JPH0479528B2 - - Google Patents

Info

Publication number
JPH0479528B2
JPH0479528B2 JP60003688A JP368885A JPH0479528B2 JP H0479528 B2 JPH0479528 B2 JP H0479528B2 JP 60003688 A JP60003688 A JP 60003688A JP 368885 A JP368885 A JP 368885A JP H0479528 B2 JPH0479528 B2 JP H0479528B2
Authority
JP
Japan
Prior art keywords
signal
voltage
phase
amplitude
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60003688A
Other languages
English (en)
Other versions
JPS61162726A (ja
Inventor
Yutaka Nonomura
Jun Sugyama
Hirobumi Komatsubara
Masaharu Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP60003688A priority Critical patent/JPS61162726A/ja
Priority to US06/815,252 priority patent/US4716773A/en
Publication of JPS61162726A publication Critical patent/JPS61162726A/ja
Publication of JPH0479528B2 publication Critical patent/JPH0479528B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/125Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/127Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using inductive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/105Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving inductive means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、応力検出感度が高く、かつ直線性が
良好な磁歪式応力検出装置に関するものである。
〔従来の技術〕
従来より応力測定として、応力により強磁性体
中に発生した歪量を磁歪効果を用いて検出する方
法が用いられている。この検出法では、被測定体
として強磁性体のものあるいはその表面に強磁性
体を付着させたものを使用し、該被測定強磁性体
を一方向に交番磁化させるための励磁コイルと励
磁方向と直行する方向の磁束成分を検出するため
の検出コイルとを組み合せたセンサにより測定す
る。
この検出コイルによる検出信号は振幅成分の変
化と位相成分の変化として表われ、応力の増減に
対し、両成分の比率が変化し一定ではない。とこ
ろで、従来の飽絡線検出法あるいは自乗検波法を
用いる検出装置では、上記検出信号の振幅成分の
変化のみを検出するため、直線性の悪化及び感度
の低下を引き起こすという欠点があつた。特に前
記両コイルの直を配置条件の精度を向上させて検
出感度を向上させても、逆に、この現象が顕著に
なり、感度の向上が妨げられていた。
シヤフトに生じた捩り応力の測定から印加トル
ク量を求めるトルク検出の従来例について図面を
用いて説明する。その従来例を第2図に示す。ま
た、第2図の−線断面図を第3図に示す。こ
の従来のトルク検出センサ1は、被測定軸2と平
行に配置されたコの字状の励磁コア11と、該励
磁コア11と直交し、かつ励磁コア11とは別の
磁気回路である検出コア12とからなる。上記励
磁コア11は励磁コイル111が巻回され、また
検出コア12は検出コイル121が巻回されてい
る。被測定軸2は強磁性体で構成されたシヤフト
である。
上記検出センサ1は、第4図に示すような検出
回路を介して、被測定軸2に生じる応力を検出し
ようとするものである。ここで、交流電源31は
正弦波電圧を発生するもので、該交流電源31の
出力は励磁コイル111に印加されており被測定
