JPH0479475B2 - - Google Patents

Info

Publication number
JPH0479475B2
JPH0479475B2 JP61121491A JP12149186A JPH0479475B2 JP H0479475 B2 JPH0479475 B2 JP H0479475B2 JP 61121491 A JP61121491 A JP 61121491A JP 12149186 A JP12149186 A JP 12149186A JP H0479475 B2 JPH0479475 B2 JP H0479475B2
Authority
JP
Japan
Prior art keywords
passage
synthetic resin
frame
gas
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61121491A
Other languages
Japanese (ja)
Other versions
JPS62278761A (en
Inventor
Satoru Motoo
Choichi Furuya
Tetsuji Horie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUMITOMO SEIMITSU KOGYO KK
Original Assignee
SUMITOMO SEIMITSU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUMITOMO SEIMITSU KOGYO KK filed Critical SUMITOMO SEIMITSU KOGYO KK
Priority to JP61121491A priority Critical patent/JPS62278761A/en
Publication of JPS62278761A publication Critical patent/JPS62278761A/en
Publication of JPH0479475B2 publication Critical patent/JPH0479475B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2459Comprising electrode layers with interposed electrolyte compartment with possible electrolyte supply or circulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 利用産業分野 この発明は、硫酸等の電解質層を挟みアノード
極(燃料極)とカソード極(酸化剤極)を配して
なる電池セルを多数積層した構成からなる燃料電
池に係り、合成樹脂製枠にて電解質層を形成し、
ガス室を形成する金属枠との積層において、電解
質液の通路と液室とを完全に気密化でき、かつ燃
料電池全体を極めて小型、軽量にできる燃料電池
に関する。
[Detailed Description of the Invention] Industrial Fields of Application This invention relates to a fuel that has a structure in which a large number of battery cells are stacked, each of which has an anode (fuel electrode) and a cathode (oxidizer electrode) sandwiched between an electrolyte layer such as sulfuric acid or the like. For batteries, an electrolyte layer is formed in a synthetic resin frame,
The present invention relates to a fuel cell in which an electrolyte passageway and a liquid chamber can be made completely airtight when laminated with a metal frame forming a gas chamber, and the entire fuel cell can be made extremely small and lightweight.

背景技術 燃料電池は、燃料を電気化学的に酸化させなが
ら、燃料の持つ化学的エネルギーを直接電気エネ
ルギーに変換する発電装置であり、初め、宇宙船
用電源として実用化され、さらに一般化して小型
軽量化を目的に種々改良が加えられてきた。
BACKGROUND TECHNOLOGY A fuel cell is a power generation device that directly converts the chemical energy of the fuel into electrical energy while electrochemically oxidizing the fuel.It was first put into practical use as a power source for spacecraft, and then became more popular as a compact and lightweight device. Various improvements have been made with the aim of improving

燃料電池として最も一般的な水素酸素燃料電池
は、電解質層を挟み、燃料極(負極、アノード
極)と酸化剤極(正極、カソード極)を配置する
所謂電池セルから構成され、高純度の水素と酸素
を、燃料と酸化剤に用い、水素を燃焼させるもの
で、かかる燃焼はアノード極への燃料ガスの接触
による酸化反応とカソード極への酸化剤ガスの接
触による還元反応のからなり、外部にて両極が連
結されることで、燃焼反応に応じた起電力が得ら
れ、通常、所要の電圧を得るため、前記電池セル
を多数積層した構成(例えば、特公昭56−42107
号、特公昭57−59631号公報)からなる。
The most common type of fuel cell, a hydrogen-oxygen fuel cell, consists of a so-called battery cell in which a fuel electrode (negative electrode, anode electrode) and an oxidizer electrode (positive electrode, cathode electrode) are arranged with an electrolyte layer in between. and oxygen as fuel and oxidant, hydrogen is combusted.This combustion consists of an oxidation reaction due to the contact of the fuel gas to the anode electrode, a reduction reaction due to the contact of the oxidant gas to the cathode electrode, and an external By connecting the two poles at
No., Special Publication No. 57-59631).

かかる水素酸素燃料電池において、電解質液に
硫酸を用いるタイプでは、電解質液のシール構造
は特に重要であり、反応ガスも可燃性ガスであ
り、漏洩防止に完全を期する必要がある。
In such a hydrogen-oxygen fuel cell, in a type that uses sulfuric acid as the electrolyte, the sealing structure of the electrolyte is particularly important, and since the reactant gas is also a flammable gas, it is necessary to ensure complete leakage prevention.

従来、合成樹脂製枠を電解質層及びガス室に用
い、これらを接着剤に積層する構成(特公昭56−
6111号公報)があり、さらに、電解質層やガス室
を石綿枠にて形成することにより、合成樹脂製枠
をなくした構成(特公昭56−42107号公報)が提
案されている。また、合成樹脂製枠を用い、枠部
に設けた電解液通路孔部のシールにエラストマー
層を用いた構成(特公昭56−6111号公報)が提案
されている。
Conventionally, a synthetic resin frame was used for the electrolyte layer and the gas chamber, and these were laminated with adhesive (Japanese Patent Publication No. 1983-
Furthermore, a structure has been proposed in which the synthetic resin frame is eliminated by forming the electrolyte layer and gas chamber with an asbestos frame (Japanese Patent Publication No. 56-42107). Furthermore, a structure has been proposed (Japanese Patent Publication No. 1983-6111) in which a frame made of synthetic resin is used and an elastomer layer is used to seal the electrolyte passage hole provided in the frame.

また、かかる水素酸素燃料電池は、エネルギー
効率にすぐれるが、電気エネルギーに変換しない
ものが熱となり、その作動時使用する電解質種類
にもよるが、80℃以上の高温になるため、従来
は、作動に伴ない水を生成することから、水素ガ
スを循環させて、生成水を除去して冷却したり、
電解質液、各ガスを循環冷却するなどの手段がと
られているが、冷却能力が不十分であつた。
In addition, such hydrogen-oxygen fuel cells have excellent energy efficiency, but what is not converted into electrical energy becomes heat, and the temperature reaches 80°C or higher depending on the type of electrolyte used during operation. Since water is generated during operation, hydrogen gas is circulated to remove and cool the generated water.
Measures have been taken to circulate and cool the electrolyte solution and various gases, but the cooling capacity has been insufficient.

このため、積層した電解質層やアノード、カソ
ードガス室間に、冷却水管を配置して外部に設け
た熱交換器にて水等の媒体を冷却する等の手段が
取られており、同部にヒートパイプを用いたり
(特公昭56−54664号公報)、あるいは所要電極側
のみ冷却する構成(特公昭57−6229号)などが提
案されているが、冷却効率及び均一冷却、小型軽
量化や製造性の点で種々の問題があつた。
For this reason, measures are taken such as placing cooling water pipes between the stacked electrolyte layers, anode, and cathode gas chambers and cooling media such as water with an external heat exchanger. Proposals include using a heat pipe (Japanese Patent Publication No. 56-54664) or a configuration in which only the required electrode side is cooled (Japanese Patent Publication No. 57-6229). There were various problems regarding gender.

従つて、冷却通路を有する積層型燃料電池にお
いて、電解質層、ガス室並びに冷却通路の各室へ
流体を分配供給あるいは集合導出させる通路孔の
シールが不可欠であるが、完全な気密性を保持し
ながら、燃料電池を小型軽量化するには、前述の
従来シール構造では、不十分であつた。
Therefore, in a stacked fuel cell having cooling passages, it is essential to seal the passage holes through which fluid is distributed and supplied or collectively led out to the electrolyte layer, gas chamber, and each chamber of the cooling passage, but it is necessary to maintain complete airtightness. However, the conventional seal structure described above has been insufficient to reduce the size and weight of fuel cells.

発明の目的 この発明は、作動温度を適正温度に維持するた
めの冷却構造を有する積層型の燃料電池におい
て、簡単で製造性のよい構成となし、燃料電池の
小型軽量化を図り、かつ完全な気密性が得られる
構成からなる燃料電池の提供を目的としている。
Purpose of the Invention The present invention provides a stacked fuel cell having a cooling structure for maintaining the operating temperature at an appropriate temperature, which has a simple structure with good manufacturability, reduces the size and weight of the fuel cell, and has a complete structure. The purpose of the present invention is to provide a fuel cell having a configuration that provides airtightness.

発明の構成 この発明は、薄板金属枠内に伝熱フインを内蔵
した通路体を仕切板を介して3通路体積層し、中
間通路体を冷却媒体通路、両側をアノードガスあ
るいはカソードガス通路となした金属枠積層体
と、合成樹脂製の電解質枠を電極板にて挟みアノ
ード極及びカソード極を配置した電池セルを多数
組積層した構成からなり、 前記金属枠に穿孔し積層時に同軸配置される通
路孔を電解質液、ガスまたは冷却媒体の分配通路
となし、アノードガスあるいはカソードガスが流
入、流出時、前記ガス分配通路に連通し冷却媒体
通路内に設けた密封通路を通過する構成を有し、 さらに、隣接合成樹脂枠間長を有する合成樹脂
製のリングスペーサを、前記電解質液通路孔に嵌
入し、Oリングを介して合成樹脂製枠に当接させ
て、電解質液通路孔を構成し、電解質液が合成樹
脂製枠の孔部に連通する小孔部より電極板間の合
成樹脂製枠内の電解質層に流入出可能となしたシ
ール構造であり、 さらに、他流体の分配通路には、積層された隣
接前記金属枠積層体間に、内周面に弾性シール材
を配した合成樹脂製のリング状リテーナシール状
を介在させ、該リテーナシール材に押圧積層時に
薄肉化する弾性シールの保持を行なわせる構成の
シール構造となしたことを特徴とする燃料電池で
ある。
Structure of the Invention This invention consists of stacking three passages with heat transfer fins built into a thin metal frame via a partition plate, with the intermediate passage serving as a cooling medium passage and both sides serving as an anode gas or cathode gas passage. It consists of a laminated metal frame laminate, a synthetic resin electrolyte frame sandwiched between electrode plates, and a large number of battery cells each having an anode and a cathode arranged therein. The passage hole is used as a distribution passage for electrolyte liquid, gas, or a cooling medium, and when an anode gas or cathode gas flows in or out, it communicates with the gas distribution passage and passes through a sealed passage provided in the cooling medium passage. Further, a ring spacer made of synthetic resin having a length between adjacent synthetic resin frames is fitted into the electrolyte liquid passage hole and brought into contact with the synthetic resin frame via an O-ring to form an electrolyte liquid passage hole. It has a seal structure that allows electrolyte to flow into and out of the electrolyte layer in the synthetic resin frame between the electrode plates from the small hole that communicates with the hole in the synthetic resin frame. A ring-shaped retainer seal made of synthetic resin with an elastic sealing material arranged on the inner peripheral surface is interposed between the stacked adjacent metal frame laminates, and an elastic seal whose wall thickness becomes thinner when the retainer sealing material is pressed and stacked is interposed between the stacked metal frame laminates. This fuel cell is characterized in that it has a seal structure configured to hold the fuel cell.

