JPH0480341A - Negative electrode for nickel-hydrogen storage battery - Google Patents

Negative electrode for nickel-hydrogen storage battery

Info

Publication number
JPH0480341A
JPH0480341A JP2194637A JP19463790A JPH0480341A JP H0480341 A JPH0480341 A JP H0480341A JP 2194637 A JP2194637 A JP 2194637A JP 19463790 A JP19463790 A JP 19463790A JP H0480341 A JPH0480341 A JP H0480341A
Authority
JP
Japan
Prior art keywords
hydrogen storage
nickel
battery
alloy
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2194637A
Other languages
Japanese (ja)
Other versions
JP2926925B2 (en
Inventor
Takao Ogura
孝夫 小倉
Ryosuke Morinari
森成 良佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16327828&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0480341(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2194637A priority Critical patent/JP2926925B2/en
Publication of JPH0480341A publication Critical patent/JPH0480341A/en
Application granted granted Critical
Publication of JP2926925B2 publication Critical patent/JP2926925B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain the electrode for a nickel-hydrogen storage battery having high safety, in a hydrogen storage alloy having a CaCu5 type crystalline structure in which each constituting element in a Ca site and a copper site is specified, by specifying the relationship between the equilibrium pressure of the alloy with hydrogen and the unit lattice volume of the alloy as well as the value of the unit lattice volume. CONSTITUTION:In a hydrogen storage alloy having a CaCu5 type crystalline structure and in which the calcium site is constituted of at least one or more kinds of elements among La, Nd, Ce, Pr, Ti, Zr, Hf, Mg, Ca, Sr and Ba and the copper site is constituted of at least one or more kinds of elements among Cr, Mn, Co, Si, Ni, Cu, Al and Zn, the relationship between the equilibrium pressure of the alloy with hydrogen at 40 deg.C and the unit lattice volume of the alloy is laid in logP=-0.335V+28.555 and the value of V is regulated to >=87.2X10<-3>.m<3>, and it is used as an active material in the negative pole, by which the negative pole for a nickel-hydrogen storage battery in which the internal pressure of the battery can be suppressed and a charging-discharging cycle life can be prolonged compared to a battery using LaNi5 or the like can be obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ニッケル・水素蓄電池の負極に用いる電気化
学的に水素の吸蔵、放出が可能な蓄電池用負極に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a negative electrode for a nickel-hydrogen storage battery that is capable of electrochemically absorbing and desorbing hydrogen.

従来の技術 エレクトロニクス機器の小形、軽量化に伴ないニッケル
・カドミウム電池の高容量化の研究が進んでいる。当初
、ニッケル極、カドミウム極ともに焼結式と呼ばれるタ
イプの電極が用いられていたが高容量化のため、ニッケ
ル極、カドミウム極ともにペースト式と呼ばれる方式が
開発され、現在に至っている。また、利用率向上のため
、ニッケル極にはコバルト、カドミウム・亜鉛等の添加
カドミウム極ではニッケル・カーボン等の導電材あるい
はポリビニルアルコール、メチルセルロースのような活
物質の凝集防止剤の添加等が研究されている。しかし、
すでに、ニッケル極、カドミウム極の特性上、限界に近
いと言われている。そこで、近年、注目を集めているの
が、ニッケル・水素電池である。
Conventional Technology As electronic devices become smaller and lighter, research into increasing the capacity of nickel-cadmium batteries is progressing. Initially, a type of electrode called a sintered type was used for both nickel and cadmium electrodes, but in order to increase the capacity, a type called a paste type was developed for both nickel and cadmium electrodes, which is still used today. In addition, to improve the utilization rate, research is being conducted into adding cobalt, cadmium, zinc, etc. to nickel electrodes, and adding conductive materials such as nickel, carbon, etc. to cadmium electrodes, or addition of active material agglomeration inhibitors such as polyvinyl alcohol and methyl cellulose. ing. but,
It is said that the characteristics of nickel and cadmium electrodes are already close to their limits. Therefore, nickel-metal hydride batteries have been attracting attention in recent years.

ニッケル極はニッケル・カドミウム電池と同一であるが
、水素極は水素吸蔵合金を用いた電池であり、これはカ
ドミウム極のように多くの充放電リザーブを必要としな
いため、設計面から有利となり、電池での高容量化が可
能となる。
A nickel electrode is the same as a nickel-cadmium battery, but a hydrogen electrode is a battery that uses a hydrogen storage alloy, which is advantageous from a design standpoint because it does not require a large charge/discharge reserve like a cadmium electrode. It becomes possible to increase the capacity of batteries.

現在、最も可能性のある水素吸蔵合金電極は平衡圧が比
較的低い、LaN1B系であり、積極的に研究が進めら
れている。
Currently, the most promising hydrogen storage alloy electrode is the LaN1B system, which has a relatively low equilibrium pressure, and is currently being actively researched.

発明が解決しようとする課題 ニッケル・カドミウム電池では充電終了末期あるいは直
後においてのみ電池缶内の圧力が高くなる。ところが、
ニッケル・水素電池では、水素吸蔵合金中の水素が一部
解離し、常に一定の水素ガスが系内に存在する。このた
め、水素吸蔵合金の水素解離圧が高いと、電池缶内の圧
力が高くなってしまう。LaNi5は前述したように平
衡圧が比較的低いといっても、0.3〜0.4MPa(
40℃)で、ニッケル・カドミウム電池の約0.1MP
a (40℃)に比べるとかなり高い。
Problems to be Solved by the Invention In a nickel-cadmium battery, the pressure inside the battery can increases only at the end of charging or immediately after charging. However,
In nickel-metal hydride batteries, some of the hydrogen in the hydrogen storage alloy dissociates, and a constant amount of hydrogen gas always exists in the system. For this reason, when the hydrogen dissociation pressure of the hydrogen storage alloy is high, the pressure inside the battery can becomes high. Although the equilibrium pressure of LaNi5 is relatively low as mentioned above, it is 0.3 to 0.4 MPa (
Approximately 0.1MP of a nickel-cadmium battery at 40℃)
It is quite high compared to a (40℃).

さらに充電時に至っては通常行なわれている2〜3時間
程度の充電で、電池缶内の圧力が1MPa以上となって
しまう。一方、電池缶は安全上1〜2MPa程度で作動
する安全弁を取り付ける必要がある。このため、上記の
圧力に達してしまうと、活物質ともいえる水素ガスが電
池系外に逃げ、安全上問題であると同時に容量低下を起
こす一因となる。このため、LaNi、を用いた電池で
は充放電サイクル寿命特性がニッケル・カドミウムに電
池に比べて著しく低いという問題点があった。
Furthermore, during charging, the pressure inside the battery can becomes 1 MPa or more after charging for about 2 to 3 hours, which is usually performed. On the other hand, for safety reasons, battery cans must be equipped with a safety valve that operates at about 1 to 2 MPa. Therefore, when the above pressure is reached, hydrogen gas, which can be called an active material, escapes out of the battery system, which is a safety problem and also causes a decrease in capacity. For this reason, batteries using LaNi have a problem in that their charge-discharge cycle life characteristics are significantly lower than those of nickel-cadmium batteries.

課題を解決するための手段 問題点を解決する方法としては水素吸蔵合金の平衡圧を
下げることが最も有効である。ニッケル・水素電池の平
衡圧はPCT曲線らり求めることができる。第1図に、
−例としLaNi5のPCT曲線を示した。横軸が水素
吸蔵量、縦軸が水素圧力である。電池での平衡圧はこの
線図におけるプラト一部に相当する。発明者らは、この
平衡圧と単位格子の体積との関係において検討したとこ
ろ、単位格子体積と平衡圧Log Pとの間に直線関係
が認められた。この関係式はLog P = −0,3
35V+28.555 (但し、P:平衡圧、■は単位
格子体積)である。それを第2図に示した。ここで、電
池の平衡内圧が0.2MPa以下であれば、充電時にお
いても、その内圧が1MPa以上になることはなく、こ
の時の水素吸蔵合金の単位格子の体積は87.2A″3
である。すなわち、単位格子の体積が87.2N3以上
のCaCu5形の結晶構造の合金を用いることにより、
ニッケル・水素電池の平衡圧を下げることができる。
Means for Solving the Problem The most effective way to solve the problem is to lower the equilibrium pressure of the hydrogen storage alloy. The equilibrium pressure of a nickel-metal hydride battery can be determined from the PCT curve. In Figure 1,
- The PCT curve of LaNi5 is shown as an example. The horizontal axis is the hydrogen storage amount, and the vertical axis is the hydrogen pressure. The equilibrium pressure at the cell corresponds to the plateau portion of this diagram. The inventors investigated the relationship between this equilibrium pressure and the volume of the unit cell, and found a linear relationship between the unit cell volume and the equilibrium pressure Log P. This relational expression is Log P = -0,3
35V+28.555 (where P: equilibrium pressure, ■: unit cell volume). This is shown in Figure 2. Here, if the equilibrium internal pressure of the battery is 0.2 MPa or less, the internal pressure will not exceed 1 MPa even during charging, and the volume of the unit cell of the hydrogen storage alloy at this time is 87.2 A''3
It is. That is, by using an alloy with a CaCu5 type crystal structure with a unit cell volume of 87.2N3 or more,
The equilibrium pressure of nickel-metal hydride batteries can be lowered.

