JPH0481888B2 - - Google Patents

Info

Publication number
JPH0481888B2
JPH0481888B2 JP62012927A JP1292787A JPH0481888B2 JP H0481888 B2 JPH0481888 B2 JP H0481888B2 JP 62012927 A JP62012927 A JP 62012927A JP 1292787 A JP1292787 A JP 1292787A JP H0481888 B2 JPH0481888 B2 JP H0481888B2
Authority
JP
Japan
Prior art keywords
coil
capacitor
bandpass filter
resonators
equivalent circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62012927A
Other languages
Japanese (ja)
Other versions
JPS63171009A (en
Inventor
Naotake Okamura
Teruhisa Tsuru
Masahiko Kawaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JPS63171009A publication Critical patent/JPS63171009A/en
Publication of JPH0481888B2 publication Critical patent/JPH0481888B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はUHF帯を含みそれ以上の周波数領域
で好適に使用されるバンドパスフイルタに関す
る。 従来技術とその問題点 上記の周波数領域におけるバンドパスフイルタ
のフイルタ特性としては比較的高い尖鋭度(以
下、Qという)をもつことが要求され、従来は誘
電体同軸共振器を多段に接続したものが一般的で
あつた。 ところで、上記誘電体同軸共振器はコンデンサ
とコイルとからなる直列回路に別のコンデンサを
並列接続した等価回路であらわされるものである
が、全体形状が円筒形をしているため、多段接続
した場合にはフイルタが嵩張るという欠点があつ
た。 出願人はこれに関連する発明として共振器回路
を構成する導電パターンを一枚の基板上に形成
し、かつ該共振器回路を複数個容量結合させるこ
とによつて、コンパクト化を実現したものを特願
昭61−97317にて既に提案した。 しかし、上記出願発明は、コンパクトにはなつ
たもののフイルタ特性の面においては必ずしもそ
の「Q」が満足し得るものとは言い難く、尚改良
の余地が残されていた。 本発明はこのような問題点に鑑みてなされたも
のであつて、コンパクトであつて、かつフイルタ
特性をより向上させたバンドパスフイルタを提供
することを目的とする。 問題点を解決するための手段 上記目的を達成するために本発明のバンドパス
フイルタは、第1のコンデンサの両側に直列にコ
イルが接続されたLC直列回路に並列に第2のコ
ンデンサが接続された等価回路をもつ共振器複数
個を容量結合すると共に、共振器間の少なくとも
1カ所をコイルによつて接続したことを要旨とし
ている。 実施例 以下、図示の実施例に基づき本発明を詳説す
る。 第1図は本発明の一実施例としてのバンドパス
フイルタの構成を示し、図イは正面図、図ロは側
面図、図ハは背面図である。図中、1は例えば
FRDR材等からなる誘電体基板で、その表面1a
と裏面1bには夫々コの字状をした導電パターン
2〜5が形成され、かつ表面1a側の導電パター
ン2と導電パターン4とは略凹状に形成された導
電パターン6を介して接続されている。上記導電
パターン2〜5は2つのコンデンサ電極パターン
2a,2b,3a,3b,4a,4b,5a,5
bと1つのコイルパターン2c,3c,4c,5
cとからなる。このうち、コンデンサ電極パター
ン2aと3a,2bと3b,4aと5a,4bと
5bとは誘電体基板1を介して対向しており、基
板1の誘電率、厚み及びコンデンサ電極パターン
の対向面積によつて決定されるコンデンサ容量C
1,C2,C3,C4を有している。一方、コイ
ルパターン2c,3c,4c,5cは夫々対向し
ない位置に高周波的に形成され、夫々のコイルパ
ターンはインダクタンスL1,L2,L3,L4
を有している。また、前記コンデンサ電極パター
ン2〜5のうち基板表面1a側のコンデンサ電極
パターン2a,4aは互いに接近する方向に延設
部2d,4dが形成されると共に、該延設部2
d,4d間で所定容量のコンデンサCsを有する
ように基板裏面1b側には導電パターン7が形成
される。3,9は入出力用のリード端子、10,
11は接地用の端子を示す。 しかして、上記導電パターン2,3(或いは導
電パターン4,5)は、第2図に示すような等価
回路で表され、共振器Qを構成している。すなわ
ち、該共振器Qは第1のコンデンサC1(C3)
の両側にコイルL1,L2,(L3,L4)を接
続してなるLC直列回路に第2のコンデンサC2
(C4)が並列接続されたものである。 第3図は第1図に示すバンドパスフイルタを等
価回路で表したものである。すなわち、該バンド
パスフイルタは、第2図の等価回路を持つ2個の
共振器Q1,Q2が上記コンデンサCsによつて
容量結合され、かつ共振器Q1とQ2が接続コイ
ルL5によつて接続されてなる。図中、L10,
L11はリード端子10,11の有するインダク
タンスである。このバンドパスフイルタは、コン
デンサCsの容量を変えることにより容量結合の
度合を変更でき、従つてこれによつて通過帯域幅
を調整することができる。第4図は上記構成のバ
ンドパスフイルタの周波数特性を示し、第5図は
接続コイルL5を設けなかつた例を示す。中心周
波数は共に504MHzである。この両図の比較から
明らかなように共振器Q1,Q2が接続コイルL
5に接続されることにより中心周波数の両側に極
P,Pが形成され、接続コイルL5が設けられて
いない場合に比し、急峻な特性が得られることが
確認された。しかも、上述の如く該バンドパスフ
イルタは第3図に示す等価回路を有する導電パタ
ーンからなり、嵩張ることもなくコンパクトなも
のとなる。上記第4図のような周波数特性を得る
ための基板1及び導電パターン2〜7の寸法等は
次の通りである。 (イ) 誘電体基板:厚み0.4mm、縦横寸法12×14mm、
誘電率80 (ロ) 導電パターン(各パターンとも同じ): コンデンサ電極パターン2a,2b l1=6.5(mm) l2=1.5(mm) l3=6.5(mm) l4=3.5(mm) C1=20(PF) C2=44(PF) コイルパターン2c,3c l5=5.6(mm) L1=L2=2.49(nH) コンデンサ電極パターン2d,4d,7 l6=l7=1.5(mm) l8=0.5(mm) l9=1.3(mm) Cs=1.0(PF) コイルパターン6 l10=l11=1.5(mm) l12=l13=l14=1.0(mm) l15=3.5(mm) L5=3.0(nH) 尚、コイルパターンの幅Wはインダクタンス値
には関係しないが、幅が大である程抵抗分が小さ
くなるので、Qが高くなり好ましいといえる。こ
の実施例ではW=1.5(mm)としている。 第6図は他の実施例(第2の実施例)として第
2図に示す等価回路をもつ共振器を3段に結合し
た場合の例を示す。この実施例ではコの字状をし
た3個の導電パターン2,4,12と3,5,1
3が一枚の誘電体基板1の表裏両面1a,1bに
夫々所定間隔をおいて形成されると共に、表面1
a側の導電パターン2,12は導電パターン6を
介して接続されている。さらに上記導電パターン
2,4,12は、その一部を延長して延設部2
d,4d,12d,12eを形成し、かつこの延
設部2d,4d,12d,12eと一部対向する
導電パターン7,14を基板裏面1bに形成して
いる。第7図は第6図のバンドパスフイルタを等
価回路であらわしたものである。すなわち、上記
基板1の表裏両面に形成された導電パターン2と
3,4と5,12と13で共振器Q1,Q2,Q
3を構成し、延設部2d,4d,12d,12e
と導電パターン7,14とで結合用のコンデンサ
Cs1,Cs2を構成すると共に、共振器Q1,Q3は
接続コイルL5で互いに接続される。図中、C
5,C6,L6,L7は共振器Q3を構成するコ
ンデンサ及びコイル、L15はリード端子15の
有するコイル成分である。第8図は上記バンドパ
スフイルタの周波数特性を示し、第9図は接続コ
イルL5を設けなかつた場合を示す。中心周波数
は共に400MHzである。この図から明らかなよう
に接続コイル15を設けることにより、中心周波
数の両側に2個の極P,Pが形成され、急峻な特
性が得られたのが確認された。このような周波数
特性を得るためのバンドパスフイルタの導電パタ
ーン6の各部寸法は次の通りである。 l16=1.0(mm) l17=3.5(mm) L5=2.0(nH) 第10図はさらに別の実施例(第3の実施例)
を示したものであつて、第2の実施例と同様、第
2図の等価回路をもつ共振器を3段結合し、か
つ、表面1a側の導電パターン12の一部に矩形
状の突設部16を設けると共に、該突設部16と
対向状となるように裏面1b側の導電パターン5
にも同様な突設部17を設け、さらに該突設部1
6,17を電気的に接続する貫通孔18を設けた
ものである。尚、該貫通孔18には銀等の導電ペ
ーストが充填される。第11図は第10図のバン
ドパスフイルタの等価回路を示したものである。
上記突設部16,17でもつてコイルL5が形成
されている。第12図はその周波数特性を示した
ものである。この図から明らかなように中心周波
数405Hzの両側に極P,Pが形成され、急峻な周
波数特性が得られ、また減衰量も大きくなり、良
好なバンドパスフイルタを得られるのが判る。以
下に上記突設部16,17の各部寸法を示す。 l18=1.0(mm) l19=2.5(mm) 貫通孔l8=0.5(mmφ) L5=2.0(nH) このように共振器間をコイルで接続することに
より、急峻な特性が得られたのが確認された。ま
た、本発明に係るバンドパスフイルタは、共振器
を導電パターンで形成したので3段以上の多段に
接続しても嵩張ることなくコンパクトなものとな
る。 尚、本発明は上記実施例に限定されるものでは
なく要旨を逸脱しない範囲において設計変更可能
なことは勿論である。例えば、共振器の段数につ
いても限定されることがなく、一枚の基板上に3
個以上の共振器を多段接続することも可能であ
る。さらに、リード端子の導出箇所も任意であ
り、共振器の間隔を変えることによつて帯域幅を
変えることも可能である。また、第2及び第3の
実施例において、極Pの周波数はリード端子15
を第6図及び第10図に示す如く矢印A方向に移
動させることにより、任意に選べることができ、
用途に応じたフイルタ特性を有するバンドパスフ
イルタを得ることができる。また、共振器間の接
続箇所についても少なくとも1箇所あれば良く、
接続箇所を2個以上に設定しても良いことはいう
までもない。 発明の効果 以上詳述したように本発明のバンドパスフイル
タは、第1のコンデンサの両側に直列にコイルが
接続されたLC直列回路に並列に第2のコンデン
サが接続された等価回路をもつ共振器複数個を容
量結合すると共に、共振器間の少なくとも1箇所
をコイルによつて接続したので、中心周波数の両
側に極が形成され、急峻なフイルタ特性を得るこ
とができる。また上述のような特異な等価回路を
有する共振器が多段接続されたので、一枚の基板
上に組みつけることができ、誘電体同軸共振器を
用いたフイルタと異なり、嵩張ることもなく、コ
ンパクトに構成することができるという効果があ
る。
INDUSTRIAL APPLICATION FIELD The present invention relates to a bandpass filter that is suitably used in a frequency range including the UHF band and beyond. Prior art and its problems The filter characteristics of a bandpass filter in the above frequency range are required to have relatively high sharpness (hereinafter referred to as Q), and in the past, dielectric coaxial resonators were connected in multiple stages. was common. By the way, the above-mentioned dielectric coaxial resonator is represented by an equivalent circuit in which another capacitor is connected in parallel to a series circuit consisting of a capacitor and a coil, but since the overall shape is cylindrical, when connected in multiple stages had the disadvantage that the filter was bulky. The applicant has proposed a related invention in which a conductive pattern constituting a resonator circuit is formed on a single substrate, and a plurality of resonator circuits are capacitively coupled, thereby realizing compactness. This was already proposed in patent application No. 1983-97317. However, although the invention as filed above has become more compact, it cannot be said that its "Q" is necessarily satisfactory in terms of filter characteristics, and there is still room for improvement. The present invention has been made in view of these problems, and an object of the present invention is to provide a bandpass filter that is compact and has improved filter characteristics. Means for Solving the Problems In order to achieve the above object, the bandpass filter of the present invention has a second capacitor connected in parallel to an LC series circuit in which coils are connected in series on both sides of a first capacitor. The gist is that a plurality of resonators having equivalent circuits are capacitively coupled, and that at least one point between the resonators is connected by a coil. EXAMPLES Hereinafter, the present invention will be explained in detail based on illustrated examples. FIG. 1 shows the configuration of a bandpass filter as an embodiment of the present invention, in which FIG. A is a front view, FIG. B is a side view, and FIG. C is a rear view. In the figure, 1 is for example
A dielectric substrate made of FRDR material etc., whose surface 1a
U-shaped conductive patterns 2 to 5 are formed on the back surface 1b, respectively, and the conductive patterns 2 and 4 on the front surface 1a are connected via a conductive pattern 6 formed in a substantially concave shape. There is. The conductive patterns 2 to 5 are two capacitor electrode patterns 2a, 2b, 3a, 3b, 4a, 4b, 5a, 5.
b and one coil pattern 2c, 3c, 4c, 5
It consists of c. Of these, the capacitor electrode patterns 2a and 3a, 2b and 3b, 4a and 5a, and 4b and 5b are opposed to each other with the dielectric substrate 1 in between, and the dielectric constant and thickness of the substrate 1 and the opposing area of the capacitor electrode patterns are The capacitor capacity C determined accordingly
1, C2, C3, and C4. On the other hand, the coil patterns 2c, 3c, 4c, and 5c are formed using high frequency at positions that do not face each other, and each coil pattern has an inductance of L1, L2, L3, and L4.
have. Further, among the capacitor electrode patterns 2 to 5, the capacitor electrode patterns 2a and 4a on the substrate surface 1a side are formed with extending portions 2d and 4d in a direction approaching each other.
A conductive pattern 7 is formed on the back side of the substrate 1b so as to have a capacitor Cs of a predetermined capacity between capacitors d and 4d. 3 and 9 are input/output lead terminals, 10,
11 indicates a grounding terminal. The conductive patterns 2 and 3 (or the conductive patterns 4 and 5) are represented by an equivalent circuit as shown in FIG. 2, and constitute a resonator Q. That is, the resonator Q is connected to the first capacitor C1 (C3)
A second capacitor C2 is connected to the LC series circuit formed by connecting coils L1, L2, (L3, L4) on both sides of the
(C4) are connected in parallel. FIG. 3 is an equivalent circuit representation of the bandpass filter shown in FIG. 1. That is, in the bandpass filter, two resonators Q1 and Q2 having the equivalent circuit shown in FIG. 2 are capacitively coupled by the capacitor Cs, and the resonators Q1 and Q2 are connected by a connecting coil L5. It becomes. In the figure, L10,
L11 is an inductance that the lead terminals 10 and 11 have. In this bandpass filter, the degree of capacitive coupling can be changed by changing the capacitance of the capacitor Cs, and therefore the passband width can be adjusted thereby. FIG. 4 shows the frequency characteristics of the bandpass filter having the above configuration, and FIG. 5 shows an example in which the connecting coil L5 is not provided. The center frequency of both is 504MHz. As is clear from the comparison of these two figures, the resonators Q1 and Q2 are connected to the connected coil L.
It was confirmed that poles P and P are formed on both sides of the center frequency by connecting the connecting coil L5 to L5, and that steeper characteristics can be obtained compared to the case where the connecting coil L5 is not provided. Furthermore, as described above, the bandpass filter is made of a conductive pattern having the equivalent circuit shown in FIG. 3, and is compact and not bulky. The dimensions of the substrate 1 and the conductive patterns 2 to 7 to obtain the frequency characteristics shown in FIG. 4 are as follows. (a) Dielectric substrate: thickness 0.4 mm, length and width dimensions 12 x 14 mm,
Dielectric constant 80 (b) Conductive pattern (same for each pattern): Capacitor electrode pattern 2a, 2b l1 = 6.5 (mm) l2 = 1.5 (mm) l3 = 6.5 (mm) l4 = 3.5 (mm) C1 = 20 (PF ) C2 = 44 (PF) Coil pattern 2c, 3c l5 = 5.6 (mm) L1 = L2 = 2.49 (nH) Capacitor electrode pattern 2d, 4d, 7 l6 = l7 = 1.5 (mm) l8 = 0.5 (mm) l9 = 1.3 (mm) Cs = 1.0 (PF) Coil pattern 6 l10 = l11 = 1.5 (mm) l12 = l13 = l14 = 1.0 (mm) l15 = 3.5 (mm) L5 = 3.0 (nH) Coil pattern width W is not related to the inductance value, but the larger the width, the smaller the resistance, and therefore the higher the Q, which is preferable. In this embodiment, W=1.5 (mm). FIG. 6 shows another embodiment (second embodiment) in which resonators having the equivalent circuit shown in FIG. 2 are coupled in three stages. In this embodiment, three U-shaped conductive patterns 2, 4, 12 and 3, 5, 1 are used.
3 are formed on both the front and back surfaces 1a and 1b of one dielectric substrate 1 at predetermined intervals, and
The conductive patterns 2 and 12 on the a side are connected via the conductive pattern 6. Furthermore, the conductive patterns 2, 4, and 12 are partially extended to form extension portions 2.
d, 4d, 12d, and 12e, and conductive patterns 7, 14 are formed on the back surface 1b of the substrate, partially facing the extended portions 2d, 4d, 12d, and 12e. FIG. 7 shows an equivalent circuit representation of the bandpass filter shown in FIG. 6. That is, the conductive patterns 2 and 3, 4 and 5, 12 and 13 formed on both the front and back surfaces of the substrate 1 form resonators Q1, Q2, Q.
3 and extending portions 2d, 4d, 12d, 12e
and conductive patterns 7, 14 for coupling capacitor
Cs 1 and Cs 2 are configured, and the resonators Q1 and Q3 are connected to each other by a connecting coil L5. In the diagram, C
5, C6, L6, and L7 are capacitors and coils forming the resonator Q3, and L15 is a coil component included in the lead terminal 15. FIG. 8 shows the frequency characteristics of the bandpass filter, and FIG. 9 shows the case where the connecting coil L5 is not provided. Both center frequencies are 400MHz. As is clear from this figure, by providing the connecting coil 15, two poles P, P were formed on both sides of the center frequency, and it was confirmed that steep characteristics were obtained. The dimensions of each part of the conductive pattern 6 of the bandpass filter for obtaining such frequency characteristics are as follows. l16=1.0 (mm) l17=3.5 (mm) L5=2.0 (nH) Figure 10 is yet another example (third example)
Similar to the second embodiment, three stages of resonators having the equivalent circuit shown in FIG. The conductive pattern 5 on the back surface 1b is provided so as to face the protruding portion 16.
A similar protrusion 17 is provided in the protrusion 1, and the protrusion 1
6 and 17 are provided with a through hole 18 for electrically connecting them. Note that the through hole 18 is filled with a conductive paste such as silver. FIG. 11 shows an equivalent circuit of the bandpass filter shown in FIG. 10.
The protruding portions 16 and 17 also form a coil L5. FIG. 12 shows its frequency characteristics. As is clear from this figure, poles P and P are formed on both sides of the center frequency of 405 Hz, a steep frequency characteristic is obtained, and the amount of attenuation is also increased, making it possible to obtain a good bandpass filter. The dimensions of each of the protruding portions 16 and 17 are shown below. l18 = 1.0 (mm) l19 = 2.5 (mm) Through hole l8 = 0.5 (mmφ) L5 = 2.0 (nH) It was confirmed that a steep characteristic was obtained by connecting the resonators with a coil in this way It was done. Further, since the bandpass filter according to the present invention has a resonator formed of a conductive pattern, it is compact and does not become bulky even when connected in three or more stages. It should be noted that the present invention is not limited to the above-mentioned embodiments, and it goes without saying that the design can be changed within the scope of the invention. For example, there is no limit to the number of resonator stages, and three resonator stages can be placed on one substrate.
It is also possible to connect more than one resonator in multiple stages. Furthermore, the lead terminals can be led out at any point, and the bandwidth can be changed by changing the spacing between the resonators. In addition, in the second and third embodiments, the frequency of the pole P is the same as that of the lead terminal 15.
can be arbitrarily selected by moving in the direction of arrow A as shown in FIGS. 6 and 10.
A bandpass filter having filter characteristics depending on the application can be obtained. In addition, it is sufficient that there is at least one connection point between the resonators.
It goes without saying that the number of connection points may be set to two or more. Effects of the Invention As detailed above, the bandpass filter of the present invention has a resonance circuit having an equivalent circuit in which a second capacitor is connected in parallel to an LC series circuit in which coils are connected in series on both sides of a first capacitor. Since a plurality of resonators are capacitively coupled and at least one point between the resonators is connected by a coil, poles are formed on both sides of the center frequency, and steep filter characteristics can be obtained. In addition, since the resonators with the unique equivalent circuits described above are connected in multiple stages, they can be assembled on a single board, and unlike filters using dielectric coaxial resonators, they are not bulky and compact. This has the advantage that it can be configured as follows.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例(第1の実施例)と
してのバンドパスフイルタを示し、図イは正面
図、図ロは側面図、図ハは背面図、第2図は第1
図のフイルタを構成する共振器の等価回路図、第
3図は第1図のフイルタの等価回路図、第4図は
第1の実施例におけるバンドパスフイルタの周波
数特性図、第5図はコイルを接続しなつた場合の
一例を示す周波数特性図、第6図イは第2の実施
例を示すバンドパスフイルタの正面図、図ロはそ
の側面図、図ハは背面図、第7図はその等価回路
図、第8図は上記第2の実施例におけるバンドパ
スフイルタの周波数特性図、第9図はコイルを接
続しなかつた場合の一例を示す周波数特性図、第
10図イは第3の実施例を示すバンドパスフイル
タの正面図、図ロは側面図、図ハは背面図、第1
1図はそのフイルタの等価回路図、第12図は上
記第3の実施例における周波数特性図である。 C1,C3,C5……第1のコンデンサ、C
2,C4,C6……第2のコンデンサ、L1,L
2,L3,L4,L5,L6,L7……コイル、
Q1,Q2,Q3……共振器。
Fig. 1 shows a bandpass filter as an embodiment (first embodiment) of the present invention, in which Fig. A is a front view, Fig. B is a side view, Fig. C is a back view, and Fig. 2 is a
Fig. 3 is an equivalent circuit diagram of the resonator constituting the filter in Fig. 1, Fig. 4 is a frequency characteristic diagram of the bandpass filter in the first embodiment, Fig. 5 is a coil Figure 6A is a front view of the bandpass filter showing the second embodiment, Figure B is its side view, Figure C is its rear view, Figure 7 is The equivalent circuit diagram, FIG. 8 is a frequency characteristic diagram of the band pass filter in the second embodiment, FIG. 9 is a frequency characteristic diagram showing an example when the coil is not connected, and FIG. Figure B is a side view, Figure C is a rear view, and Figure 1 is a front view of a band pass filter showing an example of
FIG. 1 is an equivalent circuit diagram of the filter, and FIG. 12 is a frequency characteristic diagram in the third embodiment. C1, C3, C5...first capacitor, C
2, C4, C6...Second capacitor, L1, L
2, L3, L4, L5, L6, L7...Coil,
Q1, Q2, Q3...resonator.

Claims (1)

【特許請求の範囲】[Claims] 1 第1のコンデンサの両側に直列にコイルが接
続されたLC直列回路に並列に第2のコンデンサ
が接続された等価回路をもつ共振器複数個を容量
結合すると共に、共振器間の少なくとも1箇所を
コイルによつて接続したことを特徴とするバンド
パスフイルタ。
1 Capacitively coupling multiple resonators each having an equivalent circuit in which a second capacitor is connected in parallel to an LC series circuit in which coils are connected in series on both sides of a first capacitor, and at least one point between the resonators. A bandpass filter characterized in that the following are connected by a coil.
JP1292787A 1986-03-04 1987-01-22 Band-pass filter Granted JPS63171009A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-46856 1986-03-04
JP4685686 1986-03-04

Publications (2)

Publication Number Publication Date
JPS63171009A JPS63171009A (en) 1988-07-14
JPH0481888B2 true JPH0481888B2 (en) 1992-12-25

Family

ID=12758979

Family Applications (11)

Application Number Title Priority Date Filing Date
JP9731486A Pending JPS6310810A (en) 1986-03-04 1986-04-25 Resonator
JP9731786A Pending JPS6310813A (en) 1986-03-04 1986-04-25 Band pass filter
JP9731586A Expired - Lifetime JPH061876B2 (en) 1986-03-04 1986-04-25 Band pass filter
JP9731686A Expired - Lifetime JPS6310812A (en) 1986-03-04 1986-04-25 Band pass filter
JP9731186A Granted JPS6310807A (en) 1986-03-04 1986-04-25 Resonator
JP9731386A Granted JPS6310809A (en) 1986-03-04 1986-04-25 Resonator
JP9731286A Granted JPS6310808A (en) 1986-03-04 1986-04-25 Resonator
JP1292887A Granted JPS63171010A (en) 1986-03-04 1987-01-22 Band-pass filter
JP1292787A Granted JPS63171009A (en) 1986-03-04 1987-01-22 Band-pass filter
JP1292987A Granted JPS63171011A (en) 1986-03-04 1987-01-22 Band-pass filter
JP1293087A Granted JPS63171012A (en) 1986-03-04 1987-01-22 Band-pass filter

Family Applications Before (8)

Application Number Title Priority Date Filing Date
JP9731486A Pending JPS6310810A (en) 1986-03-04 1986-04-25 Resonator
JP9731786A Pending JPS6310813A (en) 1986-03-04 1986-04-25 Band pass filter
JP9731586A Expired - Lifetime JPH061876B2 (en) 1986-03-04 1986-04-25 Band pass filter
JP9731686A Expired - Lifetime JPS6310812A (en) 1986-03-04 1986-04-25 Band pass filter
JP9731186A Granted JPS6310807A (en) 1986-03-04 1986-04-25 Resonator
JP9731386A Granted JPS6310809A (en) 1986-03-04 1986-04-25 Resonator
JP9731286A Granted JPS6310808A (en) 1986-03-04 1986-04-25 Resonator
JP1292887A Granted JPS63171010A (en) 1986-03-04 1987-01-22 Band-pass filter

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP1292987A Granted JPS63171011A (en) 1986-03-04 1987-01-22 Band-pass filter
JP1293087A Granted JPS63171012A (en) 1986-03-04 1987-01-22 Band-pass filter

Country Status (1)

Country Link
JP (11) JPS6310810A (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208009A (en) * 1988-02-15 1989-08-22 Murata Mfg Co Ltd Band-pass filter and its manufacture and method for adjusting frequency characteristic of same
JPH01208008A (en) * 1988-02-15 1989-08-22 Murata Mfg Co Ltd Resonator and its manufacture and method for adjusting frequency characteristic in resonator
JPH0753300Y2 (en) * 1988-03-15 1995-12-06 株式会社村田製作所 Substrate LC filter
JPH0767059B2 (en) * 1989-01-19 1995-07-19 株式会社村田製作所 LC filter
JPH0353610A (en) * 1989-07-20 1991-03-07 Murata Mfg Co Ltd Band pass filter
JP2819641B2 (en) * 1989-08-11 1998-10-30 株式会社村田製作所 Bandpass filter
DE69019950T2 (en) * 1989-09-11 1995-10-19 Nitto Denko Corp CARRIERS FOR CULTIVATING MICROORGANISMS, CARRIERS PRODUCED THEREOF FOR CONTROLLING PARASITAL INFECTION, AND METHOD FOR CONTROLLING PARASITES.
JP2616070B2 (en) * 1989-12-13 1997-06-04 株式会社村田製作所 Bandpass filter
JP2616106B2 (en) * 1990-03-05 1997-06-04 株式会社村田製作所 Resonator
DE4203961C2 (en) * 1991-02-15 1995-05-24 Murata Manufacturing Co Bandpass filter
JP2682282B2 (en) * 1991-08-21 1997-11-26 株式会社村田製作所 Multilayer chip LC filter
US5276419A (en) * 1992-02-18 1994-01-04 The United States Of America As Represented By The Secretary Of The Air Force Air-code magnetic flux guide
JPH0823210A (en) * 1994-07-08 1996-01-23 Toko Inc Wdielectric filter and its characteristic control method
JPH0832309A (en) * 1994-07-15 1996-02-02 Toko Inc Dielectric filter and characteristic adjustment method therefor
JPH0980712A (en) * 1995-09-12 1997-03-28 Fuji Photo Film Co Ltd Silver halide color photographing sensitive material
EP0992110B1 (en) * 1997-07-03 2001-10-04 Infineon Technologies AG Band-pass filter
JP4535817B2 (en) * 2003-09-26 2010-09-01 京セラ株式会社 Thin film capacitors, thin film capacitor arrays and electronic components
JP5003013B2 (en) * 2006-04-25 2012-08-15 株式会社日立製作所 Silicon light-emitting diode, silicon phototransistor, silicon laser, and manufacturing method thereof.
FR3033103A1 (en) * 2015-02-24 2016-08-26 Univ Paris Diderot Paris 7 THREE DIMENSIONAL ELECTRICAL RESONATOR DEVICE OF INDUCTANCE-CAPACITY TYPE

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3999150A (en) * 1974-12-23 1976-12-21 International Business Machines Corporation Miniaturized strip-line directional coupler package having spirally wound coupling lines
JPS5340120U (en) * 1976-09-11 1978-04-07
JPS5542429U (en) * 1978-09-09 1980-03-19
JPS5954310A (en) * 1982-09-21 1984-03-29 Murata Mfg Co Ltd Lumped constant filter

Also Published As

Publication number Publication date
JPS63171010A (en) 1988-07-14
JPS6310812A (en) 1988-01-18
JPS63171009A (en) 1988-07-14
JPS6310808A (en) 1988-01-18
JPH061876B2 (en) 1994-01-05
JPS63171011A (en) 1988-07-14
JPS6310811A (en) 1988-01-18
JPS6310810A (en) 1988-01-18
JPH0481886B2 (en) 1992-12-25
JPS6310807A (en) 1988-01-18
JPH0481890B2 (en) 1992-12-25
JPS6310809A (en) 1988-01-18
JPS6310813A (en) 1988-01-18
JPS63171012A (en) 1988-07-14
JPH0481884B2 (en) 1992-12-25
JPH0481889B2 (en) 1992-12-25
JPH0481891B2 (en) 1992-12-25
JPH0481885B2 (en) 1992-12-25

Similar Documents

Publication Publication Date Title
JPH0481888B2 (en)
US5023578A (en) Filter array having a plurality of capacitance elements
KR900008627B1 (en) Microwave bandpass filter
US5357227A (en) Laminated high-frequency low-pass filter
US20020030561A1 (en) LC filter circuit and laminated type LC filter
JPH0216802A (en) Band elimination filter
US4894629A (en) Bandpass filter having magnetically coupled resonators
US5376908A (en) Interdigital strip line filter having a plurality of different width resonant electrodes
JPH01151311A (en) Lc filter
CA2095773A1 (en) Strip line filter and duplexer filter using the same
JP2846744B2 (en) Dielectric resonator and dielectric filter
JPS63305609A (en) Band pass filter
JP2517105B2 (en) Filter device
JPS63312707A (en) Band-pass filter
JPH0339936Y2 (en)
JPH0542174B2 (en)
JPH0481887B2 (en)
JPH03234102A (en) Polar low pass filter
JPS63299607A (en) Surface packing type band pass filter
JPH0832308A (en) Dielectric filter and characteristic adjustment method therefor
JPS6390818A (en) Resonator
JPS63181514A (en) Band pass filter
JPH03296315A (en) High frequency filter
JPH03296314A (en) High frequency filter
JPS62203409A (en) Resonator and band-pass filter using same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term