軸2を交番磁化する。被測定軸2に応力が発生す
ると磁歪効果により励磁方向と直交した方向に磁
束成分が生じ、該磁束成分が検出コイル121に
より起電圧として検出される。この起電圧による
信号は交流象幅器32で増幅された後、検波器3
3で例えば飽絡線検波が行なわれ、振幅成分が出
力される。第4図の点Aでの信号波形と点Bでの
出力電圧を第5図及び第6図に示す。なお、第5
図のグラフは、点Aにおける印加トルク対する交
流信号の波形の変化を示しており、振幅と位相の
状態を同時に表わしている。波形線x1、x2、x3
はそれぞれ印加トルクが左方向トルク(−5Kg
m)、零トルク(0Kgm)、右方向トルク(5Kg
m)の場合のものである。波形は励磁コイル11
1に印加された励磁電圧、即ち交流電源31の交
番電圧と同じ周波数である。また、第6図のグラ
フは、横軸に左右両方向の印加トルク値、縦軸に
点Bにおける出力電圧を示している。左方向から
右方向のトルク印加が増加するに従い出力電圧が
増加するため、この電圧値より被測定軸への印加
トルク量を知り得る。
しかし、第5図より知られるように、交流信号
波形は印加トルクにより振幅と位相がともに変化
しており、またその相互作用が印加トルクに依存
するため第6図よりわかように、印加トルクと出
力電圧との関係は非直線性であり、出力電圧から
印加トルク値を求めることは困難であり、正確に
測定するためには複雑な線形化回路あるいは線形
化計算が必要である。
上記の現象は以下の理由による。
但し、ここでは各信号を余弦波の簡単なモデル
で説明するが、これは波器等で簡単に実現でき
るものであり、また三角波等の複雑な波形でもフ
ーリエ展開すれば、同様に説明しうる。
検出センサによるトルクのみに依存する検出信
号成分をf1とするとf1は f1=A1(T)cos(ωτ+1) ……(1) (A1(T):トルクに依存する振幅 ω:角速度、τ:時間 :位相) と表わすことができる。
また実際にはf1と同時にトルクに依存しない検
出信号成分f2があり、 f2=A2cos(ωτ+2) ……(2) (A2:トルクに依存しない振幅) と表わされ、検出信号0は f0=f1+f2 =A1(T)cos(ωτ+1)+A2cos(ωτ+2) =A0(T)cos(ωτ+0(T) ……(3) となる。但し A0(T)={A1(T)2+A2 2+2A1(T)A2cos(1
2)}1/2……(4)1 (T) =cos-1A1(T)cos1+A2cos2/|A0(T)|…
…(5) である。
したがつて、一般的に検出センサの検出信号f0
の振幅A0(T)、位相0(T)は共にトルク(T)
の複雑な関数であり、振幅A0(T)と位相0(T)
はおのおのトルク(T)に比例しない。
ところがcos(12)=±1の条件が成立した
場合前記(4)式、(5)式はそれぞれ A0(T)=|A1(T)±A2|(符号同順) ……(6) 。(T)=C01を基準とする。Coはトルクによ
らない定数) ……(7) となり振幅量の検出により直線出力が得られ、位
相は変化しない。しかし、一般にcos(12)=
±1の条件は成立しない。
〔発明が解決しようとする問題点〕
本発明は、上記従来の問題点を解消し、応力と
出力電圧との関係の線形化回路を使用することな
く、簡単な構成で、しかも検出精度の良い応力検
出装置を提供するものである。
〔問題点を解決するための手段〕
本発明の応力検出装置は、正弦波または三角波
の対称交流波形電圧を発生する交流電源と、前記
交流電源で駆動され、かつ被測定強磁性体の一部
を一定の方向に交番磁化するための励磁コイル
と、前記交番磁化により発生する磁速成分を検出
するための検出コイルと、前記励起コイルに印加
する電圧の一部を取り出してその電圧波形から得
られる波形の振幅と位相とを調整した電圧を、前
記検出コイルに誘起される電圧信号に加算する加
算回路とを備え、加算処理後の信号波形の変化量
より被測定強磁性体の応力量を検出し得るように
構成したことを特徴とするものである。
本発明の応力検出装置は、被測定体を磁化する
ことによつて測定するため、被測定体は強磁性体
であることが必要である。被測定体が強磁性体で
ない場合には、被測定体の表面に強磁性体を付着
させてもよい。被測定体の対象とするのは、平面
状あるいは曲面状のものであり、例えばボルト、
ナツト、シヤフト、車両のクランク軸、ステアリ
ングシヤフト、ホイール等が挙げられる。
〔作用〕
以上の構成により、本発明の応力検出装置では
被測定体の応力を磁歪効果により磁速の変化とし
て検出する前記検出コイルによる出力信号の振幅
成分の変化と位相成分の変化との相互作用を制御
し、そのどちらか一方の成分変化のみに変換し出