換言すると、この発明は、内部に電解液収納部
を有する合成樹脂製枠と、その両側面に配置した
2枚の電極板とで電解質層を形成し、周囲に8個
の通路孔用の突起部を設けた略矩形の薄板枠で、
その枠内には板厚と同等高さのコルゲートフイン
を配置し、その両側面に配置した2枚の仕切板と
で冷却通路を構成する金属製枠と、冷却通路用金
属製枠と同一構造で枠内にコルゲートフインを配
置してガス通路を形成する2枚の金属製枠を、そ
の両側に配置積層し、ろう付にて一体結合した3
通路を有する金属製枠積層体と電解質層を形成す
る合成樹脂枠とを交互に複数組押圧積層してなる
燃料電池において、各金属薄板枠の周囲に設けた
8個の突起部に穿孔した孔部を、積層方向に流体
の分配通路孔となし、各合成樹脂枠の上下突起部
に穿孔した孔部を、積層方向に電解質液通路孔と
なし、隣接合成樹脂枠間長さを有する合成樹脂製
のリングスペーサを前記電解質液通路孔に嵌入
し、リングスペーサの両側面角部に凹みを設けて
Oリングを配置し、Oリングを介して合成樹脂製
枠に当接させて、電解質液通路孔のシール構造を
形成し、積層された隣接金属層体間に、内周面に
弾性シールを配した合成樹脂製のリング状リテー
ナシール材を介在させて、各流体の分配通路孔の
シール構造を形成したことを特徴とする燃料電池
である。
In other words, this invention forms an electrolyte layer with a synthetic resin frame having an electrolyte storage portion inside and two electrode plates placed on both sides of the frame, and has eight protrusions for passage holes around the frame. A roughly rectangular thin plate frame with a
Inside the frame, corrugated fins with the same height as the plate thickness are placed, and two partition plates placed on both sides form a metal frame that forms a cooling passage, and the metal frame has the same structure as the cooling passage metal frame. Two metal frames with corrugated fins placed inside the frames to form gas passages are stacked on both sides and are joined together by brazing.
In a fuel cell formed by pressing and stacking multiple sets of metal frame laminates having passages and synthetic resin frames forming an electrolyte layer alternately, holes are drilled in eight protrusions provided around each thin metal plate frame. The holes formed in the upper and lower protrusions of each synthetic resin frame are used as electrolyte passage holes in the stacking direction, and the synthetic resin has a length between adjacent synthetic resin frames. A ring spacer made of aluminum is fitted into the electrolyte passage hole, an O-ring is placed with recesses formed in the corners of both sides of the ring spacer, and the O-ring is brought into contact with the synthetic resin frame via the O-ring, thereby sealing the electrolyte passage. A sealing structure for each fluid distribution passage hole is formed by interposing a synthetic resin ring-shaped retainer sealing material with an elastic seal on the inner circumferential surface between adjacent laminated metal layers to form a sealing structure for the hole. This is a fuel cell characterized by forming a.

発明の効果 この発明による燃料電池は、アノード、カソー
ドガス及び冷却媒体通路をろう付け接合可能な金
属枠にて構成し、合成樹脂製枠を電極板にて挟み
その内部に電解質層を形成し、これらを積層押圧
するため、各枠体にて面シールが得られ、本質的
に気密性が高くかつコンパクトにできる構造であ
り、各流体の分配通路の積層シール構造には、合
成樹脂製のリングスペーサあるいはリテーナシー
ル材を用いる簡単な構成でであるが、製造組立性
にすぐれ、かつ、前記の基本積層構成を考慮した
効率のよいシール構造であり、完全な気密性が保
持できる。
Effects of the Invention The fuel cell according to the present invention includes an anode, a cathode gas, and a cooling medium passage made of a metal frame that can be joined by brazing, a synthetic resin frame sandwiched between electrode plates, and an electrolyte layer formed inside the frame. Since these are laminated and pressed, a face seal is obtained on each frame, and the structure is essentially airtight and compact.The laminated seal structure of each fluid distribution passage has a synthetic resin ring. Although it has a simple configuration using a spacer or retainer sealing material, it is an efficient sealing structure that is easy to manufacture and assemble and takes into consideration the basic laminated configuration described above, and can maintain complete airtightness.

発明の好ましい実施態様 この発明において、電解質層を形成する合成樹
脂製枠は、電解質液の分配通路孔を設けるること
ができれば、その形状、寸法は、燃料電池種類や
用途等に応じて適宜選定されればよく、また材質
もいかなる材質でもよいが、シール効果や耐食性
を考慮すると、フツソ樹脂が好ましい。
Preferred Embodiments of the Invention In the present invention, if the synthetic resin frame forming the electrolyte layer can be provided with distribution passage holes for the electrolyte solution, its shape and dimensions can be appropriately selected depending on the type of fuel cell, application, etc. Any material may be used as long as the material is used, but in consideration of sealing effect and corrosion resistance, fluorine resin is preferable.

また、電解質液の分配通路孔を構成するリング
スペーサ及び各ガスの分配通路孔を構成するリテ
ーナシール材は、所要の孔部の寸法形状に応じた
リング状の合成樹脂材であればよいが、シール性
を考慮して前記合成樹脂製枠と同質材あるいは同
系組成の合成樹脂を用いることが好ましい。
In addition, the ring spacer forming the electrolyte distribution passage hole and the retainer sealing material forming the gas distribution passage hole may be made of ring-shaped synthetic resin material according to the required size and shape of the hole. In consideration of sealability, it is preferable to use the same material or synthetic resin with the same composition as the synthetic resin frame.

電極板は、例えば、公知のガス透過性膜に、触
媒を付けたメツシユ状の電極を貼着した構造な
ど、いずれの構造も適用できる。
Any structure can be applied to the electrode plate, such as a structure in which a mesh-shaped electrode coated with a catalyst is attached to a known gas-permeable membrane.

この発明において、金属枠は、冷却媒体あるい
はアノード、カソードガスの分配通路孔を設ける
ことができ、かつろう付け可能であれば、その形
状、寸法は、燃料電池種類や用途等に応じて適宜
選定されればよく、また材質もいかなる材質でも
よいが、熱効率、軽量化を考慮し、アルミニウム
合金が好ましく、ろう付け性にもすぐれる。
In this invention, the metal frame can be provided with distribution passage holes for the cooling medium or anode and cathode gases, and as long as it can be brazed, its shape and dimensions can be appropriately selected depending on the type of fuel cell, application, etc. Any material may be used, but aluminum alloy is preferable in consideration of thermal efficiency and weight reduction, and has excellent brazing properties.

また、金属枠内に内蔵される伝熱フインは、
水、油、フロン等の冷却媒体種類、あるいはガス
種類に応じて、流体の通路を阻害することなく、
かつ通路内における均一通路が得られるように、
フイン形状、コルゲート方向等を考慮したり、フ
イン自体にスリツトや小孔を設けたもの等、種々
型式、寸法並びに材質のものが適用でき、熱効
率、軽量化及びろう付け性を考慮すると、アルミ
ニウム合金が好ましい。
In addition, the heat transfer fins built into the metal frame are
Depending on the type of cooling medium such as water, oil, or fluorocarbons, or the type of gas, it can be used without obstructing the fluid passage.
and to obtain a uniform passage within the passage,
Various types, sizes, and materials can be applied, taking into account the fin shape, corrugation direction, etc., and those with slits or small holes in the fins themselves. Considering thermal efficiency, weight reduction, and brazingability, aluminum alloy is preferred.

また、アノードガスあるいはカソードガスが流
入、流出時、前記ガス分配通路に連通し冷却媒体
通路内に設ける密封通路は、金属枠と別部材とし
たり、金属枠に溝形成するなどの手段にて設ける
とよい。
Furthermore, when anode gas or cathode gas flows in or out, a sealed passage that communicates with the gas distribution passage and is provided in the cooling medium passage may be provided as a separate member from the metal frame or by forming a groove in the metal frame. Good.

発明の図面に基づく開示 第1図はこの発明による電解質液の分配通路孔
の積層シール構造を示す燃料電池の縦断説明図で
ある。第2図はこの発明による反応ガスの分配通
路孔の積層シール構造を示す燃料電池の縦断説明
図である。第3図はこの発明による冷却通路構造
を示す金属枠積層体の正面図と横断説明図であ
る。第4図は合成樹脂製枠の正面説明図であり、
第5図は金属枠の正面説明図である。第6図と第
7図はこの発明による冷却通路構造を用いた燃料
電池の正面説明図と側面説明図である。
Disclosure of the Invention Based on Drawings FIG. 1 is a longitudinal sectional view of a fuel cell showing a laminated seal structure of an electrolyte distribution passage hole according to the present invention. FIG. 2 is a longitudinal cross-sectional view of a fuel cell showing a laminated seal structure of a reactive gas distribution passage hole according to the present invention. FIG. 3 is a front view and a cross-sectional explanatory view of a metal frame laminate showing a cooling passage structure according to the present invention. FIG. 4 is a front explanatory view of the synthetic resin frame,
FIG. 5 is an explanatory front view of the metal frame. FIGS. 6 and 7 are a front view and a side view of a fuel cell using the cooling passage structure according to the present invention.

この発明による積層型水素酸素燃料電池は、冷
却媒体通路2とアノードガス(水素ガス)通路3
及びカソードガス(酸素ガス)通路4を構成する
ろう付け一体接合のアルミニウム合金からなる金
属枠積層体1と、電極板7に、両面を閉塞されて
電解質層6を形成すると合成樹脂枠60が、2枚
のヘツダープレート9間に交互積層され、積層さ
れる各枠体の周囲で、該ヘツダープレート9を貫
通する複数のボルト8にて、押圧積層される構成
からなる。
The stacked hydrogen-oxygen fuel cell according to the present invention includes a cooling medium passage 2 and an anode gas (hydrogen gas) passage 3.
When the metal frame laminate 1 made of an aluminum alloy integrally joined by brazing and forming the cathode gas (oxygen gas) passage 4 and the electrode plate 7 are closed on both sides to form the electrolyte layer 6, the synthetic resin frame 60 is formed. Two header plates 9 are laminated alternately, and the header plates 9 are laminated with pressure around each frame with a plurality of bolts 8 passing through the header plates 9.

電極板7とで電解質層6を構成する合成樹脂枠
60は、第4図に示す如く、中央部矩形の開口部
を有する矩形枠体からなり、その上下枠部に、電
解質液分配する通路孔16,17を穿孔するため
の突起部61が設けてある。
The synthetic resin frame 60, which together with the electrode plate 7 constitutes the electrolyte layer 6, consists of a rectangular frame with a rectangular opening in the center, as shown in FIG. A protrusion 61 for drilling holes 16 and 17 is provided.

また、合成樹脂枠60の両面に当接し、これを
閉塞する電極板7は、触媒をコーテイングしたメ
ツシユ状の銅電極をガス透過膜に貼着した構成か
らなる。
Further, the electrode plate 7 that contacts both sides of the synthetic resin frame 60 and closes the same is composed of a mesh-shaped copper electrode coated with a catalyst and adhered to a gas permeable membrane.

1組の金属枠積層体1を構成するアルミニウム
合金製の各金属枠は、第3図B図に示す如く、冷
却通路枠20及び仕切板5を介して冷却通路枠2
0を挟んだ2枚のガス通路枠30,40とからな
り、各金属枠20,30,40は、第3図及び第
5図に示す如く、8個の通路孔用の突起部21,
31,41を設けた略矩形の薄板枠からなり、枠
内には板厚と同等山高さの各コルゲートフイン2
3,33,43が配置されている。
As shown in FIG. 3B, each metal frame made of aluminum alloy constituting a set of metal frame laminates 1 is connected to the cooling passage frame 2 via the cooling passage frame 20 and the partition plate 5.
Each metal frame 20, 30, 40 has eight passage hole protrusions 21,
31, 41, each corrugated fin 2 with the same height as the plate thickness is placed inside the frame.
3, 33, and 43 are arranged.

第7図に示す如く、ヘツダープレート9には、
多数の締付け用ボルト孔の他、各種流体の供給
管、あるいは導出用管との接続子18を着設する
8個の孔部が設けてある。
As shown in FIG. 7, the header plate 9 includes:
In addition to a large number of bolt holes for tightening, eight holes are provided in which connectors 18 for various fluid supply pipes or outlet pipes are installed.

この接続子18用の8個の孔部は、多数積層さ
れる金属枠積層体1の通路孔10〜17位置と合
致し、図面で、2通路一組で、対角線方向にアノ
ードガス通路孔10,11、カソードガス通路孔
12,13、水平方向に冷却媒体通路孔14,1
5、垂直方向に電解質液通路孔16,17が配置
されている。
The eight holes for the connectors 18 match the positions of the passage holes 10 to 17 of the metal frame laminate 1, which is laminated in large numbers. , 11, cathode gas passage holes 12, 13, horizontally cooling medium passage holes 14, 1
5. Electrolyte passage holes 16 and 17 are arranged vertically.

冷却媒体通路孔14,15を除いて、各通路孔
組の上側が供給側で、下側が導出側を構成してい
る。
Except for the cooling medium passage holes 14 and 15, the upper side of each passage hole set constitutes a supply side, and the lower side constitutes a discharge side.

前述の積層構造により、流体の分配通路となる
各通路孔10〜17は、積層方向に連通するが、
電解質液通路孔16,17は、第1図に示す如
く、隣接する合成樹脂枠60間長を有する合成樹
脂製のリングスペーサ62を、前記電解質液通路
孔に嵌入し、リングスペーサ62の外周部でOリ
ング63を介して合成樹脂枠60に当接させて、
電解質液を分配する通路孔16を構成し、電解質
液が合成樹脂枠60の孔部に連通する小孔部より
電極板7間の合成樹脂枠60内の電解質層6に流
入出可能となしたシール構造を有する。
Due to the above-described laminated structure, the passage holes 10 to 17, which serve as fluid distribution passages, communicate in the laminated direction.
As shown in FIG. 1, the electrolyte solution passage holes 16 and 17 are formed by fitting a synthetic resin ring spacer 62 having a length between adjacent synthetic resin frames 60 into the electrolyte solution passage hole, so that the outer circumference of the ring spacer 62 abut against the synthetic resin frame 60 via the O-ring 63,
A passage hole 16 for distributing the electrolyte solution is configured so that the electrolyte solution can flow into and out of the electrolyte layer 6 in the synthetic resin frame 60 between the electrode plates 7 through the small hole communicating with the hole in the synthetic resin frame 60. Has a seal structure.

電解質液通路孔のシール構造は、積層数に応じ
て、リングスペーサ62の中心孔外周部でOリン
グ63を介して合成樹脂枠60に当接させて、連
続する通路を形成するもので、簡単な構成である
が、押圧積層時に、合成樹脂枠60と一体化し
て、完全な密封構造が得られ、硫酸等の電解質液
が通路孔を経て電解質層へ流入、流出しても、外
部漏洩はほとんど発生しない。
The sealing structure of the electrolyte passage hole is simple, and the outer periphery of the center hole of the ring spacer 62 is brought into contact with the synthetic resin frame 60 via the O-ring 63 to form a continuous passage depending on the number of laminated layers. However, during press lamination, it is integrated with the synthetic resin frame 60 and a completely sealed structure is obtained, and even if electrolyte solution such as sulfuric acid flows into or out of the electrolyte layer through the passage hole, there will be no external leakage. Almost never occurs.

また、ガラスを分配する通路孔10〜13及び
冷却媒体通路孔14,15は同一構造のシール構
造を有し、供給側のアノードガス通路孔10を例
に説明すると、第2図に示す如く、積層された隣
接金属枠積層体1間に、内周面に弾性シールbを
配した合成樹脂製のリング状リテーナシール材a
を介在させ、該リテーナシール材aに押圧積層時
に薄肉化する弾性シールbの保持を行なわせるシ
ール構造を有する。
In addition, the passage holes 10 to 13 for distributing glass and the cooling medium passage holes 14 and 15 have the same sealing structure. Taking the anode gas passage hole 10 on the supply side as an example, as shown in FIG. A ring-shaped retainer sealing material a made of synthetic resin with an elastic seal b disposed on the inner circumferential surface between the stacked adjacent metal frame laminates 1
It has a sealing structure in which the retainer seal material a holds an elastic seal b which becomes thinner during press lamination.