作用 本発明の電極をニッケル・水素蓄電池に用いると、平衡
圧をLaNi5を用いた電極に比べて批判でき、安全性
が高まる。また、充電時に内圧が上昇しても安全弁が作
動する領域には至らず、長寿命なニッケル・水素電池を
提供することができる。
Operation When the electrode of the present invention is used in a nickel-metal hydride storage battery, the equilibrium pressure can be reduced compared to an electrode using LaNi5, and safety is improved. Furthermore, even if the internal pressure increases during charging, it does not reach the range where the safety valve operates, making it possible to provide a long-life nickel-metal hydride battery.

実施例 以下、本発明を実施例により説明する。Example The present invention will be explained below with reference to Examples.

実施例1作成した合金組成を第1表のAからGに示す。Example 1 The alloy compositions prepared are shown in A to G in Table 1.

LaN i 5はアーク溶解炉と高周波溶解炉で作成し
た2種を用いた。その他の合金はすべてアーク溶解炉に
より作成したものを用いた。
Two types of LaN i 5 were used, one made in an arc melting furnace and one in a high frequency melting furnace. All other alloys were made using an arc melting furnace.

次にこの合金をスタンプミルで粉砕し、320メツシユ
アンダーの粉末とした。これらの粉末のX線回折の結果
から求めた単位格子体積と平衡圧の関係を第3図に示し
た。この結果、単位格子の体積と平衡圧log Pとは
直線関係にあることが認められた。平衡圧を0.2MP
a以下にするためには87.2N3以上にする必要があ
ることがわかった。第3図において、A′〜G′はA〜
Gに対応する場合粉末を用いた電池である。
Next, this alloy was ground in a stamp mill to obtain a powder of 320 mesh under. FIG. 3 shows the relationship between the unit cell volume and the equilibrium pressure determined from the results of X-ray diffraction of these powders. As a result, it was recognized that there is a linear relationship between the volume of the unit cell and the equilibrium pressure log P. Equilibrium pressure 0.2MP
It was found that in order to make it less than a, it is necessary to make it more than 87.2N3. In Figure 3, A'~G' is A~
If it corresponds to G, it is a battery using powder.

第1表 実施例2 実施例1で作成した合金粉末をポリビニルアルコールの
10%水溶液でペースト状とし、発泡メタルに充填し、
電極とした。対極には公知の方式で作製された焼結式ニ
ッケル極を用いた。
Table 1 Example 2 The alloy powder prepared in Example 1 was made into a paste with a 10% aqueous solution of polyvinyl alcohol, and filled into a foam metal.
It was used as an electrode. A sintered nickel electrode manufactured by a known method was used as the counter electrode.

セパレータはナイロン不織布を用いた。これらの電池構
成要素をAA形サイズに切断し、組み込んだ。電解液は
30%水酸化カリウム溶液とした。なお、電池容量は7
00から750mAhであった。
A nylon nonwoven fabric was used as the separator. These battery components were cut into AA size and assembled. The electrolyte was a 30% potassium hydroxide solution. In addition, the battery capacity is 7
00 to 750mAh.

第4図にQ、5cmAで充電した時の電池内圧曲線を示
す。図中において、電池aは電極Aを用いた電池を示し
、以下同様にb−gはB−Gの電極を用いた電池である
。電池aは充電開始後約2時間40分で1.4MPaに
なり安全弁が作動した。電池dは充電終了時まで約1.
IMPa、電池eは約0.8MPa、電池fは約1.6
MPaであった。
FIG. 4 shows the battery internal pressure curve when charged at Q, 5 cmA. In the figure, battery a indicates a battery using electrode A, and similarly, bg indicates a battery using electrodes BG. Approximately 2 hours and 40 minutes after the start of charging, battery a reached 1.4 MPa and the safety valve was activated. Battery d lasts approximately 1.
IMPa, battery e is approximately 0.8MPa, battery f is approximately 1.6
It was MPa.

実施例3 実施例2で用いた電池を0.5cmAで3時間充放電、
オープン20分、1cmAで放電したときの充電サイク
ル寿命試験結果を示した。このように電池a、b、cは
充放電をくり返すと50サイクル目には初期容量の50
%近くにまで低下してしまった。しかし、電池d、e、
f、gは、それらの電池にくらべると、非常に充放電サ
イクルによる劣化が少な(、本発明による電極を用いた
電池が有用であることがわかる。この理由は、充電時に
内圧が上昇し、水素ガスが系外に出てしまうためであろ
うと推定される。なお、平衡圧の低いf、gによる容量
の低下はニッケル極によるものと思われる。
Example 3 The battery used in Example 2 was charged and discharged at 0.5 cmA for 3 hours,
The results of a charging cycle life test when the battery was opened for 20 minutes and discharged at 1 cmA are shown. In this way, when batteries a, b, and c are repeatedly charged and discharged, at the 50th cycle, they reach 50% of their initial capacity.
It has dropped to almost %. However, batteries d, e,
Compared to those batteries, f and g show very little deterioration due to charging and discharging cycles (It can be seen that the battery using the electrode according to the present invention is useful. It is presumed that this is because hydrogen gas escapes from the system.The decrease in capacity due to low equilibrium pressures f and g is thought to be due to the nickel electrode.

発明の効果 このように本発明による水素吸蔵合金を用いると、La
Ni5等を用いた電池に比べて、電池内圧を抑制できる
。また、充放電サイクル寿命をのばすことができる。
Effects of the Invention As described above, when the hydrogen storage alloy according to the present invention is used, La
Compared to batteries using Ni5 or the like, the battery internal pressure can be suppressed. Furthermore, the charge/discharge cycle life can be extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はLaNi5のPCT曲線図、第2図はCaCu
B形構造を有する単位格子体積と平衡圧の関係図、第3
図は第1表で作製した合金の単位格子の体積と平衡圧の
関係図、第4図は0.5cmAで充電したときの電池内
圧曲線図、第5図は充放電サイクルに伴なう放電容量の
変化を示す図である。 D′〜G′ :電池、d−g:電池
Figure 1 is a PCT curve diagram of LaNi5, Figure 2 is a diagram of CaCu
Relationship diagram between unit cell volume and equilibrium pressure with B-shaped structure, 3rd
The figure shows the relationship between the volume of the unit cell of the alloy prepared in Table 1 and the equilibrium pressure, Figure 4 shows the internal pressure curve of the battery when charged at 0.5 cmA, and Figure 5 shows the relationship between the volume and equilibrium pressure of the unit cell of the alloy prepared in Table 1. FIG. 3 is a diagram showing changes in capacitance. D'~G': Battery, d-g: Battery

Claims (1)

【特許請求の範囲】  CaCu_5形結晶構造を有し、カルシウムサイトが
ランタン、ネオジウム、セリウム、プラセオジウム、チ
タン、ジルコニウム、ハフニウム、マグネシウム、カル
シウム、ストロンチウム、バリウムのうち少なくとも1
種以上の元素から成り、かつ銅サイトがクロム、マンガ
ン、コバルト、ケイ素、ニッケル、銅、アルミニウム、
亜鉛のうち少なくとも1種以上の元素からなる水素吸蔵
合金であって、該吸藏合金の40℃における水素との平
衡圧Pが、該吸蔵合金の単位格子体積と logP=−0.335V+28.555の関係にあっ
て、かつVが87.2×10^−^3・m^3以上であ
る水素吸蔵合金を負極活物質として用いることを特徴と
するニッケル・水素蓄電池用負極。
[Scope of Claims] CaCu_5 type crystal structure, and the calcium site is at least one of lanthanum, neodymium, cerium, praseodymium, titanium, zirconium, hafnium, magnesium, calcium, strontium, and barium.
It consists of more than one element, and the copper site is chromium, manganese, cobalt, silicon, nickel, copper, aluminum,
A hydrogen storage alloy consisting of at least one element among zinc, where the equilibrium pressure P with hydrogen at 40°C of the hydrogen storage alloy is equal to the unit cell volume of the storage alloy and logP=-0.335V+28.555. A negative electrode for a nickel-hydrogen storage battery, characterized in that a hydrogen storage alloy having the following relationship and having a V of 87.2×10^-^3·m^3 or more is used as a negative electrode active material.
JP2194637A 1990-07-23 1990-07-23 Negative electrode for nickel-metal hydride storage battery Expired - Lifetime JP2926925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2194637A JP2926925B2 (en) 1990-07-23 1990-07-23 Negative electrode for nickel-metal hydride storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2194637A JP2926925B2 (en) 1990-07-23 1990-07-23 Negative electrode for nickel-metal hydride storage battery

Publications (2)

Publication Number Publication Date
JPH0480341A true JPH0480341A (en) 1992-03-13
JP2926925B2 JP2926925B2 (en) 1999-07-28

Family

ID=16327828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2194637A Expired - Lifetime JP2926925B2 (en) 1990-07-23 1990-07-23 Negative electrode for nickel-metal hydride storage battery

Country Status (1)

Country Link
JP (1) JP2926925B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645003A (en) * 1992-06-09 1994-02-18 Furukawa Battery Co Ltd:The Manufacture of sealed storage battery by using hydrogen storage electrode and hydrogen storage alloy for this electrode
JP2016223921A (en) * 2015-05-29 2016-12-28 国立大学法人名古屋大学 Hydrogen storage capacity measurement method and hydrogen storage capacity measurement apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645003A (en) * 1992-06-09 1994-02-18 Furukawa Battery Co Ltd:The Manufacture of sealed storage battery by using hydrogen storage electrode and hydrogen storage alloy for this electrode
JP2016223921A (en) * 2015-05-29 2016-12-28 国立大学法人名古屋大学 Hydrogen storage capacity measurement method and hydrogen storage capacity measurement apparatus

Also Published As

Publication number Publication date
JP2926925B2 (en) 1999-07-28

Similar Documents

Publication Publication Date Title
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP4958411B2 (en) Hydrogen storage alloy electrode and alkaline storage battery
JP2752970B2 (en) Hydrogen storage electrode
JP3381264B2 (en) Hydrogen storage alloy electrode
JP4420767B2 (en) Nickel / hydrogen storage battery
JPH07286225A (en) Hydrogen storage alloy and nickel-hydrogen storage battery using the same
US20060177736A1 (en) Nickel-metal hydride storage battery and method of manufacturing the same
JPH0480341A (en) Negative electrode for nickel-hydrogen storage battery
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH1021908A (en) Active material for battery, and battery
JP2537084B2 (en) Hydrogen storage alloy electrode
JP4514477B2 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
CN111118346B (en) Zirconium or titanium containing A2B7 type hydrogen storage alloy, negative electrode, battery and preparation method
JP4420653B2 (en) Nickel / hydrogen storage battery
JPH08138658A (en) Hydrogen storage alloy-based electrode
JPH0613077A (en) Hydrogen storage electrode
JP2926965B2 (en) Hydrogen storage alloy
JPH06145849A (en) Hydrogen storage alloy electrode
US20060078794A1 (en) Nickel-metal hydride storage battery
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JP3362400B2 (en) Nickel-metal hydride storage battery
JPH03226539A (en) Hydrogen storage alloy electrode
JPS61292855A (en) Metal oxide and hydrogen cell
JPH0533088A (en) Hydrogen storage electrode and nickel-hydrogen cell
JPH0579736B2 (en)