JPH048146B2 - - Google Patents

Info

Publication number
JPH048146B2
JPH048146B2 JP59170474A JP17047484A JPH048146B2 JP H048146 B2 JPH048146 B2 JP H048146B2 JP 59170474 A JP59170474 A JP 59170474A JP 17047484 A JP17047484 A JP 17047484A JP H048146 B2 JPH048146 B2 JP H048146B2
Authority
JP
Japan
Prior art keywords
welding
electrode
electrodes
current
pulse current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59170474A
Other languages
Japanese (ja)
Other versions
JPS6149787A (en
Inventor
Hiroichi Nomura
Motohiko Sato
Yoshikazu Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP17047484A priority Critical patent/JPS6149787A/en
Publication of JPS6149787A publication Critical patent/JPS6149787A/en
Publication of JPH048146B2 publication Critical patent/JPH048146B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • B23K9/1735Arc welding or cutting making use of shielding gas and of a consumable electrode making use of several electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)
  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 この発明は本溶接に先立つて、多電極ガスシー
ルドアーク溶接を用い仮付溶接を高速度で連続的
に行なう高速連続仮付溶接方法に関するものであ
る。 〔従来技術〕 従来、本溶接に先立つて行なう仮付溶接は消耗
電極を用いるガスシールドアーク溶接により行な
われている。 この仮付溶接においては、例えば1電極による
炭酸ガスアーク溶接の場合、溶接速度の限界は4
m/分程度であり、また第4図に示すように先行
電極1と後行電極2の2電極を用いて炭酸ガスア
ーク溶接を行なつても、溶接速度の限界はせいぜ
い6m/分程度である。これは第4図に示した従
来例の場合、溶接電源は先行電極1および後行電
極2とも同極性の直流が用いられるので、先行電
極1のアーム7と後行電極2のアーク8は互いに
強力に引き合い、引き合つたアークおよび溶融金
属は両電極1,2に対してほぼ一定の位置となる
が、開先状態や溶接条件の若干の変動に対して溶
融金属は両電極1,2の間で不規則に変動し、時
どき、後行電極2をくぐり抜けて後方へ流出す
る。この現象が生じるとスパツタを多く発生しや
すく、またビード形状も不連続になりやすいため
である。 したがつて、この溶接速度の限界を超えた溶接
速度によつて仮付溶接を行なうと、ビード形状が
凹凸の著しい不整ビード(ハンピングビード)を
生じ、その結果本溶接においてスラグ巻込みや融
合不良などの溶接欠陥が発生し易く、さらに本溶
接を行なう場合に溶接線ならいが困難であるとい
うのが現状であり、このため非常に早い溶接速度
の仮付溶接法の出現が望まれている。 〔発明の目的〕 この発明は上記の問題点を克服し、高速度で連
続的に仮付溶接を行なうことができる高速連続仮
付溶接方法を提案することを目的とするものであ
る。 〔発明の概要〕 この発明の高速連続仮付溶接方法は複数の消耗
電極を用い、この消耗電極の相隣接する先行電極
及び後行電極に180°未満の位相差を与えたパルス
電流を流すことにより前記先行電極及び後行電極
間に形成される溶融金属を両電極間でアークによ
り前後に振動させ、もつて電極に対する溶融金属
の相対的位置関係を安定させ、高速度で連続的に
仮付溶接を行なうものである。 〔発明の実施例〕 第1図は、この発明の一実施例を示すブロツク
図であり、4は溶接装置の電源、5は電源4から
供給する電流をパルス電流I1に変換し先行電極1
に供給する第1のパルス電流発生器、6は電源4
から供給する電流を先行電極1に供給するパルス
電流I1に対し180°未満の位相差を有するパルス電
流I2に変換して後行電極2に供給する第2のパル
ス電流発生器である。 この先行電極1に流れるパルス電流I1は母材の
溶込み深さを得るに必要な電流値に設定され、後
行電極2に流れるパルス電流I2は先行電極1によ
り溶かされた溶融金属が後行電極2の後方に急速
に流されるのを塞ぎ止めるのに必要十分な電流値
に設定され、このためパルス電流I1より低い電流
値に設定される。 第2図a,bは上記先行電極1に流れるパルス
電流I1と後行電極2に流れるパルス電流I2の電流
波形を示す。図に示すようにパルス電流I1とパル
ス電流I2間には位相差φが与えられている。位相
差φは180°未満であれば何度でもよく、後述する
ように両電極1,2間の溶融金属にアークによる
前後振動を与えるものであればよい。 上記した高速仮付溶接方法の作用を説明する。
第2図a,bに示すように先行電極1に流れるパ
ルス電流I1と後行電極2に流れるパルス電流I2
位相差φを与えておくと、この位相差φにより先
行電極1に流れるパルス電流I1の電流値が高く、
後行電極2に流れるパルス電流I2の電流値が低く
なる場合は第3図aに示すように、両電極1,2
のアーク7,8により生じた溶融金属3の位置が
後行電極2側に流される。次に先行電極1に流れ
るパルス電流I1の電流値が低くなり、後行電極2
に流れるパルス電流I2の電流値が高くなると、両
電極1,2間の溶融金属3は第3図bに示すよう
に先行電極1側に動く。したがつて第2図に示す
ように位相差を与えたパルス電流I1,I2を先行電
極1及び後行電極2に連続して通電することによ
り、両電極1,2間の溶融金属3をパルス電流
I1,I2の振幅に応じて前後に振動させることがで
きる。 溶融金属3に振動を与えた結果、開先状態や溶
融速度など溶接条件が若干変動しても、溶融金属
3の位置は両電極1,2の間からほとんど動かな
いという効果を生じ、このため後行電極2が溶融
金属3を有効に塞ぎ止めることができ、後行電極
2方向へ流出することを阻止することができる。
このため溶接ビードの形成が一層安定して行なわ
れる。したがつて仮付溶接速度を増しても、ビー
ドの形成が安定しており、高速度においても連続
してなめらかな溶接ビードを得ることができる。 次に上記実施例により具体的に仮付溶接した場
合の結果を従来例と共に示す。すなわち板厚12mm
の鋼板を用いて開先角度90度、深さ4mmのY開先
に対して仮付溶接を行ない、不整ビードを生じな
い溶接速度の限界を求めた結果を第1表に示す。
[Technical Field of the Invention] The present invention relates to a high-speed continuous tack welding method in which tack welding is continuously performed at high speed using multi-electrode gas-shielded arc welding prior to main welding. [Prior Art] Conventionally, tack welding prior to main welding has been performed by gas-shielded arc welding using a consumable electrode. In this tack welding, for example, in the case of carbon dioxide arc welding with one electrode, the welding speed limit is 4
m/min, and even if carbon dioxide gas arc welding is performed using two electrodes, leading electrode 1 and trailing electrode 2, as shown in Figure 4, the welding speed limit is at most about 6 m/min. . In the case of the conventional example shown in Fig. 4, the welding power source uses direct current with the same polarity for both the leading electrode 1 and the trailing electrode 2, so the arm 7 of the leading electrode 1 and the arc 8 of the trailing electrode 2 are mutually connected. The arc and the molten metal that are strongly attracted to each other stay at a nearly constant position relative to both electrodes 1 and 2, but due to slight variations in the