力する。そのため、得られる応力と出力電圧との
関係は直線性が高く、検出感度も高くなるため従
来の高価な線形化回路、例えば検出コイルの数の
増加、あるいは位相判別のための特殊な回路を使
う必要がない。また、そのため装置を簡素化する
ことができ、かつ精度も高い。
これは、前記(6)式及び(7)式で示した状態を作り
出すことにより実現する。
加算信号f3は f2=A3cos(ωτ+3) ……(8) であり、これをf0に加算すると、加算後信号4は f4=f0+f3 =f1+f2+f3 =A4cos(ωτ+f4(T)) ……(9) である。ところでf2+f3はトルクに依存しない信
号であるからf2+f3=A5cos(ωτ+5) ……(10) と表わす。
よつて、 4=A1(T)cos(ωτ+1)+A5cos
(ωτ+5)……(11) である。
ここで cos(15)=±1 ……(12) とすれば A4=|A1(T)±A5| ……(13) 4(T)=(2n+1)π(n:整数)
……(14) となり振幅量より直線出力が得られる。このとき
位相は変化しない。
5は加算信号f3によつて制御できるので、この
状態は作り出せる。
また位相変化の出力の場合には cos(15) =0、|A1(T)|<|A5| ……(15) とすると加算後信号f4の振幅A4と位相4(T)は
それぞれ A4=√1 2()+5 2 ……(16) 5を基準とする) ……(17) となる。ここで、|A1(T)|<|A5|であるから
(17)式は 4(T)≒cos-1A1(T)/A5 2 ……(18) となり、位相変化よりトルク値が得られる。
また理想的強制体の磁歪効果による出力1の振
幅A1(T)はトルク負、すなわち逆ねじりになる
と、負になるので、出力1は反転し位相がπずれ
た波形の様に検出される。この作用は、簡単な検
出法では、判別できないので、位相検波等の複雑
な回路構成を用いないと判別できなかつたが、こ
の方式では(13)式においてトルク全領域におい
てA1(T)±A5<0あるいはA1(T)±A5>0とな
る様にA5の値を設定すれば、反転現象は起きず、
従つて簡単にトルク全領域で直線出力を得る。
〔実施例〕
以下、本発明の実施例を添付図面を用いて詳細
に説明する。
実施例 1 本実施例では、シヤフトに生じた捩り応力の検
出装置を示す。この検出装置の応力検出センサの
構造図を第7図に、第7図の−線断面図を第
8図に、また、検出装置の検出回路のブロツク図
を第1図に示す。
第7図及び第8図において、応力検出センサ4
は被測定軸であるシヤフト5と平行に配置された
コの字状の励磁コア41と、該励磁コア41と直
交し、かつ励磁コア41とは別の磁気回路である
検出コア42とからなる。上記励磁コア41は励
磁コイル411が巻回され、また検出コア42は
検出コイル421が巻回される。
また第1図において、発振器61は正弦波また
は三角波等の対称交流波形電圧を発生するもので
あり、この発振器61の出力は第7図及び第8図
中の励磁コイル411に相当するセンサ励磁部6
3に交流増幅器62を経由して印加される(信号
C1)。センサ検出部64は第7図及び第8図中の
検出コイル421に相当するものであり、その誘
起電圧は高調波除去器65により2次以上の高調
波を除去した後、信号加算器68の一方の入力信
号Eとして供給される。また、交流増幅器62の
出力(信号C)から分岐された出力C2は振幅調
整器66により予め設定された振幅量に振幅調整
した後、位相器67を介して予め設定された位相
に進相あるいは遅相され、信号加算器68の他の
一方の入力信号Dとして供給される。従つて信号
加算器68は前記高調波除去器65及び位相器6
7より2種の入力D、Eが入力される。この入力
された2種の入力D、Eは該信号加算器68によ
り加算された後(信号F)、検波器69を介し検
波され、更に低周波過器70を介して雑音を除
去される。その後上記低周波過器70の出力は
直流電圧減算器71を介し回路処理上生じたオフ
セツト直流電圧を設定値分減算され、次に増幅器
72により表示あるいは制御用に適した電圧出力
にされ、最終出力Gを得ることができる。
次に、この回路の動作を第9図ないし第11図
の波形図及び第12図を用いて説明する。なお、
第9図は第1図での交流電圧信号Eの波形、第1
0図はその加算後の信号Fの波形(信号Dの位相
を150°にした場合)、第11図は第10図の場合
とは異なつた位相の設定(信号Dの位相を240°に
した場合)の信号Fの波形を示す図であり、各図
とも、波形曲線y1,y2,y3がそれぞれ印加
トルクが左方向5Kgm、零、右方向5Kgmのとき
のものである。また第12図は上記加算後の信号
Fの振幅変化量及び位相変化量の、位相器67に
より設定した加算信号Dの励磁電圧(信号C)の
位相に対する依存性を示す図である。図中曲線Z
1が振幅変化量、曲線Z2が位相変化量を示す。
まず、発振器61の出力は周波数一定かつ振幅
一定の正弦波とする。この正弦波は交流増幅器6
2により電力増幅され更に分岐される。その出力
信号C1はセンサ励磁部63に供給され、被測定
強磁性体のシヤフト5を交番磁界により励磁す
る。センサ検出部64により上記励磁された交番
磁界に直交した磁速により誘起された交流電圧信
号が出力される。この交流電圧信号はシヤフト5
に印加された左回りあるいは右回りのトルクによ
る捩り応力によりその振幅及び位相が変化する。
次にこの交流電圧信号は高調波除去器65により
発振器61の発振周波数と同一の基本周波数成分
のみの信号Eとして信号加算器68に入力され
る。この交流電圧信号Eは第9図に示すごとく波
形が印加トルクにより変化する正弦波である。
一方、交流増幅器62により電力増幅された交
流電圧信号の分岐したものC2は振幅調整回路6
6を介し予め設定された振幅にされ、更に位相器
67により予め設定された位相に進相あるいは遅
相され、信号Dとして信号加算器68に供給され
る。この交流電圧信号Dは印加トルクに無関係な
正弦波である。前記2種の交流電圧信号D,Eは
信号加算器68により加算される。加算後の信号
Fの波形は正弦波となるが、加算波信号Dの位相
の設定条件により第10図及び第11図に示すご
とく、シヤフト5に印加されたトルクによる影響
が変化する。例えば、加算波信号Dの位相を150°
とした場合、第10図に示すごとく、加算後の信
号Fの波形は印加トルクにより振幅のみが変化
し、位相は変化していない。また、加算波信号D
の位相を240°とした場合、第11図に示すごと
く、加算後の信号Fの波形は印加トルクにより位
相のみが変化し、振幅は変化していない。
第12図に上述した加算波信号Dの位相と、加
算後信号Fの振幅または位相の変化量との関係を
示す(曲線Z1が振幅変化量、曲線Z2が位相変
化量である。)。なお、振幅変化量は加算後信号F
の右方向5Kgmのトルク印加時の振幅量から左方
向5Kgmのトルク印加時の振幅量を減じたもので
ある。また、位相変化量は加算後信号Fの交流増
幅器62の交流電圧出力Cに対する位相値の印加
トルクによる変化量を示しており、右方向5Kgm
のトルク印加時の位相値から左方向5Kgmのトル
ク印加時の位相値を減じたものである。
第12図に示すごとく、加算後信号Fの振幅と
位相のトルク印加量による変化量は加算波信号D
の位相に依存する。例えば、第11図に示すよう
に加算波信号Dの位相を60°あるいは240°に設定
すると、振幅は変化せず、位相のみが変化する。
逆に第10図に示すように加算波信号Dの位相を
150°あるいは330°に設定すると、位相は変化せ
ず、振幅のみが変化する。なお、第10図は上記
位相を150°、第11図は上記位相を240°に設定し
たものである。
この加算波信号Dの位相に対する、加算後信号
Fの振幅と位相のトルク印加量による変化量の依
存性は、加算波信号Dの振幅とセンサ検出部から
の交流電圧信号Eの振幅との比により変化する。
加算後信号Fを制御しやすく、かつ安定なものに
するには、加算波信号Dの振幅を予め設定した値
にする必要がある。この設定値は、加算波信号D
の振幅が、センサ検出部からの交流電圧信号Eの
振幅に対して0.01〜100の範囲内の比とするのが
望ましい。振幅変化出力を得るためには、前記
(12)式の条件が成立する必要があり、また位相
変化出力を得るためには、前記(15)式の条件が
成立する必要がある。この条件を実現するために
は、検出信号f0に対して、加算信号f3の振幅が大
きい方が、可変範囲が広がり、設定が容易であ
り、制御性も高い。これは、振幅比で1〜100の
範囲が適する。ただし、トルクに依存しない検出
信号成分f2が、トルクのみに依存する検出信号成
分f0に比べて小さいときには、加算信号f3の振幅
値も小さくてよい。従つてこの場合は前記条件を
実現するためには、検出信号f0に対する加算信号
f3の振幅比は0.01〜1の範囲が適する。なお、本
実施例でその比の値を10とした。
従つて加算波信号Dの位相を位相器67により
150°に設定すると、加算後信号Fは印加トルクに
より振幅のみ変化する特性となる。該信号Fは簡
単な飽絡線検波あるいは自乗検波方式の検波器6
9、低周波過器70、直流電圧減算器71及び
増幅器72を介して最終出力Gとして出力され
る。この最終出力Gは、印加トルクによる変化成
分を完全に振幅変化に変換した交流電圧信号Fを
検波することにより得られたものであり、直線性
が良好で、かつ感度と精度とも高い出力である。
上記のごとく、本発明の応力検出装置は、線形
化回路等を必要とせずに、簡単な構造で直線出力
を得ることができる。
実施例 2 本実施例の応力検出装置の検出処理回路を示す
ブロツク図を第13図に示す。該応力検出装置は
実施例1の第1図における振幅調整器66と位相
器67の代わりに同期式発振器73を設けた以外
は実施例1と同様な応力検出装置である。
上記同期発振器73は、他の発振器からの発振
信号を基準とし、該発振器の交流電圧出力と同じ
あるいは異なつた種類の対称交流波形電圧を同じ
周波数で発生し、かつその交流電圧出力の振幅と
位相は独立に設定できるものである。該同期式発
振器73は、発振器61と同期をとるため結合さ
れ、その出力は、信号加算器68に加算波信号D
として入力される。
上記加算波信号Dは、同期式発振器73により
振幅と位相が設定された対称交流波電圧となる。
従つて、この同期式発振器73の出力Dの位相を
第12図に示す如く60°、150°、240°、330°のいず
れかに設定することにより実施例1と同様な効果
が得られる。更に、本実施例1よりも加算波信号
Dの振幅と位相の設定が容易である。
この応力検出装置を用い、同期式発振器73の
出力Dの位相を150°としシヤフト5にトルクを印
加して得られる出力電圧Gを測定した結果を第1
4図に示す。
第14図より明らかなように、印加トルクの変
化に対して出力電圧Gは直線的に変化している。
上記のように、本発明の応力検出装置は応力に
対して良好な直線性の出力電圧を得ることができ
る。
実施例 3 本実施例の応力検出装置の検出処理回路を示す
ブロツク図を第15図に示す。該応力検出装置は
実施例1の第1図における検波器69の代わりに
位相差検出器74を設けた以外は実施例1と同様
な応力検出装置である。
上記位相検出器74は2つの交流波形電圧の位
相差を検出するものであり、2つの入力を持ち、
その入力の一方には、センサ検出器64からの交
流電圧信号Eに加算波信号Dが加算された加算後
信号Fが供給され、他方には、交流増幅器62よ
り分岐された出力信号C3が供給されている。
本実施例の場合、加算波信号Dの位相を第12
図において60°あるいは240°に設定し、加算波信
号Dの振幅は予め設定された値にしている。従つ
て、加算後信号Fは、第11図に示すごとく、シ
ヤフト5に印加するトルクの変化に対しては振幅
は変化せず、位相のみが変化する特性を有する。
ここで位相差検出器74を用い交流増幅器62か
ら出力される交流信号電圧Cから分岐した交流信
号電圧C3を基準とし、加算後信号Fの位相を検
出することによりシヤフト5に印加されるトルク
量に対応する位相変化が検出できる。
本実施例では、実施例1及び2と比較して、セ
ンサ検出部からの信号Eに加算波信号Dを加算す
ることにより加算後信号Fの位相変化として印加
応力を検出することができるという利点がある。
この応力検出装置を用い、加算波信号Dの交流
増幅器62の出力Cに対する位相を240°としシヤ
フト5にトルクを印加して得られる出力電圧Gを
測定した。その結果を第16図に示す。なお、第
16図において、交流増幅器62の出力から分岐
した信号C3と信号加算器68からの出力Fとの
位相差を同時に右側軸線に示してある。
第16図より明らかなように、印加トルクの変
化に対して出力電圧Gすなわち位相差は直線的に
変化している。
上記のように、本発明の応力検出装置は、応力
に対して良好な直線性の出力電圧を得ることがで
きる。
なお、本実施例において、実施例2と同様に、
同期式発振器を用いて、発振器61の交流電圧出
力と同期し、しかも同じ周波数の発振器61の交
流電圧出力と同じあるいは異なつた種類の予め設
定された振幅と位相を有する対称交流波形電圧を
加算波信号Dとして信号加算器68に入力させて
もよい。
また、前記位相差検出器74は位相差をアナロ
グ電圧として出力するものとして説明したが、デ
ジタルカウントによりデジタル出力するものでも
よい。
実施例 4 本実施例の応力検出装置の検出処理回路を示す
ブロツク図を第17図に示す。該応力検出装置は
実施例1の第1図において位相器67より出力さ
れた加算波信号Dを分岐し、その分岐した一方の
信号D1を信号加算器68に供給し、他方の信号
D2を検波器691及び低周波過器701を介
して直流電圧減算器に供給する以外は実施例1と
同様なものである。これは回路処理上生じるオフ
セツト電圧を効果的に補償することを目的として
いる。なお、上記分岐した他方の信号D2は、検
波器691を介し低周波過器701により直流
信号Hにされた後、直流電圧減算器71に供給さ
れ、前記実施例1で説明した処理を受けた信号電
圧との減算が行なわれる。なお、この信号Hは
印加トルクに無関係の電圧である。
本実施例の場合、検波器691と低周波過器
701により変換された直流電圧信号Hが、前記
の加算後信号Fから検波器69と低周波過器7
0より得られる直流電圧より直流電圧減算器7
1によつて減算されているので、加算波信号Dの
変動及びドリフトの影響を除去することができ
る。これは、加算後直流電圧に変換されたセンサ
信号には、重畳された加算波信号Dによる成分
が大きな比率を占めているので、加算波信号Dの
振幅値の設定値からの変動、ドリフトがある場合
には、大きな出力変動として出力されてしまうた
めであり本実施例では、減算することによりオフ
セツト電圧の除去ができ、同時に加算波信号Dの
変動ドリフトを打ち消す。
本実施例によれば、加算波信号Dの振幅設定値
からの変動に対して、極めて安定した出力を得る
ばかりでなく、加算波信号Dの振幅設定値の設定
確度も下げることができ、その値の設定も容易に
なる。また、信号処理上加算した値を再び減算し
ているので見かけ上センサ単体の理想的特性が出
力される。
以上の実施例1ないし4において、最終出力G
は印加トルクが零の時に零としたが、基準電圧を
零以外の他の電圧に設定してもよい。その設定に
は直流電圧減算器71の減算値の設定を変更する
だけでよい。
また、最終出力の印加トルクによる変化幅も表
示あるいは制御に適した値に設定してもよく、そ
の制定は増幅器72を用いて容易に行なうことが
できる。
更に、励磁コアおよび検出コアとして十字交差
型のコアを使用したが、これに替えて、被測定体
を取り巻くリング状コアを2個設け、その一方を
励磁コア、他方を検出コアとして用いてもよく、
また複数のコアを組合せて、励磁コア群、検出コ
ア群として用いてもよく更に複数のポールを持つ
各種の形状のコアを用いてもよい。
実施例2において発振器61と同期式発振器7
3の代りにクワドラチヤ発振器の様に同期した
sin波と位相差が90°のcos波を同時に発生する発
振器を用い、一方の出力を交流増幅器61へ供給
し、他方sinθ波とcos波の合成により加算波信号
Dを発生させ用いてもよい。
〔発明の効果〕
本発明の応力検出装置は、被測定体に印加され
る応力を磁歪効果を用い検出した検出波が、応力
により振幅と位相が共に変化する性質を、回路処
理によつて振幅あるいは位相の一方の成分変化の
出力に変換することにより、応力と出力電圧との
関係を直線化することができるものである。
それ故、複雑で高価な直線化回路を必要とせ
ず、簡単な構造の装置にすることができ調整も容
易である。また、簡単な回路構成のため、ノイズ
が減少し、感度、精度とも非常に優れた応力検出
装置である。
【図面の簡単な説明】
第1図は実施例1における本発明装置の検出回
路の構成の一例を示すブロツク図、第2図は従来
装置における応力検出センサの構造の一例を示す
図、第3図は第2図における−線断面図、第
4図は従来装置における検出回路の構成を示すブ
ロツク図、第5図は第4図の点Aでの信号波形を
示すグラフ、第6図は従来装置における最終出力
の状態を示すグラフ、第7図は実施例1における
本発明装置の応力検出センサの構造の一例を示す
図、第8図は第7図における−線断面図、第
9図は同装置における検出信号Eの信号波形を示
すグラフ、第10図は同装置における加算後信号
Fの信号波形を示すグラフ、第11図は同装置に
おける他の設定条件での加算後信号Fの信号波形
を示すグラフ、第12図は同装置における加算後
信号Fの信号波形の振幅変化量及び位相変化量の
加算波信号Dとの関係を示すグラフ、第13図は
実施例2における本発明装置の検出回路の構成の
一例を示すブロツク図、第14は同装置における
最終出力信号とトルクとの関係を示すグラフ、第
15図は実施例3における本発明装置の検出回路
の構成の一例を示すブロツク図、第16図は同装
置における最終出力信号とトルクとの関係を示す
グラフ、第17図は実施例4における本発明装置
の検出回路の構成の一例を示すブロツク図であ
る。 31……交流電源、411……励磁コイル、4
21……検出コイル、61……発振器、62……
交流増幅器、63……センサ励磁部、64……セ
ンサ検出部、65……高調波除去器、66……振
幅調整器、67……位相器、68……信号加算
器、69,691……検波器、70,701……
低周波過器、71……直流電圧減算器、72…
…増幅器、73……同期式発振器、74……位相
差検出器。

Claims (1)

    【特許請求の範囲】
  1. 1 正弦波または三角波等の対称交流波形電圧を
    発生する交流電源と、前記交流電源で駆動され、
    かつ被測定強磁性体の一部を一定の方向に交番磁
    化するための励磁コイルと、前記交番磁化により
    発生する磁束成分を検出するための検出コイル
    と、前記励磁コイルに印加する電圧の一部を取り
    出してその電圧波形から得られる波形の振幅と位
    相とを調整した電圧を、前記検出コイルに誘起さ
    れる電圧信号に加算する加算回路とを備え、加算
    処理後の信号波形の変化量より被測定強磁性体の
    応力量を検出し得るように構成したことを特徴と
    する応力検出装置。
JP60003688A 1985-01-11 1985-01-11 応力検出装置 Granted JPS61162726A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60003688A JPS61162726A (ja) 1985-01-11 1985-01-11 応力検出装置
US06/815,252 US4716773A (en) 1985-01-11 1985-12-31 Stress detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60003688A JPS61162726A (ja) 1985-01-11 1985-01-11 応力検出装置

Publications (2)

Publication Number Publication Date
JPS61162726A JPS61162726A (ja) 1986-07-23
JPH0479528B2 true JPH0479528B2 (ja) 1992-12-16

Family

ID=11564337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60003688A Granted JPS61162726A (ja) 1985-01-11 1985-01-11 応力検出装置

Country Status (2)

Country Link
US (1) US4716773A (ja)
JP (1) JPS61162726A (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5029118A (en) * 1985-12-04 1991-07-02 Nissan Motor Co. Ltd. Periodic noise canceling system and method
US5414356A (en) * 1987-09-21 1995-05-09 Hitachi, Ltd. Fluxmeter including squid and pickup coil with flux guiding core and method for sensing degree of deterioration of an object
US4939937A (en) * 1988-07-21 1990-07-10 Sensortech, L. P. Magnetostrictive torque sensor
US5062062A (en) * 1988-12-30 1991-10-29 Kabushiki Kaisha Toyota Chuo Kenkyusho Torque detecting apparatus
JP3051903B2 (ja) * 1989-01-25 2000-06-12 光洋精工株式会社 トルクセンサ
SE465185B (sv) * 1989-12-21 1991-08-05 Asea Brown Boveri Foerfarande jaemte anordning foer detektering av och skydd mot inverkan av stoerande statiska och kvasistatiska magnetfaelt paa maetning med kraft- och vridmomentgivare
EP0651239A3 (en) * 1993-10-29 1996-06-12 Omron Tateisi Electronics Co Magnetostrictive torque sensor, magnetostrictive torque measuring device and device for monitoring the state of a cutting tool using this sensor.
JP3266727B2 (ja) * 1994-01-26 2002-03-18 本田技研工業株式会社 磁性体の応力測定方法
JP3099680B2 (ja) * 1995-02-13 2000-10-16 株式会社豊田自動織機製作所 トルクセンサ及び歪み検出素子
US6779409B1 (en) * 1997-01-27 2004-08-24 Southwest Research Institute Measurement of torsional dynamics of rotating shafts using magnetostrictive sensors
IL129282A0 (en) * 1999-03-31 2000-02-17 Michailov Oleg Magnetoelastic device for providing a useful electrical signal
EP2932215A1 (en) * 2012-12-14 2015-10-21 Torque and More (TAM) GmbH Compensation methods for active magnetic sensor systems
US9212958B2 (en) * 2012-12-28 2015-12-15 General Electric Company Non-contact magnetostrictive sensing systems and methods
EP3017284B1 (en) * 2013-07-05 2018-09-05 Torque and More (TAM) GmbH Solid borne sound wave phase delay comparison
JP6191788B2 (ja) * 2015-02-10 2017-09-06 日本精工株式会社 トルクセンサ及びそれを搭載した電動パワーステアリング装置
KR101893556B1 (ko) * 2017-08-21 2018-08-30 국방과학연구소 자화 특성 측정 장치, 자화 특성 측정을 위한 응력 인가 장치
KR101999945B1 (ko) * 2019-04-25 2019-07-15 주식회사 센서피아 강자성체 응력 측정 장치
CN113670482B (zh) * 2021-08-19 2022-06-17 山东大学 一种管道内壁应力无损检测装置及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2912642A (en) * 1953-04-18 1959-11-10 Asea Ab Method and device for indicating and measuring mechanical stresses within ferro-magnetic material
US3498124A (en) * 1967-12-26 1970-03-03 Us Navy Apparatus for measuring tension in a running line of magnetic material
US4306462A (en) * 1980-03-10 1981-12-22 Borg-Warner Corporation System for measuring torque and speed of rotating shaft

Also Published As

Publication number Publication date
US4716773A (en) 1988-01-05
JPS61162726A (ja) 1986-07-23

Similar Documents

Publication Publication Date Title
JPH0479528B2 (ja)
CN101454678B (zh) 用于信号解调的方法和设备
JPH03239911A (ja) 位相変調、強度復調、および回転検知干渉計の制御のための装置
JPH03218475A (ja) 電流計測方法及びその装置
KR100454045B1 (ko) 각속도 센서
EP0434089B1 (en) Method and device for detection of and protection against the effect of static magnetic fields on magnetoelastic force transducer
EP1498714A1 (en) Torque detector
JP2020126016A (ja) フラックスゲート磁界センサ及びそれの調節方法
US4972146A (en) Saturble core device with DC component elimination for measuring an external magnetic field
US5668317A (en) Device and method for measuring an angular speed
JPH07146151A (ja) ロックイン検出装置
JP6823878B2 (ja) フラックスゲート磁界センサ
JPS60162920A (ja) 磁気感応素子を用いたレゾルバ−装置
JP3434388B2 (ja) 交流磁界測定装置
JPS6255533A (ja) トルク測定装置
JP3167428B2 (ja) レゾルバ信号処理方法
JP2759303B2 (ja) 応力検出器
US7098658B2 (en) Digital signal conditioning solution for a magnetometer circuit
JP6022817B2 (ja) バリアブルリラクタンス型レゾルバ及び回転角検出装置
RU2665832C1 (ru) Способ управления чувствительным элементом и формирования выходного сигнала вибрационного кориолисова гироскопического датчика угловой скорости
EP1651967B1 (en) Circuit arrangement and method for obtaining an output signal, and rotational speed measurement device comprising such a circuit arrangement
JPH0754274B2 (ja) トルク検出方式
JP2023005243A (ja) 磁界センサ
SU1753251A1 (ru) Способ вихретокового контрол осевых перемещений валов и устройство дл его осуществлени
SU554514A1 (ru) Способ контрол однородности цилиндрических тонких магнитных пленок и устройство дл осуществлени способа

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees