric filter | |
| JPH0542174B2 (en) | ||
| JPH02192211A (en) | Lc filter | |
| JPS62203409A (en) | Resonator and band-pass filter using same | |
| JPH03296314A (en) | high frequency filter | |
| JPH0823210A (en) | Dielectric filter and its characteristic adjustment method | |
| JPH0434286B2 (en) |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| EXPY | Cancellation because of completion of term |