groove condition or welding conditions, the molten metal moves between the electrodes 1 and 2. It fluctuates irregularly between the two, and sometimes passes through the trailing electrode 2 and flows out to the rear. This is because when this phenomenon occurs, many spatters tend to occur and the bead shape tends to become discontinuous. Therefore, if tack welding is performed at a welding speed that exceeds this welding speed limit, an irregular bead with a significantly uneven bead shape (humping bead) will occur, resulting in slag entrainment and fusion during main welding. The current situation is that welding defects such as defects are likely to occur, and furthermore, it is difficult to follow the weld line when performing main welding.Therefore, it is desired that a tack welding method with an extremely fast welding speed be developed. . [Object of the Invention] It is an object of the present invention to overcome the above-mentioned problems and to propose a high-speed continuous tack welding method that can perform tack welding continuously at high speed. [Summary of the Invention] The high-speed continuous tack welding method of the present invention uses a plurality of consumable electrodes, and passes a pulsed current giving a phase difference of less than 180° to adjacent leading and trailing electrodes of the consumable electrodes. The molten metal formed between the leading electrode and the trailing electrode is vibrated back and forth by an arc between both electrodes, thereby stabilizing the relative positional relationship of the molten metal to the electrode, and continuously tacking at high speed. It performs welding. [Embodiment of the Invention] FIG. 1 is a block diagram showing an embodiment of the present invention, in which numeral 4 represents a power source of a welding device, and numeral 5 converts a current supplied from the power source 4 into a pulse current I 1 and connects the leading electrode 1 to the pulse current I 1 .
6 is the power supply 4
This is a second pulse current generator that converts the current supplied from the current into a pulse current I 2 having a phase difference of less than 180° with respect to the pulse current I 1 supplied to the leading electrode 1 and supplies the pulse current I 2 to the trailing electrode 2 . The pulse current I 1 flowing through the leading electrode 1 is set to a current value necessary to obtain the penetration depth of the base metal, and the pulse current I 2 flowing through the trailing electrode 2 is set to a current value necessary to obtain the penetration depth of the base metal. The current value is set to be necessary and sufficient to prevent the current from flowing rapidly behind the trailing electrode 2, and therefore the current value is set to be lower than the pulse current I1 . FIGS. 2a and 2b show the current waveforms of the pulse current I 1 flowing through the preceding electrode 1 and the pulse current I 2 flowing through the trailing electrode 2. FIG. As shown in the figure, a phase difference φ is given between the pulse current I 1 and the pulse current I 2 . The phase difference φ may be any number as long as it is less than 180°, and it is sufficient that the molten metal between the electrodes 1 and 2 is caused to vibrate back and forth by the arc, as will be described later. The operation of the above-described high-speed tack welding method will be explained.
As shown in Figure 2 a and b, if a phase difference φ is given to the pulse current I 1 flowing to the leading electrode 1 and the pulse current I 2 flowing to the trailing electrode 2, the current flows to the leading electrode 1 due to this phase difference φ. The current value of pulse current I 1 is high,
When the current value of the pulse current I2 flowing to the trailing electrode 2 becomes low, as shown in FIG.
The position of the molten metal 3 generated by the arcs 7 and 8 is swept toward the trailing electrode 2 side. Next, the current value of the pulse current I1 flowing through the leading electrode 1 becomes low, and the current value of the pulse current I1 flowing through the leading electrode 1 becomes low,
When the current value of the pulse current I 2 flowing through the electrode increases, the molten metal 3 between the electrodes 1 and 2 moves toward the leading electrode 1 as shown in FIG. 3b. Therefore, as shown in FIG. 2, by continuously applying pulse currents I 1 and I 2 with a phase difference to the leading electrode 1 and the trailing electrode 2, the molten metal 3 between the two electrodes 1 and 2 is heated. the pulse current
It can be oscillated back and forth depending on the amplitudes of I 1 and I 2 . As a result of applying vibration to the molten metal 3, the position of the molten metal 3 hardly moves from between the electrodes 1 and 2 even if the welding conditions such as the groove condition and the melting speed change slightly. The trailing electrode 2 can effectively block the molten metal 3 and prevent it from flowing in the direction of the trailing electrode 2.
Therefore, the weld bead can be formed more stably. Therefore, even if the tack welding speed is increased, the bead formation is stable, and a smooth weld bead can be continuously obtained even at high speeds. Next, the results of tack welding according to the above embodiment will be shown together with the conventional example. i.e. board thickness 12mm
Table 1 shows the results of tack welding on a Y-groove with a groove angle of 90 degrees and a depth of 4 mm using a steel plate, and the limits of welding speed that do not cause irregular beads were determined.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、複数の消耗電
極を用い、この消耗電極の相隣接する先行電極と
後行電極に180°未満の位相差を与えたパルス電流
を流すことにより、両電極間に形成される溶融金
属を両電極間でアークにより前後に振動させなが
ら仮付溶接を行うものであるから、アークを交互
に引き合う結果、後行電極による溶融金属の塞ぎ
止め効果を良好に発揮できるものであり、そのた
め、ビード形成を安定させることができ、従来法
に比べて格段の高速度で連続的に安定した仮付溶
接を行なうことができる。さらにパルス電流の時
間比や電流の高低比を変えることにより仮付溶接
速度に応じた仮付溶接を行なうことができ、本溶
接での溶接欠陥防止を図ることができる。
As explained above, this invention uses a plurality of consumable electrodes, and by passing a pulse current with a phase difference of less than 180 degrees between the leading electrode and the trailing electrode, which are adjacent to each other, between the two consumable electrodes. Since tack welding is performed while the molten metal being formed is vibrated back and forth by an arc between both electrodes, the arcs alternately attract each other, and as a result, the trailing electrode can effectively block the molten metal. Therefore, bead formation can be stabilized, and tack welding can be performed continuously and stably at a much higher speed than conventional methods. Further, by changing the time ratio of the pulse current and the height ratio of the current, tack welding can be performed in accordance with the tack welding speed, and welding defects in main welding can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示すブロツク図、
第2図a,bは各々第1図に示した実施例の溶接
電流波形図、第3図a,bは第1図に示した実施
例の動作説明図、第4図は従来の2電極仮付溶接
のアーク形態図である。 1……先行電極、2……後行電極、3……溶融
金属、4……電源、5……第1のパルス電流発生
器、6……第2のパルス電流発生器、7,8……
アーク、I1……先行電極のパルス電流、I2……後
行電極のパルス電流。
FIG. 1 is a block diagram showing an embodiment of this invention.
Figures 2a and b are welding current waveform diagrams of the embodiment shown in Figure 1, Figures 3a and b are operation explanatory diagrams of the embodiment shown in Figure 1, and Figure 4 is a conventional two-electrode welding current waveform diagram. FIG. 3 is a diagram showing the arc configuration of tack welding. DESCRIPTION OF SYMBOLS 1... Leading electrode, 2... Trailing electrode, 3... Molten metal, 4... Power supply, 5... First pulse current generator, 6... Second pulse current generator, 7, 8... …
Arc, I 1 ... Pulse current of the leading electrode, I 2 ... Pulse current of the trailing electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 ガスシールドアーク溶接において、複数の消
耗電極を用い、該消耗電極の相隣接する先行電極
及び後行電極に180°未満の位相差を与えたパルス
電流を流すことにより前記先行電極及び後行電極
間に形成される溶融金属を両電極間でアークによ
り前後に振動させながら仮付溶接を行うことを特
徴とする高速連続仮付溶接方法。
1. In gas-shielded arc welding, a plurality of consumable electrodes are used, and a pulsed current with a phase difference of less than 180° is passed through the adjacent leading and trailing electrodes of the consumable electrodes. A high-speed continuous tack welding method characterized by performing tack welding while the molten metal formed between the electrodes is vibrated back and forth by an arc between both electrodes.
JP17047484A 1984-08-17 1984-08-17 High speed and continuous tack welding method Granted JPS6149787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17047484A JPS6149787A (en) 1984-08-17 1984-08-17 High speed and continuous tack welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17047484A JPS6149787A (en) 1984-08-17 1984-08-17 High speed and continuous tack welding method

Publications (2)

Publication Number Publication Date
JPS6149787A JPS6149787A (en) 1986-03-11
JPH048146B2 true JPH048146B2 (en) 1992-02-14

Family

ID=15905611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17047484A Granted JPS6149787A (en) 1984-08-17 1984-08-17 High speed and continuous tack welding method

Country Status (1)

Country Link
JP (1) JPS6149787A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154266A (en) * 1986-12-19 1988-06-27 Nkk Corp High-speed gas shielded arc tack welding method
US7282663B2 (en) 2002-07-29 2007-10-16 Shell Oil Company Forge welding process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148739A (en) * 1974-10-24 1976-04-27 Kawasaki Steel Co KOSOKUDONIDENKYOKUTANSANGASUAAKUYOSETSUHO
JPS56111572A (en) * 1980-02-07 1981-09-03 Nippon Steel Corp Tack arc welding method
JPS5820373A (en) * 1981-07-30 1983-02-05 Mitsubishi Electric Corp Method and device for narrow groove welding
JPS6030576A (en) * 1983-07-29 1985-02-16 Sumitomo Metal Ind Ltd Gma welding method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148739A (en) * 1974-10-24 1976-04-27 Kawasaki Steel Co KOSOKUDONIDENKYOKUTANSANGASUAAKUYOSETSUHO
JPS56111572A (en) * 1980-02-07 1981-09-03 Nippon Steel Corp Tack arc welding method
JPS5820373A (en) * 1981-07-30 1983-02-05 Mitsubishi Electric Corp Method and device for narrow groove welding
JPS6030576A (en) * 1983-07-29 1985-02-16 Sumitomo Metal Ind Ltd Gma welding method

Also Published As

Publication number Publication date
JPS6149787A (en) 1986-03-11

Similar Documents

Publication Publication Date Title
CA2712473C (en) Method and system to increase heat input to a weld during a short-circuit arc welding process
US4095085A (en) High efficiency arc welding process and apparatus
JP2007237225A (en) High-speed hot wire multi-electrode tig welding method of thin steel plate
JPH10118771A (en) Vertical electro-gas welding device
JP4890179B2 (en) Plasma MIG welding method
US3519780A (en) Method of arc welding and building up of parts
US3325626A (en) Method for welding in a narrow groove
JPH048146B2 (en)
JPH11138265A (en) Dc pulsed mag welding method and its equipment
JPH0453617B2 (en)
JP2007237224A (en) Tig welding method of thin steel plate
JP7000790B2 (en) MIG welding method and MIG welding equipment
JP3867164B2 (en) Welding method
JPH11147175A (en) Gas shield arc welding method
JPH0320310B2 (en)
JP2892572B2 (en) Horizontal automatic welding method
JPS62114772A (en) Mig welding method
JP2001225168A (en) Consumable electrode gas shielded arc welding method
US20220001479A1 (en) Mig welding method and mig welding device
JP2008501529A (en) Gas metal buried arc welding of lap penetration joints
JP2004050228A (en) Arc spot welding method and apparatus
JPH049096Y2 (en)
JPS5940549B2 (en) DC TIG welding method
JPS6335352B2 (en)
JPH06328260A (en) Plasma arc welding method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees