JPH047926B2 - - Google Patents

Info

Publication number
JPH047926B2
JPH047926B2 JP60079716A JP7971685A JPH047926B2 JP H047926 B2 JPH047926 B2 JP H047926B2 JP 60079716 A JP60079716 A JP 60079716A JP 7971685 A JP7971685 A JP 7971685A JP H047926 B2 JPH047926 B2 JP H047926B2
Authority
JP
Japan
Prior art keywords
ball
wheel
liquid
liquid tank
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60079716A
Other languages
Japanese (ja)
Other versions
JPS61237011A (en
Inventor
Shoichi Kogure
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP7971685A priority Critical patent/JPS61237011A/en
Publication of JPS61237011A publication Critical patent/JPS61237011A/en
Publication of JPH047926B2 publication Critical patent/JPH047926B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Toys (AREA)
  • Support Of Aerials (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、船舶等に用いられる方位検出装置で
あるジヤイロコンパスに係り、特に外部から傾
斜、旋回、振動及び衝激の影響を受けないように
支持されている指北の中枢機構である転輪球を、
液槽の中心に摩擦無く傾斜・旋回自由に支持する
構成のジヤイロコンパスの改良に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a gyro compass, which is a direction detection device used in ships, etc., and is particularly unaffected by external tilting, turning, vibration, and impact. The rolling ball, which is the central mechanism of the guide, is supported like this.
This invention relates to an improvement in a gyroscope compass that is supported in the center of a liquid tank so that it can be tilted and rotated freely without friction.

〈従来の技術〉 以下、図面に基づいて従来の技術を説明する。
第5図は従来のアンシユツツ方式のジヤイロコン
パスの構造図である。
<Prior Art> Hereinafter, the conventional technology will be explained based on the drawings.
FIG. 5 is a structural diagram of a conventional ancillary type gyro compass.

第5図において、1は指北の中枢機構である内
部に高速で回転するジヤイロロータJRを有する
転輪球、2は転輪球1を支持する支持液、Pは支
持液2を回流(記号をFとする)させ水流の力で
転輪球1を液槽の中心点に傾斜や旋回が自由とな
るように支持・浮上させる目的で設けられた遠心
ポンプ、Sは回流Fを整流する整流板、3は転輪
球1、支持液2、遠心ポンプP及び整流板Sを収
納する液槽である。
In Fig. 5, 1 is a rolling ball having a high-speed rotating rotor JR inside which is the central mechanism of the guide, 2 is a support liquid that supports the rolling ball 1, and P is a circulating support liquid 2 (the symbol is A centrifugal pump is provided for the purpose of supporting and floating the wheel ball 1 to the center of the liquid tank so that it can tilt and turn freely by the force of the water flow, and S is a rectifier plate that rectifies the circulating flow F. , 3 is a liquid tank that houses the rolling ball 1, the support liquid 2, the centrifugal pump P, and the rectifying plate S.

ところでこのジヤイロコンパスは、 (A):転輪球1は、支持液2のゆつくりした回流F
と、支持液2の比重でほぼ液槽3の中央に支持さ
れるが、支持液2の比重が変動すると転輪球1の
位置は不安定な状態となる。いいかえれば、この
構造は、磨擦の少ない構造として非常に優れた支
持方法であるが、温度変化による支持液2の比重
(=体積)変化をなくすため、液温を一定値に温
度制御装置を用いて保持する必要がある。このた
め装置全体が大型化し高価となる。
By the way, this gyroscope compass has the following features: (A): The rolling ball 1 has a slow circular flow F of the support liquid 2.
The specific gravity of the supporting liquid 2 supports the ball 1 approximately at the center of the liquid tank 3, but if the specific gravity of the supporting liquid 2 changes, the position of the rolling ball 1 becomes unstable. In other words, this structure is a very excellent support method as it has a structure with little friction, but in order to eliminate changes in the specific gravity (=volume) of the support liquid 2 due to temperature changes, a temperature control device is used to maintain the liquid temperature at a constant value. It is necessary to maintain the Therefore, the entire device becomes large and expensive.

(B):転輪球1は、例えば事故等で電源が瞬時でも
遮断すると回流Fが無くなるので、破線1aで示
すように沈下して整流板Sに当る。このため転輪
球1の方向性(指北性)が失われ、ジヤイロコン
パスとしての機能がだめになる。そしてこの機能
の回復は、時間がかかる。従つて、短時間の停電
でもジヤイロコンパスにとつては致命的に打撃と
なる。
(B): If the power supply is cut off even momentarily due to an accident, for example, the circulating current F disappears, so the rolling ball 1 sinks and hits the current plate S as shown by the broken line 1a. As a result, the directionality (northernity) of the wheel ball 1 is lost, and its function as a gyroscope is impaired. And it takes time for this function to recover. Therefore, even a short power outage can be a fatal blow to the gyroscope.

という問題がある。There is a problem.

〈先行技術〉 本願出願人は、この問題を解決するために特願
昭59−175794号「ジヤイロコンパス」を出願した
(以下「先行技術」という)。このジヤイロコンパ
スの特徴は、支持液の温度変化に伴う比重(=体
積)の変化を積極的に利用し、かつ短時間の電源
中断に対する耐性を向上させ、高精度な方位出力
を得る構造としたものである。
<Prior Art> In order to solve this problem, the applicant of the present application filed Japanese Patent Application No. 175794/1983 entitled "Gyroscope Compass" (hereinafter referred to as "prior art"). This gyro compass is characterized by a structure that actively utilizes changes in specific gravity (=volume) due to temperature changes in the support liquid, improves resistance to short power interruptions, and provides highly accurate azimuth output. This is what I did.

以下、この先行技術を第6図のジヤイロコンパ
スの構造図を用いて説明する。
This prior art will be explained below with reference to the structural diagram of a gyro compass shown in FIG.

第6図において、4は転輪球1の内部に配置さ
れ反発力を発生する反発線輪、5はここではアル
ミ製から成る液槽、6は転輪球1の頭頂部1bが
液面8と同一面上に又は頭頂部1bを液面8上に
出すために比重が調整された支持液、9は温度変
化等で変化した場合の液面8の変化液面である。
In FIG. 6, numeral 4 is a repulsion coil disposed inside the wheel ball 1 and generates a repulsive force, 5 is a liquid tank made of aluminum, and 6 is a liquid level 8 where the top part 1b of the wheel ball 1 is located at a liquid level 8. A support liquid whose specific gravity is adjusted to bring the top of the head 1b above the liquid level 8 or on the same level as the liquid level 8. 9 is the liquid level that changes in the liquid level 8 when the liquid level 8 changes due to a change in temperature or the like.

今、支持液6は、温度T0で転輪球1の中心O
からの液面8の液位がh0、支持液6の比重p0,体
積V0であつたとする。これが、温度がT1に上昇
した時、支持液6の比重がp1、体積がV1に膨脹
し液位がh1に上昇したとする。このとき転輪球1
の受ける浮力は、最初は〓p0×支持液6中の転輪
球1の体積〓であり、変化後は〓p1×支持液6中
の転輪球1の体積〓となる。ここで、液槽5の内
側の半径をR1、転輪球1の外側の半径をR2とす
ると、支持液6の体積変化(液の膨脹分)は、 V1−V0= π(R1 2−R2 2)(h1−h0) …(1) となる。又、転輪球1の質量をmとすると、 m=p1π(R1 2h1−(h1 3/3) +2R1 3/3) …(2) となる。尚、温度により転輪球1の半径R2及び
液槽5の内径R1も変化するがここでは説明を簡
単にするために一定とする。(2)式からh1を求め
(h0は既知)(1)式に代入して液槽5の内径R1を決
定する(比重p0、体積V0、比重p1、体積V1はそ
れぞれ指定温度に基づいて決定される値)。この
ようにして決定された液槽5の内径R1によれば、
転輪球1の液槽5に対する上下位置はほとんど変
化しないことが判る。
Now, the support liquid 6 is at the center O of the rolling ball 1 at a temperature T 0 .
Assume that the liquid level 8 from the liquid surface 8 is h 0 , the specific gravity of the support liquid 6 is p 0 , and the volume V 0 . Assume that when the temperature rises to T1 , the specific gravity of the support liquid 6 expands to p1 , the volume to V1 , and the liquid level rises to h1 . At this time, rolling ball 1
Initially, the buoyant force that is applied to is p 0 ×volume of the rolling ball 1 in the support liquid 6, and after the change, it becomes 〓p 1 ×volume of the rolling ball 1 in the supporting liquid 6〓. Here, if the inner radius of the liquid tank 5 is R 1 and the outer radius of the wheel ball 1 is R 2 , then the volume change of the support liquid 6 (expansion of the liquid) is V 1 −V 0 = π( R 1 2 − R 2 2 ) (h 1h 0 ) …(1). Further, if the mass of the wheel ball 1 is m, then m=p 1 π(R 1 2 h 1 −(h 1 3 /3) +2R 1 3 /3) (2). Incidentally, although the radius R 2 of the rolling ball 1 and the inner diameter R 1 of the liquid tank 5 also change depending on the temperature, they are assumed to be constant here to simplify the explanation. Find h 1 from equation (2) (h 0 is known) and substitute it into equation (1) to determine the inner diameter R 1 of the liquid tank 5 (specific gravity p 0 , volume V 0 , specific gravity p 1 , volume V 1 is each value determined based on the specified temperature). According to the inner diameter R 1 of the liquid tank 5 determined in this way,
It can be seen that the vertical position of the rolling ball 1 with respect to the liquid tank 5 hardly changes.

ところで、転輪球1が液槽5の中央にある時に
反発線輪4の円周上に一様に分布しかつ方向が転
輪球1の球心に向かう反発力の単位円弧辺りの反
発力をfとすると、反発力fの総和の垂直方向Z
成分は上向きに働くほか、転輪球1が液槽5の中
央にあるかぎり反発力fの総和の水平方向x成分
FXはゼロである。
By the way, when the wheel ball 1 is at the center of the liquid tank 5, the repulsive force around the unit arc of the repulsive force is uniformly distributed on the circumference of the repulsion wire 4 and is directed toward the center of the wheel ball 1. Let f be the vertical direction Z of the total repulsive force f
In addition to the component acting upward, as long as the rolling ball 1 is in the center of the liquid tank 5, the horizontal direction x component of the sum of the repulsion force f
FX is zero.

今、浮力をpVg、転輪球1に働く重さをmgとす
ると、 pVg+Fz=mg ∴(m−pV)g=Fz …(3) なる関係が成立して転輪球1を中央部分に安定に
保つ。但し、pは支持液の密度、Vは水没してい
る転輪球の体積、gは重力加速度、mは転輪球1
の質量とする。
Now, if the buoyant force is pVg and the weight acting on the rolling ball 1 is mg, then the following relationship is established, pVg + Fz = mg ∴ (m - pV) g = Fz...(3), and the rolling ball 1 is stabilized in the center part. Keep it. However, p is the density of the supporting liquid, V is the volume of the submerged wheel ball, g is the gravitational acceleration, and m is the wheel ball 1.
Let the mass be .

〈発明が解決しようとする問題点〉 ところで、この先行技術のジヤイロコンパス
は、 :船舶の急加速度等によつてジヤイロコンパス
に水平方向Xの加速度αが作用すると、転輪球1
の貫性力としてmαが作用し、これと反対方向に
水平横方向の浮力pVαが作用する。故に、 mα−pVα= (m−pV)α=(α/g)Fz …(4) の力が転輪球1の作用する(貫性力mαと浮力
pVαが互いに等しく逆であれば作用しないが)こ
とになる。一方、反発線輪4の反発力は、反発線
輪(iii)と液槽5との間隙距離に逆比例するもので、
距離が近くなれば反発力は強く、距離が遠くなれ
ば反発力は弱くなる。そこで、(4)式の(α/g)
Fzの力により転輪球1は水平方向に移動するが、
この移動にともない移動方向の間隙距離は近くな
り反発力は強くなる。又、移動方向と反対側の反
発力は弱くなるため、反発力の総和の水平方向X
成分Fxは転輪球1を液槽5の中心に押し戻す力
として作用する。以上から、転輪球1は力(α/
g)Fzと反発力の総和の水平方向X成分Fxとが
等しくなる位置まで第6図においては左へ横移動
し、加速度αが大きい場合には転輪球1と液槽5
がぶつかることになる。
<Problems to be Solved by the Invention> By the way, the gyroscope compass of this prior art has the following problems: When acceleration α in the horizontal direction X acts on the gyroscope compass due to sudden acceleration of a ship, etc.
mα acts as a penetrating force, and a horizontal lateral buoyant force pVα acts in the opposite direction. Therefore, mα−pVα= (m−pV)α=(α/g)Fz…(4) The force acting on the rolling ball 1 (the penetrating force mα and the buoyancy force
If pVα are equal and opposite to each other, there will be no effect). On the other hand, the repulsive force of the repulsion coil 4 is inversely proportional to the gap distance between the repulsion coil (iii) and the liquid tank 5.
The closer the distance, the stronger the repulsive force, and the farther the distance, the weaker the repulsive force. Therefore, (α/g) in equation (4)
The rolling ball 1 moves horizontally due to the force of Fz, but
With this movement, the gap distance in the moving direction becomes shorter and the repulsive force becomes stronger. Also, since the repulsive force on the side opposite to the moving direction is weaker, the total repulsive force in the horizontal direction
The component Fx acts as a force that pushes the wheel ball 1 back to the center of the liquid tank 5. From the above, the rolling ball 1 has a force (α/
g) Move laterally to the left in Figure 6 until the position where Fz and the horizontal X component Fx of the total repulsion force are equal, and if the acceleration α is large, the rolling ball 1 and the liquid tank 5
will collide.

:ジヤイロコンパスの起動後、転輪球1は垂直
軸Z周りの振揺(方位変化)と、水平軸周りの振
揺(俯仰傾斜)を行いつつやがて静定(北に向き
且つ水平になる)する。第7図はこの静定過程に
おいて転輪球1が俯仰傾斜した場合の反発線輪4
と液槽5の関係図である。ここから、転輪球1
が、転輪球の水平軸(紙面に直交する軸)の垂直
軸周りに俯仰傾斜すると、左側(β)の反発力の
水平分力fx1は減少し、右側(γ)の反発力の水
平分力fx2は増加する。そこで転輪球1は右から
押されて左に横移動するが、この移動にともない
右側(γ)の間隙距離は遠くなり反発力は弱く
(減少)なる。又、左側(β)の間隙距離はわず
かながら近くなり反発力は強く(増加)なる。以
上から転輪球1が俯仰傾斜すると、反発力の水平
方向X成分Fxがゼロになる位置まで横移動し、
俯仰傾斜が大きい場合には転輪球1と液槽5が衝
突することになる。という現象が発生する。
: After starting the gyroscope, the wheel ball 1 swings around the vertical axis Z (change in direction) and around the horizontal axis (tilts in elevation), and eventually becomes static (facing north and becoming horizontal). )do. Figure 7 shows the repulsion wheel 4 when the rolling wheel ball 1 is tilted upward and downward during this static determination process.
FIG. 4 is a relationship diagram between the liquid tank 5 and From here, rolling ball 1
However, when the rolling ball is tilted up and down around the vertical axis of the horizontal axis (the axis perpendicular to the plane of the paper), the horizontal component of the repulsion force f x1 on the left side (β) decreases, and the horizontal component of the repulsion force on the right side (γ) decreases. The component force f x2 increases. The rolling ball 1 is then pushed from the right and moves laterally to the left, but with this movement, the gap distance on the right side (γ) becomes longer and the repulsive force becomes weaker (reduced). Also, the gap distance on the left side (β) becomes slightly closer, and the repulsive force becomes stronger (increases). From the above, when the rolling ball 1 is tilted upward or downward, it moves laterally to the position where the horizontal X component Fx of the repulsive force becomes zero,
If the elevation and elevation are large, the rolling ball 1 and the liquid tank 5 will collide. This phenomenon occurs.

第8図はジヤイロロータJRに電源を供給する
電極の配置図である。この第8図は、転輪球1側
に帯状電極11と皿状電極12が、液槽5側にこ
れに対向する帯状電極51と皿状電極52が夫々
設けられて、ジヤイロロータJRはこれ等帯状電
極11,51と皿状電極12,52と導電性の支
持液6を介して電源Eが通電されて回転すること
を表わす。
FIG. 8 is a diagram showing the arrangement of electrodes that supply power to the gyro rotor JR. In FIG. 8, a band-shaped electrode 11 and a plate-shaped electrode 12 are provided on the side of the wheel ball 1, and a band-shaped electrode 51 and a plate-shaped electrode 52 opposite to these are provided on the liquid tank 5 side. This shows that the power supply E is applied through the strip electrodes 11, 51, the dish electrodes 12, 52, and the conductive support liquid 6, causing the electrodes to rotate.

この構造において、上記した,の現象によ
つても転輪球1と液槽5が衝突しないようにする
ためには、転輪球1と液槽5の間隙距離δを大き
くとり、転輪球1が横移動できる余裕を確保すべ
きところであるが、間隙距離δを大きくとると、
転輪球1と液槽5の電極間(11対51,12対
52)の支持液6の体積抵抗が大きくなるためジ
ヤイロロータJRに十分な電力を供給することが
困難になるほか、支持液6に流れる電流の電圧降
下にともなう発熱が大きくなる。この体積抵抗を
減らすためには対向する電極の面積を大きくする
ことが有効であるが、只単に面積を大きくすると
液槽5の電極間(51対52)の距離が短くな
り、リークが増加し発熱が増加するため転輪球1
の直径を大きくしないかぎり電極の面積を大きく
することはできない。又、液槽5の電極間(51
対52)の支持液6の体積抵抗は転輪球1の直径
には係りがなく間隙距離δに逆比例する。従つて
間隙距離δを大きくすると、液槽5の電極間の支
持液6の体積抵抗は小さくなり、必然的にリーク
が大きくなり発熱が増加する。そこで、転輪球1
が横移動することを考慮して十分な電力をジヤイ
ロロータJRに供給しつつ発熱を押えるためには、
転輪球1と液槽5の間の距離δを小さくとると共
に転輪球1の直径を大きくして電極面積を大きく
する必要がある。従つて装置全体を大型化する必
要があるので高価となる。
In this structure, in order to prevent the rolling ball 1 and the liquid tank 5 from colliding even in the above-mentioned phenomenon, the gap distance δ between the rolling ball 1 and the liquid tank 5 must be set large. 1 should be able to move laterally, but if the gap distance δ is set large,
The volume resistance of the support liquid 6 between the roller ball 1 and the electrodes of the liquid tank 5 (11 vs. 51, 12 vs. 52) increases, which makes it difficult to supply sufficient power to the wheel rotor JR. Heat generation increases as the voltage drops in the current flowing through the circuit. In order to reduce this volume resistance, it is effective to increase the area of the opposing electrodes, but simply increasing the area shortens the distance between the electrodes (51 vs. 52) in the liquid tank 5, increasing leakage. Rolling ball 1 due to increased heat generation
The area of the electrode cannot be increased unless the diameter of the electrode is increased. Also, between the electrodes of the liquid tank 5 (51
The volume resistance of the support liquid 6 in pair 52) is independent of the diameter of the rolling ball 1 and is inversely proportional to the gap distance δ. Therefore, when the gap distance δ is increased, the volume resistance of the supporting liquid 6 between the electrodes of the liquid tank 5 becomes smaller, which inevitably increases leakage and heat generation. Therefore, rolling ball 1
In order to suppress heat generation while supplying sufficient power to the wheel rotor JR considering the horizontal movement of the
It is necessary to reduce the distance δ between the wheel ball 1 and the liquid tank 5 and to increase the diameter of the wheel ball 1 to increase the electrode area. Therefore, it is necessary to increase the size of the entire device, which makes it expensive.

本発明はこの従来技術の問題点に鑑みてなされ
たものであつて、転輪球1に水平加速度が加わつ
ても、転輪球1が俯仰傾斜しても、転輪球の横移
動がゼロになるような構成として電極面積を大き
くすることなく十分な電力の供給を可能とし、且
つ装置を小形化したジヤイロコンパスを提供する
ことを目的とする。
The present invention has been made in view of the problems of the prior art, and the lateral movement of the rolling wheel ball is zero even when horizontal acceleration is applied to the rolling ball 1 or even when the rolling ball 1 is tilted upward or downward. It is an object of the present invention to provide a gyroscope compass which is configured to have a structure such that sufficient power can be supplied without increasing the electrode area, and the device is miniaturized.

〈問題点を解決するための手段〉 上述の目的を達成するための本発明のジヤイロ
コンパスは、指北の中枢機構である転輪球と、該
転輪球を収納する液槽と、該液槽内に前記転輪球
を支持する支持液とを具備し、前記支持液の温度
変化に伴う支持液位の高低変化と、該支持液の温
度変化に起因してこの支持液に前記転輪球が水没
する体積変化に伴う転輪球位置の高低変化とを一
致させて転輪球を液槽の垂直方向中央に支持して
なるジヤイロコンパスであつて、前記転輪球内部
に、転輪球垂直軸に直交する面内で且つ前記垂直
軸周りに巻線した前記液槽材料と反発力が発生す
る反発線輪を、転輪球球心を挟んで互いに反対方
向に特性又は反発力を等しくして一対又は前記転
輪球の球心上に1つ配置し、これにより当該転輪
球が垂直方向に支持され且つ前記反発線輪の反発
力により水平方向に液槽の中心に支持され、この
ときに当該転輪球に水平加速度が加わつても或は
当該転輪球が俯仰傾斜しても、その状態は液槽中
央に釣合つた状態を維持可能な構成から成ること
を特徴とするものである。
<Means for Solving the Problems> The gyroscope compass of the present invention for achieving the above-mentioned object has a wheel ball which is the central mechanism of the pointing wheel, a liquid tank for storing the wheel ball, and a liquid tank which stores the wheel ball. A support liquid for supporting the roller ball is provided in a liquid tank, and the support liquid level changes due to a change in the temperature of the support liquid, and the support liquid receives the rotation due to the temperature change of the support liquid. A gyroscope compass in which a wheel ball is supported in the vertical center of a liquid tank by matching height changes in the position of the wheel ball due to volume changes in which the wheel ball is submerged, and inside the wheel ball, A repulsion coil that generates a repulsive force with the liquid tank material wound in a plane perpendicular to the vertical axis of the rolling ball and around the vertical axis is arranged in a direction opposite to each other across the center of the rolling ball. A pair or one roller ball is placed on the center of the ball with equal force, so that the ball is supported in the vertical direction and horizontally moved to the center of the liquid tank by the repulsive force of the repulsion ball. At this time, even if horizontal acceleration is applied to the rolling wheel ball or the rolling wheel ball is tilted upward or downward, its state can be maintained in a balanced state at the center of the liquid tank. This is a characteristic feature.

〈実施例〉 以下、本発明の実施例を図面に基づき詳細に説
明する。尚、以下の図面において、第5図乃至第
8図と重複する部分は同一番号を付してその説明
は省略する。
<Example> Hereinafter, an example of the present invention will be described in detail based on the drawings. In the following drawings, parts that overlap with those in FIGS. 5 to 8 are given the same numbers, and the explanation thereof will be omitted.

第1図は本発明のジヤイロコンパスの構成図で
ある。
FIG. 1 is a block diagram of a gyro compass according to the present invention.

第1図において、41は上部反発線輪、42は
下部反発線輪であり、この上部反発線輪41と下
部反発線輪42は、転輪球1の内部の垂直軸Z周
りで、転輪球球心Qに対して互いに反対方向に特
性又は反発力を等しくして一対に夫々巻回されて
配置されている。尚、ここでいう一対とは、例え
ば上部と下部の反発線輪の数がアンバランスであ
つても互いの特性又は反発力が等しくなるもので
あれば、これも一対として扱うものとする。
In FIG. 1, 41 is an upper repulsion wire ring, and 42 is a lower repulsion wire ring. The upper repulsion wire ring 41 and the lower repulsion wire ring 42 are arranged around the vertical axis Z inside the wheel ball 1. The balls are wound in pairs in opposite directions with respect to the ball center Q with equal characteristics or repulsive forces. Incidentally, the term "pair" as used herein means that even if the number of upper and lower repulsive wire rings is unbalanced, if the mutual characteristics or repulsive forces are equal, then this is also treated as a pair.

転輪球1が垂直方向に支持され、且つ反発線輪
の反発力(水平方向分力)により水平方向に転輪
球1が液槽5の中心にもともとある状態で支持さ
れる構成において、上部、下部反発線輪41,4
2を配置することで、従来の技術のような問題が
発生しないことを第2図,第3図を用いて説明す
る。第2図は水平方向に加速度を受けた時の反発
線輪の反発力を説明するための断面図、第3図は
俯仰傾斜に対する反発線輪の反発力を説明するた
めの断面図である。
In a configuration in which the wheel ball 1 is supported in the vertical direction, and the wheel ball 1 is supported in the horizontal direction by the repulsive force (horizontal component force) of the repulsion coil in a state where the wheel ball 1 is originally located at the center of the liquid tank 5, the upper , lower repulsion wire ring 41,4
It will be explained with reference to FIGS. 2 and 3 that the problem that occurs in the conventional technology does not occur by arranging 2. FIG. 2 is a cross-sectional view for explaining the repulsive force of the repulsion wire when it is subjected to acceleration in the horizontal direction, and FIG. 3 is a cross-sectional view for explaining the repulsive force of the repulsion wire against elevation and inclination.

≪水平方向に加速度が加わつた場合≫ 第2図から、上部反発線輪41の単位円弧辺り
の反発力fbの垂直成分の総和Fbzと下部反発線輪
42の単位円弧辺りの反発力faの垂直成分の総和
Fazは互いに等しく逆向きであるから、両者の和
(Fbz+Faz)はゼロとなる。従つて、垂直方向に
は(3)式に基づく故に、m=pVとなつて転輪球1
が液槽中央に釣合つた状態となる。同じく、上部
反発線輪41の単位円弧辺りの反発力fbの水平成
分の総和Fbxと下部反発線輪42の単位円弧辺り
の反発力faの水平成分の総和Faxはいずれも転輪
球1が液槽5の中央にあるかぎりゼロとなつて水
平方向にも転輪球1が液槽中央に釣合つた状態と
なる。つまり転輪球1の見掛け上の重さはゼロと
なる。
≪When acceleration is applied in the horizontal direction≫ From Fig. 2, the sum F bz of the vertical component of the repulsive force f b around the unit arc of the upper repulsive coil 41 and the repulsive force f around the unit arc of the lower repulsive coil 42 sum of vertical components of a
Since F az are equal and opposite to each other, the sum of both (F bz +F az ) is zero. Therefore, in the vertical direction, based on equation (3), m = pV, and the rolling ball 1
is balanced at the center of the liquid tank. Similarly, the total sum F bx of the horizontal component of the repulsive force f b around the unit arc of the upper repulsive wire ring 41 and the sum F ax of the horizontal component of the repulsive force f a around the unit arc of the lower repulsive wire ring 42 are both As long as the ball 1 is at the center of the liquid tank 5, it becomes zero, and the rolling ball 1 is also balanced in the horizontal direction at the center of the liquid tank. In other words, the apparent weight of the rolling ball 1 is zero.

この状態の時に水平軸方向Xに加速度αが作用
した場合は、水平方向に対しては(4)式から、 (m−pV)α=(α/g)Fz=0 なんとなれば、m=pV …(5) が導かれる。従つて、加速度αが水平方向に作用
しても、転輪球1を水平方向に移動させようとす
る力が作用しなくなつて、転輪球1は液槽中央に
釣合つた状態を維持する。
In this state , if acceleration α acts in the horizontal axis direction = pV …(5) is derived. Therefore, even if the acceleration α acts in the horizontal direction, the force that tries to move the wheel ball 1 in the horizontal direction no longer acts, and the wheel ball 1 maintains a balanced state at the center of the liquid tank. do.

≪俯仰傾斜した場合≫ 第3図から、上部反発線輪41の単位円弧辺り
の反発力fbと下部反発線輪42の単位円弧辺りの
反発力faは、垂直方向においては互いに等しく逆
向きの力(右側faz1=左側fbz2,左側faz2=右側
fbz1)が働き、水平方向においては互いに等しく
逆向きの力(右側fax1=左側fbx2,左側fax2=右側
fbx1)が働く。この関係は、転輪球1の垂直軸を
含むいずれの断面においても成立することから、
2つの反発線輪41,42の反発力の垂直方向Z
成分の総和(Fax+Fbx)はゼロとなる。又、転輪
球1が液槽5の中央にあるかぎり水平方向X成分
の総和(Fax+Fbx)はゼロである。故に、俯仰傾
斜時でも2つの反発線輪41,42を設けること
で互いの反発線輪の発生する反発力によつて転輪
球1は中央に絶えず保持されるので、転輪球1は
従来のように横方向に移動することはない。
≪When tilted upwards and downwards≫ From Fig. 3, the repulsive force f b around the unit arc of the upper repulsive wire ring 41 and the repulsive force f a around the unit arc of the lower repulsive wire ring 42 are equal and opposite in the vertical direction. force (right side f az1 = left side f bz2 , left side f az2 = right side
f bz1 ) acts, and in the horizontal direction, forces are equal and opposite to each other (right side f ax1 = left side f bx2 , left side f ax2 = right side)
f bx1 ) works. Since this relationship holds true in any cross section including the vertical axis of the rolling ball 1,
Vertical direction Z of the repulsive force of the two repulsive wire wheels 41 and 42
The sum of the components (F ax + F bx ) is zero. Further, as long as the wheel ball 1 is at the center of the liquid tank 5, the sum of the horizontal X components (F ax +F bx ) is zero. Therefore, even when the two repulsion wheels 41 and 42 are provided, the roller ball 1 is constantly held in the center by the repulsive force generated by the two repulsion wheels even when the roller ball 1 is tilted upward or downward. It does not move horizontally like this.

ところで、本発明は第1図乃至第3図の構造に
限定されるものではない。例えば、第4図の本発
明の他の実施例の図に示すように、1個の反発線
輪43を転輪球球心上に巻回して配置する構成と
しても、反発力は垂直方向Zには作用せず且つ水
平方向X左右の単位円弧辺りの反発力fは互いに
等しく逆向きであるから両者の和は転輪球1が液
槽5の中央にあるかぎりゼロとなるので、上述し
たような外部からの作用が加わつても転輪球は液
槽の中央に保持され続けることができる。
By the way, the present invention is not limited to the structure shown in FIGS. 1 to 3. For example, as shown in the diagram of another embodiment of the present invention in FIG. 4, even if one repulsion wire ring 43 is wound around the ball center of the roller ball and arranged, the repulsion force is generated in the vertical direction Z. , and the repulsive forces f around the unit arc in the horizontal direction Even if such an external action is applied, the rolling ball can continue to be held in the center of the liquid tank.

〈発明の効果〉 以上、実施例と共に具耐的に本発明を説明した
ように、転輪球の垂直軸周りで転輪球の球心上、
又は転輪球の球心で挟んで一対に夫々巻回すよう
に反発線輪を配置した本発明のジヤイロコンパス
によれば、水平加速度が加わつた場合も、転輪球
が俯仰傾斜した場合も、転輪球は横移動すること
が無く転輪球を液槽の中央部に維持(支持)でき
る。故に、転輪球1と液槽6の間の距離δを大き
くとる必要が無いので、電極面積を大きくしなく
とも十分な電力をジヤイロロータJRに供給でき
ると共に発熱を極度に押えることができるので、
小形軽量且つ安価なジヤイロコンパスを製作し提
供することができる。という効果がある。
<Effects of the Invention> As mentioned above, as the present invention has been concretely explained along with the examples, on the spherical center of the rolling ball around the vertical axis of the rolling ball,
Alternatively, according to the gyroscope compass of the present invention, in which the repulsion coils are arranged so as to be wound in pairs between the ball centers of the wheel balls, even when horizontal acceleration is applied or when the wheel ball is tilted upward or downward, , the rolling ball does not move laterally and can be maintained (supported) in the center of the liquid tank. Therefore, since there is no need to increase the distance δ between the wheel ball 1 and the liquid tank 6, sufficient power can be supplied to the wheel rotor JR without increasing the electrode area, and heat generation can be extremely suppressed.
A small, lightweight, and inexpensive gyroscope compass can be manufactured and provided. There is an effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のジヤイロコンパスの構造図、
第2図は水平方向の加速度を受けた時の反発線輪
の反発力を説明するための断面図、第3図は俯仰
傾斜した時の反発線輪の反発力を説明するための
断面図、第4図は本発明の他の実施例を示す図、
第5図は従来のアンシユツツ方式のジヤイロコン
パスの構造図、第6図は先行技術のジヤイロコン
パスの構造図、第7図は第6図の俯仰傾斜時の転
輪球と反発線輪の関係図、第8図はジヤイロコン
パスの電極配置図である。 1…転輪球、2,6…支持液、3,5…液槽。
4,41,42,43…反発線輪。
FIG. 1 is a structural diagram of the gyroscope compass of the present invention.
Fig. 2 is a cross-sectional view for explaining the repulsive force of the repulsive line wheel when it is subjected to acceleration in the horizontal direction, and Fig. 3 is a cross-sectional view for explaining the repulsive force of the repulsive line ring when it is tilted upward and downward. FIG. 4 is a diagram showing another embodiment of the present invention;
Fig. 5 is a structural diagram of a conventional gyroscope compass of the unshitsutsu type, Fig. 6 is a structural diagram of a gyroscope compass of the prior art, and Fig. 7 is a diagram of the rolling ball and repulsion coil during elevation and tilting as shown in Fig. 6. The relationship diagram, FIG. 8, is a diagram showing the electrode arrangement of the gyro compass. 1... Rolling ball, 2, 6... Support liquid, 3, 5... Liquid tank.
4, 41, 42, 43... Repulsion line ring.

Claims (1)

【特許請求の範囲】[Claims] 1 指北の中枢機構である転輪球と、該転輪球を
収納する液槽と、該液槽内に前記転輪球を支持す
る支持液とを具備し、前記支持液の温度変化に伴
う支持液位の高低変化と、該支持液の温度変化に
起因してこの支持液に前記転輪球が水没する体積
変化に伴う転輪球位置の高低変化とを一致させて
転輪球を液槽の垂直方向中央に支持してなるジヤ
イロコンパスであつて、前記転輪球内部に、転輪
球垂直軸に直交する面内で且つ前記垂直軸周りに
巻線した前記液槽材料と反発力が発生する反発線
輪を、転輪球球心を挟んで互いに反対方向に特性
又は反発力を等しくして一対又は前記転輪球の球
心上に1つ配置し、これにより当該転輪球が垂直
方向に支持され且つ前記反発線輪の反発力により
水平方向に液槽の中心に支持され、このときに当
該転輪球に水平加速度が加わつても或は当該転輪
球が俯仰傾斜しても、その状態は液槽中央に釣合
つた状態を維持可能な構成から成ることを特徴と
するジヤイロコンパス。
1. It is equipped with a wheel ball that is the central mechanism of the guide, a liquid tank that stores the wheel ball, and a support liquid that supports the wheel ball in the liquid tank, and that responds to temperature changes in the support liquid. The rolling ball is adjusted by matching the accompanying height change in the support liquid level with the height change in the rolling ball position due to a volume change in which the rolling ball is submerged in the supporting liquid due to a temperature change of the supporting liquid. A gyroscope compass supported in the vertical center of a liquid tank, wherein the liquid tank material is wound inside the wheel ball in a plane perpendicular to the vertical axis of the wheel ball and around the vertical axis. A pair of repulsion wire wheels that generate repulsive force are arranged in opposite directions with equal characteristics or repulsion forces across the center of the ball of the wheel or one on the center of the ball of the wheel. The wheel ball is supported vertically and horizontally at the center of the liquid tank by the repulsive force of the repulsion wire ring, and at this time, even if horizontal acceleration is applied to the wheel ball, or the wheel ball is elevated. A gyroscope compass characterized in that it is constructed so that it can maintain a balanced state at the center of the liquid tank even when tilted.
JP7971685A 1985-04-15 1985-04-15 Gyrocompass Granted JPS61237011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7971685A JPS61237011A (en) 1985-04-15 1985-04-15 Gyrocompass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7971685A JPS61237011A (en) 1985-04-15 1985-04-15 Gyrocompass

Publications (2)

Publication Number Publication Date
JPS61237011A JPS61237011A (en) 1986-10-22
JPH047926B2 true JPH047926B2 (en) 1992-02-13

Family

ID=13697928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7971685A Granted JPS61237011A (en) 1985-04-15 1985-04-15 Gyrocompass

Country Status (1)

Country Link
JP (1) JPS61237011A (en)

Also Published As

Publication number Publication date
JPS61237011A (en) 1986-10-22

Similar Documents

Publication Publication Date Title
US4488431A (en) Wind speed and direction indicator and electric current generating means
EP3542414B1 (en) A stabilization arrangement for stabilization of an antenna mast
JP2005180351A (en) Water surface wind power generating device
US4441375A (en) Gyroscopic instrument
US5588369A (en) Passive stabilization platform
US3673973A (en) Convertible-float floating platform
JPH047926B2 (en)
US4399714A (en) Method and apparatus for overcoming certain destabilizing torques on gyro-stabilized platforms
JP2022528274A (en) Floating water support device
US3722295A (en) Multiple rotation gyroscope with hydrodynamic suspension
KR101451179B1 (en) Floating Type Breakwater, Floating Type Breakwater Structure and Control Method
JPS607202A (en) Stabilizer
JP2019119215A (en) Antimotion device using swirling flow and antimotion method using swirling flow
JP2020026181A (en) Mooring system
JPH0989557A (en) Floating structure body with wave direction follow-up ability
JPS59161101A (en) Stable antenna unit with accelerating moving mass
JPS62292587A (en) Underwater floating body for semi-submerged marine structure
US2431304A (en) Gyro compass instrument
US2878678A (en) Gyroscope
JPS6153514A (en) Gyrocompass
US3568328A (en) Aircraft compass
JP2004225859A (en) Oscillation reducing device
KR20220008663A (en) floating marine structure
SE438647B (en) IN THE WATER PARTY SUBMITABLE FLOAT CONSTRUCTION
JP2021181964A (en) Attitude control device and attitude control method