上記シール構造は、リング状リテーナシール材
aが、金属枠積層体1間の合成樹脂枠60と2枚
の電極板7厚み相当のスペーサとなり、リング状
リテーナシール材aの内周面に配置される合成樹
脂製の弾性シールbが、押圧積層時に、金属枠積
層体1及びリング状リテーナシール材aに密着す
ることにより、密封された通路孔10を形成し、
各ガスあるいは冷却媒体を漏洩させることがな
い。
In the above seal structure, the ring-shaped retainer seal material a serves as a spacer equivalent to the thickness of the synthetic resin frame 60 and the two electrode plates 7 between the metal frame laminate 1, and is arranged on the inner peripheral surface of the ring-shaped retainer seal material a. An elastic seal b made of synthetic resin forms a sealed passage hole 10 by coming into close contact with the metal frame laminate 1 and the ring-shaped retainer seal material a during press lamination,
There is no leakage of gas or cooling medium.

さらに、前記金属枠積層体1の中央部を占める
冷却通路枠20は、コルゲートフイン23を内蔵
する開口部の四隅に角部22を設けてあり、ガス
通路孔を設けるための突起部21とで、ガス通路
孔に連通する密封通路を形成している。
Furthermore, the cooling passage frame 20 occupying the central part of the metal frame laminate 1 has corner parts 22 at the four corners of the opening in which the corrugated fins 23 are built, and projections 21 for providing gas passage holes. , forming a sealed passage communicating with the gas passage hole.

すなわち、各突起部21には、ガス通路孔10
〜13が穿孔され、これに接続して長楕円形状の
密封通路孔が設けてあり、積層時、仕切板5と
で、密封通路24〜27が形成される。
That is, each protrusion 21 has a gas passage hole 10.
- 13 are perforated, and connected to these are oval-shaped sealed passage holes, and when laminated, sealed passages 24 to 27 are formed with the partition plate 5.

例えば、供給側のアノードガス通路孔10から
のアノードガスは、冷却通路2内に設けられた密
封通路24に入り、仕切板5の孔部51を通り、
ガス通路枠30のアノードガス通路3に入る。
For example, the anode gas from the anode gas passage hole 10 on the supply side enters the sealed passage 24 provided in the cooling passage 2, passes through the hole 51 of the partition plate 5,
It enters the anode gas passage 3 of the gas passage frame 30.

アノードガス通路3内を下降したアノードガス
は、仕切板5下方の孔部52より、冷却通路2内
の密封通路25に入り、さらにアノードガス通路
孔11を通つて外部へ流出する また、供給側のカソードガス通路孔12の場合
も同様に、カソードガスは、冷却通路2内に設け
られた密封通路26に入り、仕切板5の孔部53
を通り、ガス通路枠40のカソードガス通路4に
入り、カソードガス通路4内を下降したカソード
ガスは、仕切板5下方の孔部54より、冷却通路
2内の密封通路27に入り、さらにカソードガス
通路孔13を通つて外部へ流出する。
The anode gas that has descended in the anode gas passage 3 enters the sealed passage 25 in the cooling passage 2 through the hole 52 below the partition plate 5, and further flows out through the anode gas passage hole 11. Similarly, in the case of the cathode gas passage hole 12, the cathode gas enters the sealed passage 26 provided in the cooling passage 2, and enters the hole 53 of the partition plate 5.
The cathode gas enters the cathode gas passage 4 of the gas passage frame 40 and descends inside the cathode gas passage 4. The cathode gas enters the sealed passage 27 in the cooling passage 2 through the hole 54 below the partition plate 5, and then enters the cathode gas passage 4. The gas flows out through the gas passage hole 13.

また、冷却媒体は、冷却通路枠20の水平方向
に突設された突起部21に穿孔された冷却媒体通
路孔14より、これに連通する連絡通路28を経
て、コルゲートフイン23で形成した冷却通路2
に入り、通路2内を水平に通過し、該枠20の反
体側の突起部21に設けた連絡通路29より、流
出側の冷却媒体通路孔15に入り、外部へと流出
する。
Further, the cooling medium is passed through the cooling medium passage hole 14 formed in the horizontally protruding protrusion 21 of the cooling passage frame 20, through the communication passage 28 communicating therewith, and into the cooling passage formed by the corrugated fins 23. 2
The cooling medium enters the cooling medium passage hole 15 on the outflow side through the communication passage 29 provided in the protrusion 21 on the opposite side of the frame 20, and flows out to the outside.

前記金属枠20,30,40内のコルゲートフ
イン23,33,43は、コルゲート方向に連通
するスリツトまは小孔を多数設けてあり、水平、
垂直方向に流体が通過可能であり、前述した如
く、冷却通路2では、水平方向に冷却媒体が流
れ、アノードガス通路3とカソードガス通路4と
では、各ガスが枠の開口部の対角線方向に交差す
るように、上側から下側へ流れ、各流体は、通路
内を均一にかつ円滑に通過する構成である。
The corrugated fins 23, 33, 43 in the metal frames 20, 30, 40 are provided with a large number of slits or small holes that communicate in the corrugated direction.
The fluid can pass in the vertical direction, and as described above, in the cooling passage 2, the cooling medium flows horizontally, and in the anode gas passage 3 and the cathode gas passage 4, each gas flows in the diagonal direction of the opening of the frame. The fluids flow crosswise from the upper side to the lower side, and each fluid passes through the passage uniformly and smoothly.

前記の金属枠積層体1は、枠、コルゲートフイ
ン、仕切板ともアルミニウム合成製であり、ろう
付けにて一体接合させるため、熱伝導効率が高く
かつ均一であり、ガス通路3,4内の不要な熱
は、直ちに、金属枠積層体1により冷却通路2の
冷却媒体に伝えられ、冷却媒体が循環することに
より、外部に放熱される。
In the metal frame laminate 1, the frame, corrugated fins, and partition plates are all made of aluminum composite, and because they are integrally joined by brazing, the heat conduction efficiency is high and uniform, and there is no need for gas passages 3 and 4. The heat is immediately transferred to the cooling medium in the cooling passage 2 by the metal frame laminate 1, and as the cooling medium circulates, the heat is radiated to the outside.

この発明による積層型燃料電池において、冷却
媒体通路とアノードガス及びカソードガス通路
を、コルゲートフインを内蔵した金属枠を、ろう
付け一体化して形成した積層状のプレートフイン
型熱交換器構造にて構成したことにより、電気化
学的反応により発生した熱は、アノードガス、カ
ソードガス通路よりコルゲートフインを通じて、
ろう付け一体化されている冷却通路のコルゲート
フインに直ちに伝達され、冷却媒体を介して、放
熱される。
In the stacked fuel cell according to the present invention, the cooling medium passage and the anode gas and cathode gas passages are constructed of a laminated plate-fin type heat exchanger structure formed by integrally brazing a metal frame with built-in corrugated fins. As a result, the heat generated by the electrochemical reaction is transferred from the anode gas and cathode gas passages through the corrugated fins.
The heat is immediately transmitted to the corrugated fins of the cooling passage, which are integrated by brazing, and is radiated through the cooling medium.

また、かかる冷却構造は、熱交換効率にすぐれ
るコルゲートフインを通じて放熱されるため、温
度分布が均一なり、また、積層される金属枠体を
ろう付け一体接合構造とすることにより、接合部
の熱抵抗が極めて小さく、熱放散効果が極めて高
い燃料電池の冷却構造とすることができる利点が
ある。
In addition, in this cooling structure, heat is radiated through corrugated fins with excellent heat exchange efficiency, so the temperature distribution is uniform.Also, by making the laminated metal frames integrally joined by brazing, the heat at the joint is This has the advantage of providing a fuel cell cooling structure with extremely low resistance and extremely high heat dissipation effect.

また、この発明による冷却構造は、ろう付けに
よる積層一体構造の金属枠積層体とすることによ
り、前述のシール構造と相俟つて、各流体の密封
性にすぐれ、アノードガス及びカソードガスはコ
イルゲートフインにて分配均一化される利点があ
り、さらには、ガス通路を積層方向の金属枠を利
用し、かつ冷却通路内に分配流入口を設けてある
ため、燃料電池の小型軽量化に大きく寄与する構
成である。
In addition, the cooling structure according to the present invention has a metal frame laminate with an integral laminated structure by brazing, and in combination with the above-mentioned seal structure, it has excellent sealing performance for each fluid, and the anode gas and cathode gas are connected to the coil gate. It has the advantage of uniform distribution with fins, and furthermore, the gas passage uses a metal frame in the stacking direction, and the distribution inlet is provided in the cooling passage, which greatly contributes to making the fuel cell smaller and lighter. The configuration is as follows.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による電解質液の分配通路孔
の積層シール構造を示す燃料電池の縦断説明図で
ある。第2図はこの発明による反応ガスの分配通
路孔の積層シール構造を示す燃料電池の縦断説明
図である。第3図はこの発明による冷却通路構造
を示す金属枠積層体の正面図と横断説明図であ
る。第4図は合成樹脂製枠の正面説明図であり、
第5図は金属枠の正面説明図である。第6図と第
7図はこの発明による冷却通路構造を用いた燃料
電池の正面説明図と側面説明図である。 1……金属枠積層体、2……冷却通路、3,4
……ガス通路、5……仕切板、6……電解質層、
7……電極板、8……ボルト、9……ヘツダープ
レート、10〜17……通路孔、18……接続
子、20……冷却通路枠、21,31,41……
突起部、22……角部、23,33,43……コ
ルゲートフイン、24〜27……密封通路、2
8,29……連絡通路、30,40……ガス通路
枠、51〜54……小孔、60……合成樹脂枠、
61……突起部、62……リング状スペーサ、a
……リング状リテーナシール材、b……弾性シー
ル。
FIG. 1 is a longitudinal cross-sectional view of a fuel cell showing a laminated seal structure of an electrolyte distribution passage hole according to the present invention. FIG. 2 is a longitudinal cross-sectional view of a fuel cell showing a laminated seal structure of a reactive gas distribution passage hole according to the present invention. FIG. 3 is a front view and a cross-sectional explanatory view of a metal frame laminate showing a cooling passage structure according to the present invention. FIG. 4 is a front explanatory view of the synthetic resin frame,
FIG. 5 is an explanatory front view of the metal frame. FIGS. 6 and 7 are a front view and a side view of a fuel cell using the cooling passage structure according to the present invention. 1... Metal frame laminate, 2... Cooling passage, 3, 4
... Gas passage, 5 ... Partition plate, 6 ... Electrolyte layer,
7... Electrode plate, 8... Bolt, 9... Header plate, 10-17... Passage hole, 18... Connector, 20... Cooling passage frame, 21, 31, 41...
Projection, 22... corner, 23, 33, 43... corrugated fin, 24-27... sealed passage, 2
8, 29...Communication passage, 30, 40...Gas passage frame, 51-54...Small hole, 60...Synthetic resin frame,
61... Protrusion, 62... Ring-shaped spacer, a
...Ring-shaped retainer sealing material, b...Elastic seal.

Claims (1)

【特許請求の範囲】[Claims] 1 薄板金属枠内に伝熱フインを内蔵した通路体
を仕切板を介して3通路体積層し、中間通路体を
冷却媒体通路、両側をアノードガスあるいはカソ
ードガス通路となした金属枠積層体と、合成樹脂
製の電解質枠を電極板にて挟みアノード極及びカ
ソード極を配置した電池セルを多数組積層した構
成からなり、前記金属枠に穿孔し積層時に同軸配
置される通路孔を電解質液、ガスまたは冷却媒体
の分配通路となし、アノードガスあるいはカソー
ドガスが流入、流出時、前記ガス分配通路に連通
し冷却媒体通路内に設けた密封通路を通過する構
成を有し、さらに、隣接合成樹脂枠間長を有する
合成樹脂製のリングスペーサを、前記電解質液通
路孔に嵌入し、Oリングを介して合成樹脂製枠に
当接させて、電解質液通路孔を構成し、電解質液
が合成樹脂製枠の孔部に連通する小孔部より電極
板間の合成樹脂製枠内の電解質層に流入出可能と
なしたシール構造であり、さらに、他流体の分配
通路には、積層された隣接前記金属枠積層体間
に、内周面に弾性シール材を配した合成樹脂製の
リング状リテーナシール状を介在させ、該リテー
ナシール材に押圧積層時に薄肉化する弾性シール
の保持を行なわせる構成のシール構造となしたこ
とを特徴とする燃料電池。
1 A metal frame stacked structure in which three passage bodies each having heat transfer fins built in a thin metal frame are stacked with a partition plate interposed therebetween, with the intermediate passage body serving as a cooling medium passage and both sides serving as anode gas or cathode gas passages. , consists of a stack of multiple sets of battery cells in which an electrolyte frame made of synthetic resin is sandwiched between electrode plates and an anode and a cathode are arranged, and a passage hole is formed in the metal frame and arranged coaxially when stacking the electrolyte, It has a structure in which the anode gas or cathode gas communicates with the gas distribution passage and passes through a sealed passage provided in the cooling medium passage when the anode gas or cathode gas flows in or out. A ring spacer made of synthetic resin having a length between the frames is fitted into the electrolyte liquid passage hole and brought into contact with the synthetic resin frame via an O-ring to form an electrolyte liquid passage hole, and the electrolyte liquid is made of synthetic resin. It has a seal structure that allows flow into and out of the electrolyte layer in the synthetic resin frame between the electrode plates from the small hole communicating with the hole in the frame. A ring-shaped retainer seal made of synthetic resin having an elastic sealing material arranged on the inner circumferential surface is interposed between the metal frame laminates, and the retainer sealing material holds the elastic seal that becomes thinner when laminated under pressure. A fuel cell characterized by having a seal structure.
JP61121491A 1986-05-27 1986-05-27 Sealing structure of fuel cell stack Granted JPS62278761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61121491A JPS62278761A (en) 1986-05-27 1986-05-27 Sealing structure of fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61121491A JPS62278761A (en) 1986-05-27 1986-05-27 Sealing structure of fuel cell stack

Publications (2)

Publication Number Publication Date
JPS62278761A JPS62278761A (en) 1987-12-03
JPH0479475B2 true JPH0479475B2 (en) 1992-12-16

Family

ID=14812476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61121491A Granted JPS62278761A (en) 1986-05-27 1986-05-27 Sealing structure of fuel cell stack

Country Status (1)

Country Link
JP (1) JPS62278761A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071524A1 (en) * 2001-03-02 2002-09-12 Pylkkaenen Thomas Fuel cell stack

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503855A (en) * 1973-05-16 1975-01-16
JPS5556373A (en) * 1978-10-23 1980-04-25 Hitachi Ltd Fuel cell of laminated structure
JPS60200468A (en) * 1984-03-23 1985-10-09 Hitachi Ltd Fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503855A (en) * 1973-05-16 1975-01-16
JPS5556373A (en) * 1978-10-23 1980-04-25 Hitachi Ltd Fuel cell of laminated structure
JPS60200468A (en) * 1984-03-23 1985-10-09 Hitachi Ltd Fuel cell

Also Published As

Publication number Publication date
JPS62278761A (en) 1987-12-03

Similar Documents

Publication Publication Date Title
JP5216240B2 (en) Fuel cell
JPH0421250Y2 (en)
US6132895A (en) Fuel cell
US4826742A (en) Water and heat management in solid polymer fuel cell stack
US6066409A (en) Electrochemical fuel cell stack with improved reactant manifolding and sealing
US5342706A (en) Fully internal manifolded fuel cell stack
US6764787B2 (en) One piece sleeve gas manifold for cell stack assemblies such as fuel cells
JP2004522286A (en) Manifold for fuel cell system
JP2007234438A (en) Fuel cell
JP2008235009A (en) Separator for fuel cell
JP2000164235A (en) Solid polymeric fuel cell system
EP1432060A1 (en) Integrated bipolar plate module for fuel cell stack
US20040062967A1 (en) Fuel cell equipped with identical polar plates and with internal fuel and coolant circulation
JPH0479475B2 (en)
JP2005108506A (en) Fuel cell
JPS62278758A (en) Cooling passage structure of fuel cell
JP2020053141A (en) Fuel cell stack and end plate
EP1441403A2 (en) Gastight gasket assembly for gas channels of fuel cell stack
JP2006172752A (en) Polymer electrolyte fuel cell
US20040115510A1 (en) Gastight gasket assembly for gas channels of fuel cell stack
JPH0227503Y2 (en)
JPH09120833A (en) Solid high polymer electrolyte fuel cell
JPS63128562A (en) Fuel cell
CN216389443U (en) Open metal bipolar plate of fuel cell negative pole and unmanned aerial vehicle
JP2865025B2 (en) Molten carbonate fuel cell

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees