JPS61237011A - Gyrocompass - Google Patents

Gyrocompass

Info

Publication number
JPS61237011A
JPS61237011A JP7971685A JP7971685A JPS61237011A JP S61237011 A JPS61237011 A JP S61237011A JP 7971685 A JP7971685 A JP 7971685A JP 7971685 A JP7971685 A JP 7971685A JP S61237011 A JPS61237011 A JP S61237011A
Authority
JP
Japan
Prior art keywords
ball
center
liquid tank
liquid
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7971685A
Other languages
Japanese (ja)
Other versions
JPH047926B2 (en
Inventor
Shoichi Kogure
晶一 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP7971685A priority Critical patent/JPS61237011A/en
Publication of JPS61237011A publication Critical patent/JPS61237011A/en
Publication of JPH047926B2 publication Critical patent/JPH047926B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Toys (AREA)
  • Support Of Aerials (AREA)

Abstract

PURPOSE:To maintain a track roller sphere at the center of a liquid tank even if it is subjected to horizontal acceleration and elevating as well as diving motions, by arranging a pair of repulsion coils embracing the spherical center of track roller sphere around the vertical axis of track roller sphere (or one coil on the spherical center). CONSTITUTION:A pair of repulsion coils 41, 42 are installed embracing spherical center Q around a vertical axis 2 on a track roller sphere 1 provided with a gyrorotor JR. Supporting liquid 6 is contained inside a liquid tank 5 and by the buoyancy rhoVg of the supporting liquid, the weight mg of the track roller sphere 1 is supported. When the sphere 1 is located at the center of the liquid tank, vertical forces Faz and Fbz generated in the repulsion coils 41, 42 compensate horizontal forces Fax and Fbx respectively. Then,the track roller sphere 1 can be kept at the center of the liquid tank, even if the track roller sphere 1 is subjected to horizontal acceleration or elevating and diving motions.

Description

【発明の詳細な説明】 〈産業上の利用分野、〉 本発明は、船舶等に用いられる方位検出装置であるジャ
イロコンパスに係り、特に外部から傾斜。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a gyro compass, which is an azimuth detecting device used in ships, etc.

旋回、・振動及び衝撃の影響を受けないように支持され
ている指北の中枢機構である転輪球を、液槽の中心に摩
擦無く傾斜・旋回自由に支持する構成のジャイロコンパ
スの改良に関する。
Regarding the improvement of a gyro compass that has a configuration in which the rotating ball, which is the central mechanism of the pointing wheel and is supported so as not to be affected by vibrations and shocks, is supported in the center of the liquid tank so that it can tilt and rotate freely without friction. .

〈従来の技術〉 以下、図面に基づいて従来の技術を説明する。<Conventional technology> Hereinafter, the conventional technology will be explained based on the drawings.

第5図は従来のアンシュツツ方式のジャイロコンパスの
構造図である。
FIG. 5 is a structural diagram of a conventional Anschutz type gyro compass.

第5図において、1は指北の中枢機構である内部に高速
で回転するジャイロロータJRを有する転輪球、2は転
輪球1を支持する支持液、Pは支持液2を回流(記号を
Fとする)させ水流の力で転輪球1を液槽5の中心点に
傾斜や旋回が自由となるように支持・浮上させる目的で
設けられた遠心ポンプ、Sは回流Fを整流する整流板、
3は転輪球1.支持液2.遠心ポンプP及び整流板Sを
収納゛する液槽である。
In Fig. 5, 1 is a rolling ball having a gyro rotor JR inside which rotates at high speed, which is the central mechanism of the guide, 2 is a support liquid that supports the rolling ball 1, and P is a circulation (symbol) for supporting liquid 2. S is a centrifugal pump provided for the purpose of supporting and floating the wheel ball 1 to the center point of the liquid tank 5 so that it can tilt and turn freely by the force of the water flow. S rectifies the circulating flow F. rectifier,
3 is a rolling ball 1. Support liquid 2. This is a liquid tank that houses a centrifugal pump P and a rectifying plate S.

ところでこのジャイロコンパスは、 (A):転輪球1は、支持液2のゆっくりした回流Fと
、支持液2の比重でほぼ液槽3の中央に支持されるが、
支持液2の比重が変動すると転輪球1の位置は不安定な
状態となる。いいかえれば、この構造は、摩擦の少ない
構造として非常に優れた支持方法であるが、温度変化に
よる支持液2の比重(一体積)変化をな(すため、波瀾
を一定値に濃度−制御装置を用いて保持する必要がある
。□このため装置全体が大型化し高価となる。
By the way, in this gyro compass, (A): The wheel ball 1 is supported almost at the center of the liquid tank 3 by the slow circulation F of the support liquid 2 and the specific gravity of the support liquid 2.
When the specific gravity of the support liquid 2 fluctuates, the position of the rolling ball 1 becomes unstable. In other words, this structure is an excellent support method as it has a low friction structure, but in order to prevent the specific gravity (one volume) of the support liquid 2 from changing due to temperature changes, a concentration control device is used to keep the ripples at a constant value. □This makes the entire device large and expensive.

(B):転輪球1は、例えば事故等で電源が瞬時でも遮
断すると回流Fが無(なるので、破lit aで示すよ
うに沈下して整流板Sに当る。このため転輪球1の方向
性(指北性)が失われ、ジャイロコンパスとしての機能
がだめになる。そしてこの機能の回復は、時間がかかる
。従って、短時間の停電でもジャイロコンパスにとって
は致命的に打撃となる。
(B): If the power supply is cut off even momentarily due to an accident, for example, the rolling ball 1 will have no circulation F, so it will sink and hit the rectifying plate S as shown in broken lit a.For this reason, the rolling ball 1 The directionality (northernity) is lost, and the function as a gyro compass is impaired.Recovering this function takes time.Therefore, even a short power outage can be a fatal blow to the gyro compass. .

という問題がある。There is a problem.

く先行技術〉 本願出願人は、この問題を解決するために特願昭59−
175794号「ジャイロコンパス」を出願した(以下
「先行技術」という)。このジャイロコンパスの特徴は
、支持液の温度変化に伴う比重(一体積)の変化を積極
的に利用し、かつ短時間の電源中断に対する耐性を向上
させ、高精度な方位出力を得る構造としたものである。
Prior art> In order to solve this problem, the applicant of the present application filed a patent application filed in 1983-
No. 175794 "Gyro Compass" was filed (hereinafter referred to as "prior art"). The features of this gyro compass are that it actively utilizes changes in specific gravity (one volume) due to changes in the temperature of the support liquid, and has a structure that improves resistance to short power interruptions and provides highly accurate azimuth output. It is something.

以下、この先行技術を第6図のジャイロコンパスの構造
図を用いて説明する。
This prior art will be explained below using the structural diagram of a gyro compass shown in FIG.

第6図において、4は転輪球1の内部に設置され反発力
を発生する反発線輪、5はここではアルミ類から成る液
槽、6は転輪球1の頭頂部1bが液面8と同−向上に又
は頭頂部1bを液[8上に出すために比重が調整された
支持液、9は温度変化等で変化した場合の液面8の変化
液面である。
In FIG. 6, numeral 4 is a repulsion coil installed inside the wheel ball 1 and generates a repulsive force, 5 is a liquid tank made of aluminum, and 6 is a liquid level 8 where the top 1b of the wheel ball 1 is at the liquid level. A support liquid whose specific gravity is adjusted in order to bring the top of the head 1b above the liquid [8], and 9 is the liquid level that changes when the liquid level 8 changes due to a change in temperature or the like.

今、支持液6は、温度Toで転輪球1の中心Oからの液
面8の液位が”Or支持液6の比重ρ0゜体積Voであ
ったとする。これが、温度がT1に上昇した時、支持液
6の比重がρ39体積がvlに膨張し液位がhlに上昇
したとする。このとき転輪球1の受ける浮力は、最初は
「ρoX支持液B中の転輪球1の体¥1liJであり、
変化後は「ρl×支持液6中の転輪球1の体積」となる
。ここで、液ft15の内側の半径をR+、転輪球1の
外側の半径をR2とすると、支持液6の体積変化(液の
膨張分)は、 V+   Vo− π (R+  2−R22>   (h+  −ho 
 )  ”(1)となる。又、転輪球1の質量をmとす
ると、m=ρ+ π(R12h+   (h+ 3/3
)+2R+’/3)  ・・・(り となる。尚、温度により転輪球1の半径R2及び液槽5
の内径R1も変化するがここでは説明を簡単にするため
に一定とする。(2)式からり、を求め(h、)は既知
)(1)式に代入して液495の内径R3を決定する(
比重ρ。9体積■o、比重ρ19体積V、はそれぞれ指
定温度に基づいて決定される値)。このようにして決定
された液槽5の内径R1によれば、転輪球1の液槽5に
対する上下位置はほとんど変化しないことが判る。
Now, assume that the supporting liquid 6 is at a temperature To and the liquid level 8 from the center O of the wheel ball 1 is ``Or'' with a specific gravity ρ0° and a volume Vo of the supporting liquid 6. This means that when the temperature rises to T1. At this time, assume that the specific gravity of the support liquid 6 is ρ39, the volume expands to vl, and the liquid level rises to hl.At this time, the buoyant force that the rolling ball 1 receives is initially ``ρoX of the rolling ball 1 in the supporting liquid B. The body is ¥1liJ,
After the change, it becomes "ρl×volume of rolling ball 1 in support liquid 6". Here, if the inner radius of the liquid ft15 is R+ and the outer radius of the wheel ball 1 is R2, the volume change of the support liquid 6 (expansion of the liquid) is V+ Vo- π (R+ 2-R22> ( h+ -ho
) ”(1).Also, if the mass of the rolling ball 1 is m, then m=ρ+ π(R12h+ (h+ 3/3
)+2R+'/3)...
Although the inner diameter R1 also changes, it is assumed to be constant here to simplify the explanation. From equation (2), find (h, ) is known) and substitute it into equation (1) to determine the inner diameter R3 of the liquid 495 (
Specific gravity ρ. 9 volume ■o and specific gravity ρ19 volume V are values determined based on the specified temperature, respectively). According to the inner diameter R1 of the liquid tank 5 determined in this way, it can be seen that the vertical position of the rolling ball 1 with respect to the liquid tank 5 hardly changes.

ところで、転輪球1が液槽5の中央にある時に反発線輪
4の円周上に一様に分布しかつ方向が転輪球1の球心に
尚う反発力の単位円弧辺りの反発力をfとすると、反発
力fの総和の垂直方向Z成分は上向きに働くほか、転輪
球1が液槽5の中央にあるかぎり反発力fの総和の水平
方向X成分FXはゼロである。
By the way, when the wheel ball 1 is at the center of the liquid tank 5, the repulsion around the unit arc of the repulsive force is uniformly distributed on the circumference of the repulsion wire 4 and the direction is toward the center of the wheel ball 1. If the force is f, the vertical Z component of the total repulsive force f acts upward, and as long as the rolling ball 1 is in the center of the liquid tank 5, the horizontal X component FX of the total repulsive force f is zero. .

今、浮力なρvQ1転輪球1に働く重さをmgとすると
、 ρVQ十Fz−mQ −’−(m−1) V ) Q −F z      
   ・・・(3)なる関係が成立して転輪球1を中央
部分に安定に保つ。但し、ρは支持液の密度、■は水没
している転輪球の体積、9は重力加稗度、mは転輪球1
の質量とする。
Now, if the weight acting on the buoyant ρvQ1 rolling ball 1 is mg, then ρVQ10Fz−mQ −′−(m−1) V ) Q −F z
The following relationship (3) is established, and the rolling ball 1 is kept stably in the center. However, ρ is the density of the supporting liquid, ■ is the volume of the submerged wheel ball, 9 is the gravity weight, and m is the wheel ball 1.
Let the mass be .

〈発明が解決しようとする問題点〉 ところで、この先行技術のジャイロコンパスは、■:船
舶の急加速等によってシャイ、ロコンパスに水平方向χ
の加速度αが作用すると、転輪球1の慣性力としてmα
が作用し、これと反対方向に水平横方向の浮力ρ■αが
作用する。故に、mα−ρ■α厘 (m−ρ■)α−(α/Q>Fz  ・・・(4)の力
が転輪球1の作用する(慣性力mαと浮力ρVαが互い
に等しく逆であれば作用しないが)ことになる。一方、
反発線輪4の反発力は、反発線輪4と液槽5との間隙距
離に逆比例するもので、距離が近くなれば反発力は強く
、距離が遠くなれば反発力は弱くなる。そこで、(4)
式の(α/Q)Fzの力により転輪球1は水平方向に移
動するが、この移動にともない移動方向の間隙距離は近
くなり反発力は強くなる。又、移動方向と反対側の反発
力は弱くなるため、反発力の総和の水平方向χ成分Fx
は転輪球1を液槽5の中心に押し戻す力として作用する
。以上から、転輪球1は力(α7g)Fzと反発力の総
和の水平方向χ成分Fxとが等しくなる位置まで第6図
においては左へ横移動し、加速度αが大きい場合には転
輪球1と液槽5がぶつかることになる。
<Problems to be Solved by the Invention> By the way, the gyro compass of this prior art has problems such as ■: shyness due to sudden acceleration of the ship, etc.
When the acceleration α acts, the inertial force of the rolling ball 1 is mα
acts, and a horizontal lateral buoyant force ρ■α acts in the opposite direction. Therefore, the force of mα−ρ■α厘(m−ρ■)α−(α/Q>Fz...(4) is exerted by the rolling ball 1 (inertia force mα and buoyancy force ρVα are equal and opposite to each other) On the other hand,
The repulsive force of the repulsive wire ring 4 is inversely proportional to the gap distance between the repulsive wire ring 4 and the liquid tank 5, and the closer the distance is, the stronger the repulsive force is, and the farther the distance is, the weaker the repulsive force is. Therefore, (4)
The rolling ball 1 moves in the horizontal direction due to the force of (α/Q)Fz in the equation, but with this movement, the gap distance in the moving direction becomes shorter and the repulsive force becomes stronger. Also, since the repulsive force on the side opposite to the moving direction becomes weaker, the horizontal χ component Fx of the total repulsive force
acts as a force that pushes the rolling ball 1 back to the center of the liquid tank 5. From the above, the rolling wheel ball 1 moves laterally to the left in Fig. 6 until the force (α7g) Fz is equal to the horizontal χ component Fx of the total repulsive force, and if the acceleration α is large, the rolling wheel ball 1 moves laterally to the left in Fig. 6. The ball 1 and the liquid tank 5 will collide.

■:ジャイロコンパスの起動後、転輪球1は垂直軸7周
りの振揺(方位変化)と、水平軸周りの振揺(俯仰傾斜
)を行いつつやがて静定(北に向き且つ水平になる)す
る。第7図はこの静定過程において転輪球1が俯仰傾斜
した場合の反発線輪4と液槽5の関係図である。ここか
ら、転輪球1が、転輪球の水平軸(紙面に直交する軸)
の垂直軸周りに俯仰傾斜すると、左側(β)の反発力の
水平分力f’x+は減少し、右側(γ)の反発力の水平
分力fX2は増加する。そこで転輪球1は右から押され
て左に横移動するが、この移動にともない右側(γ)の
間隙距離は遠くなり反発力は弱く(減少)なる。又、左
側(β)の間隙距離はわずかながら近くなり反発力は強
く(増加)なる。以上から転輪球1が俯仰傾斜すると、
反発力の水平方向χ成分Fxがゼロになる位置まで横移
動し、俯仰傾斜が大きい場合には転輪球1と液槽5が衝
突することになる。という現象が発生する。
■: After starting the gyro compass, the wheel ball 1 swings around the vertical axis 7 (change in direction) and around the horizontal axis (tilts in elevation), and eventually becomes static (facing north and becoming horizontal). )do. FIG. 7 is a diagram showing the relationship between the repulsion wheel 4 and the liquid tank 5 when the wheel ball 1 is tilted upward or downward during this static determination process. From here, the rolling ball 1 is the horizontal axis of the rolling ball (the axis perpendicular to the plane of the paper).
When tilting up and down around the vertical axis, the horizontal component of the repulsive force f'x+ on the left side (β) decreases, and the horizontal component of the repulsive force fX2 on the right side (γ) increases. The rolling ball 1 is then pushed from the right and moves laterally to the left, but with this movement, the gap distance on the right side (γ) becomes longer and the repulsive force becomes weaker (reduced). Also, the gap distance on the left side (β) becomes slightly closer, and the repulsive force becomes stronger (increases). From the above, when the rolling ball 1 is tilted upward and downward,
If the ball moves laterally to a position where the horizontal χ component Fx of the repulsive force becomes zero and the elevation and inclination is large, the rolling ball 1 and the liquid tank 5 will collide. This phenomenon occurs.

第8図はジャイロロータJRに電源を供給する電極の配
置図である。この第8図は、転輪球1側に帯状電極11
と皿状電極12が、液槽5側にこれに対向する帯状電極
51と皿状電極52が夫々設けられて、ジャイロロータ
JRはこれ等帯状電極11.51と皿状電極12.52
と導電性の支持液6を介して電源Eが通電されて回転す
ることを表わす。
FIG. 8 is a layout diagram of electrodes that supply power to the gyro rotor JR. FIG. 8 shows a strip electrode 11 on the side of the rolling ball 1.
and a dish-shaped electrode 12, and a strip-shaped electrode 51 and a dish-shaped electrode 52 are respectively provided on the side of the liquid tank 5, which are opposed to the dish-shaped electrode 12.
This indicates that the power source E is energized through the conductive support liquid 6 to rotate.

この構造において、上記した■、■の現象によっても転
輪球1と液槽5が衝突しないようにするためには、転輪
球1と液槽5の間隙距離δを大きくとり、転輪球1が横
移動できる余裕を確保すべきところであるが、間隙距離
δを大きくとると、転輪球1と液WI5の電極間(11
対51.12対52)の支持液6の体積抵抗が大きくな
るためジャイロロータJRに十分な電力を供給すること
が困難になるほか、支持液6に流れる電流の電圧隣下に
ともなう発熱が大きくなる。この体積抵抗を減らすため
には対向する電極の面積を大きくすることが有効である
が、只単に面積を大きくすると液槽5の電極間(51対
52)の距離が短くなり、リークが増加し発熱が増加す
るため転輪球1の直径を大きくしないかぎり電極の面積
を大きくすることはできない。又、液槽5の電極財(5
1対52)の支持液6の体積抵抗は転輪球1の直径には
係りがなく間隙距離δに逆比例する。従って間隙距離δ
を大きくすると、液槽5の電極間の支持液6の体積抵抗
は小さくなり、必然的にリークが大きくなり発熱が増加
する。そこで、転輪球1が横移動することを考慮して十
分な電力をジャイロロータJRに供給しつつ発熱を押え
るためには、転輪球1と液槽5の間の距離δを太き(と
ると共に転輪球1の直径を大きくして電極面積を大きく
する必要がある。
In this structure, in order to prevent the rolling ball 1 and the liquid tank 5 from colliding due to the phenomena described in (1) and (2), the gap distance δ between the rolling ball 1 and the liquid tank 5 must be set large. 1 should be secured for horizontal movement, but if the gap distance δ is set large, the distance between the roller ball 1 and the electrode of the liquid WI5 (11
Since the volume resistance of the support liquid 6 (vs. 51, 12 vs. 52) increases, it becomes difficult to supply sufficient power to the gyro rotor JR, and heat generation increases as the voltage of the current flowing through the support liquid 6 decreases. Become. In order to reduce this volume resistance, it is effective to increase the area of the opposing electrodes, but simply increasing the area shortens the distance between the electrodes (51 vs. 52) in the liquid tank 5, increasing leakage. Since heat generation increases, the area of the electrode cannot be increased unless the diameter of the rolling ball 1 is increased. In addition, the electrode goods (5
The volume resistance of the support liquid 6 (1:52) is independent of the diameter of the rolling ball 1 and is inversely proportional to the gap distance δ. Therefore, the gap distance δ
When is increased, the volume resistance of the support liquid 6 between the electrodes of the liquid tank 5 becomes smaller, which inevitably increases leakage and heat generation. Therefore, in order to suppress heat generation while supplying sufficient power to the gyro rotor JR in consideration of the horizontal movement of the wheel ball 1, the distance δ between the wheel ball 1 and the liquid tank 5 must be increased ( At the same time, it is necessary to increase the diameter of the rolling ball 1 to increase the electrode area.

従って装置全体を大型化する必要があるので高価となる
Therefore, it is necessary to increase the size of the entire device, which makes it expensive.

本発明はこの従来技術の問題点に鑑みてなされたもので
あって、転輪球1に水平加速度が加わっても、転輪球1
が俯仰傾斜しても、転輪球の横移動がゼロになるような
構成として電極面積を大きくすることなく十分な電力の
供給を可能とし、且つ装置を小形化したジャイロコンパ
スを提供することを目的とする。
The present invention has been made in view of the problems of the prior art, and even if horizontal acceleration is applied to the rolling ball 1, the rolling ball
To provide a gyro compass which is configured such that the lateral movement of the wheel ball is zero even when the gyro compass is elevated or tilted, and which enables the supply of sufficient power without increasing the electrode area, and which has a compact device. purpose.

く問題点を解決するための手段〉 上述の目的を達成するための本発明のジャイロコンパス
は、反発線輪の発生する反発力が転輪球の垂直軸方向と
水平軸方向に作用して、これ等互いに発生する反発力同
士で打消しあって常に転輪球を中央に位置させるように
、反発線輪を転輪球の垂直軸と直交する面内で且つ垂直
軸周りに、転輪球の球心を挟んで一対として夫々巻回す
か、又は、転輪球の球心上に1つ巻回すかしたことを特
徴とするものである。
Means for Solving the Problems> In order to achieve the above-mentioned object, the gyro compass of the present invention has a gyro compass in which the repulsion force generated by the repulsion coil acts in the vertical axis direction and horizontal axis direction of the wheel ball. In order to cancel out the repulsive forces generated by each other and always keep the rolling ball at the center, move the repulsion line within a plane orthogonal to the vertical axis of the rolling ball and around the vertical axis. It is characterized by being wound as a pair with the ball center of the ball in between, or by winding one ball around the ball center of the rolling ball.

〈実施例〉 以下、本発明の実施例を図面に基づき詳細に説明する。<Example> Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

尚、以下の図面において、第5図乃至第9図と重複する
部分は同一番号を付してその説明は省略する。
In the following drawings, parts that overlap with those in FIGS. 5 to 9 are given the same numbers, and their explanations will be omitted.

第1図は本発明のジャイロコンパスの構造図である。FIG. 1 is a structural diagram of the gyro compass of the present invention.

第1図において、41は上部反発線輪、42は下部反発
線輪であり、この下部反発線輪41と下部反発線輪42
は、転輪球1の内部の垂直軸2周りで、転輪球球心Qに
対して互いに反対方向に特性又は反発力を等しくして一
対に夫々巻回されて配置されている。尚、ここでいう一
対とは、例えば上部と下部の反発線輪の数がアンバラン
スであっても互いの特性又は反発力が等しくなるもので
あれば、これも一対として扱うものとする。
In FIG. 1, 41 is an upper repulsion wire ring, and 42 is a lower repulsion wire ring.
are respectively wound in pairs around the vertical axis 2 inside the wheel ball 1 in opposite directions with respect to the ball center Q of the wheel ball 1 with equal characteristics or repulsive forces. Incidentally, the term "pair" as used herein means that even if the number of upper and lower repulsion rings is unbalanced, if the mutual characteristics or repulsion forces are equal, then this is also treated as a pair.

転輪球1が垂直方向に支持され、且つ反発線輪の反発力
(水平方向分力)により水平方向に転輪球1が液槽5の
中心にもともとある状態で支持される構成において、上
部、下部反発線輪41.42を配置することで、従来の
技術のような問題が発生しないことを第2図、第3図を
用いて説明する。
In a configuration in which the wheel ball 1 is supported in the vertical direction, and the wheel ball 1 is supported in the horizontal direction by the repulsive force (horizontal component force) of the repulsion coil in a state where the wheel ball 1 is originally located at the center of the liquid tank 5, the upper 2 and 3, it will be explained that by arranging the lower repulsion wheels 41 and 42, the problem unlike the conventional technology does not occur.

第2図は水平方向に加速度を受けた時の反発線輪の反発
力を説明するための断面図、第3図は俯仰傾斜に対する
反発線輪の反発力を説明するための断面図である。
FIG. 2 is a cross-sectional view for explaining the repulsive force of the repulsion wire when it is subjected to acceleration in the horizontal direction, and FIG. 3 is a cross-sectional view for explaining the repulsive force of the repulsion wire against elevation and inclination.

(水平方向に加速度が加わった場合) 第2図から、下部反発線輪41の単位円弧辺りの反発力
fbの垂直成分の総和Fbzと下部反発線輪42の単位
円弧辺りの反発力fa(F)垂直成分の総和Faxは互
いに等しく逆向きであるから、両者の和(Fbz+Fi
iz)はゼロとなる。従って、垂直方向には(3)式に
基づく故に、m−ρVとなって転輪球1が液槽中央に釣
合った状態となる。同じく、下部反発線輪41の単位円
弧辺りの反発力fbの水平成分の総和Fbxと下部反発
線輪42の単位円弧辺りの反発力fI&の水平成分の総
和Faxはいずれも転輪球1が液槽5の中央にあるかぎ
りゼロとなって水平方向にも転輪球1が液槽中央に釣合
った状態となる。つまり転輪球1の見掛は上の重さはゼ
ロとなる。
(When acceleration is applied in the horizontal direction) From FIG. ) The total sum of vertical components Fax is equal and opposite to each other, so the sum of both (Fbz+Fi
iz) becomes zero. Therefore, in the vertical direction, since it is based on equation (3), m-ρV is established, and the rolling ball 1 is balanced at the center of the liquid tank. Similarly, the total sum Fbx of the horizontal component of the repulsive force fb around the unit arc of the lower repulsive wire ring 41 and the sum Fax of the horizontal component of the repulsive force fI& around the unit arc of the lower repulsive wire ring 42 are both As long as it is at the center of the tank 5, it becomes zero and the rolling ball 1 is balanced in the center of the tank in the horizontal direction as well. In other words, the apparent weight of the rolling ball 1 is zero.

この状態の時に水平軸方向χに加速度αが作用した場合
は、水平方向に対しては(4)式から、(m−ρV)α
−(α/g)Fz−0 なんとなれば、m−ρV        ・・・(5)
が導かれる。従って、加速度αが水平方向に作用しても
、転輪球1を水平方向に移動させようとする力が作用し
なくなって、転輪球1は液槽中央に釣合った状態を維持
する。
In this state, if acceleration α acts in the horizontal axis direction χ, then from equation (4) in the horizontal direction, (m-ρV)α
-(α/g)Fz-0 If anything, m-ρV...(5)
is guided. Therefore, even if the acceleration α acts in the horizontal direction, the force that tries to move the wheel ball 1 in the horizontal direction does not act, and the wheel ball 1 maintains a balanced state at the center of the liquid tank.

(俯仰傾斜した場合) 第3図から、下部反発線輪41の単位円弧辺りの反発力
fbと下部反発線輪42の単位円弧辺りの反発力ずaは
、垂直方向においては互いに等しく逆向きの力(右側f
’azt−左側f b Z 2 *左側fa2!2−右
側fbz+)が働き、水平方向においては互いに等しく
逆向きの力(右側faXl−左側fb X 2 *左側
faX2−右側fbXl)が働く。この関係は、転輪球
1の垂直軸を含むいずれの断面においても成立すること
から、2つの反発線輪41.、42の反発力の垂直方向
Z成分の総和(Fax+Fbz)はゼロとなる。又、転
輪球1が液槽5の中央にあるかぎり水平方向χ成分の総
和(Fax+Fbx)はゼロである。故に、俯仰傾斜時
でも2つの反発線輪41.42を設けることで互いの反
発線輪の発生する反発力によって転輪球1は中央に絶え
ず保持されるので、転輪球1は状来のように横方向に移
動することはない。
(In the case of elevation and tilt) From Fig. 3, it can be seen that the repulsive force fb around the unit arc of the lower repulsive wire ring 41 and the repulsive force a around the unit arc of the lower repulsive wire ring 42 are equal and opposite in the vertical direction. Force (right side f
'azt - left side f b Z 2 * left side fa2!2 - right side fbz+), and in the horizontal direction, forces that are equal and opposite to each other (right side faXl - left side fb X 2 * left side faX2 - right side fbXl) work. Since this relationship holds true in any cross-section including the vertical axis of the rolling wheel ball 1, the two repulsive wire wheels 41. , 42, the sum of the vertical Z components (Fax+Fbz) is zero. Further, as long as the wheel ball 1 is at the center of the liquid tank 5, the sum of the horizontal χ components (Fax+Fbx) is zero. Therefore, even when the two repulsion wheels 41 and 42 are provided, the wheel ball 1 is constantly held in the center by the repulsive force generated by the two repulsion wheels, even when the wheel ball 1 is tilted upward or downward. It does not move laterally like this.

ところで、本発明は第1図乃至第3図の構造に限定され
るものではない。例えば、第4図の本発明の他の実施例
の図に示すように、1個の反発線輪43を転輪球球心上
に巻回して配置する構成としても、反発力は垂直方向Z
には作用せず且つ水平方向χ左5右の単位円弧辺り反発
力fは互いに等しく逆向き・であるから両者の和は転輪
球1が液[5の中央にあるかぎりゼロとなるので、上述
したような外部からの作用が加わっても転輪球は液槽の
中央に保持され続けることができる。
By the way, the present invention is not limited to the structure shown in FIGS. 1 to 3. For example, as shown in the diagram of another embodiment of the present invention in FIG. 4, even if one repulsion wire ring 43 is wound around the ball center of the roller ball and arranged, the repulsion force is generated in the vertical direction Z.
does not act on the horizontal direction χ, and the repulsive forces f around the unit arc in the left and right directions are equal and opposite to each other, so the sum of both is zero as long as the rolling ball 1 is in the center of the liquid [5]. Even if the above-mentioned external action is applied, the rolling ball can continue to be held in the center of the liquid tank.

〈発明の効果〉 以上、実施例と共に具体的に本発明を説明したように、
転輪球の垂直軸周りで転輪球の球心上、又は転輪球の球
心を挟んで一対に夫々巻回すように反発線輪を配置した
本発明のジャイロコンパスによれば、水平加速度が加わ
った場合も、転輪球が俯仰傾斜した場合も、転輪球は横
移動することが無く転輪球を液槽の中央部に維持(支持
)できる。故に、転輪球1と液I6の間の距離δを大き
くとる必要が無いので、電極面積を大きくしなくとも十
分な電力をジャイロロータJRに供給できると共に発熱
を極度に押えることができるので、小形軽量且つ安価な
ジャイロコンパスを製作し提供することができる。とい
う効果がある。
<Effects of the Invention> As described above, the present invention has been specifically explained along with the examples.
According to the gyro compass of the present invention, in which the repulsion wires are arranged so as to be wound around the vertical axis of the rolling ball, on the center of the rolling ball, or in a pair with each other sandwiching the ball center of the rolling ball, the horizontal acceleration Even when the roller ball is tilted upward or downward, the roller ball does not move laterally and can be maintained (supported) in the center of the liquid tank. Therefore, since there is no need to increase the distance δ between the wheel ball 1 and the liquid I6, sufficient power can be supplied to the gyro rotor JR without increasing the electrode area, and heat generation can be suppressed to an extreme. A small, lightweight, and inexpensive gyro compass can be manufactured and provided. There is an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のジャイロコンパスの構造図、第2図は
水平方向の加速度を受けた時の反発線輪の反発力を説明
するための断面図、第3図は俯仰傾斜した時の反発線輪
の反発力を説明するための断面図、第4図は本発明の他
の実施例を示す図、第5図は従来のアンシュツツ方式の
ジャイロコンパスの構造図、第6図は先行技術のジャイ
ロコンパスの構造図、第7図は第6図の俯仰傾斜時の転
輪球と反発線輪の関係図、第8図はジャイロコンパスの
電極配置図である。 1・・・転輪球、2.6・・・支持液、3.5川液槽。 4 、41.42.43・・・反発線輪。 第31 第5図 第6m
Fig. 1 is a structural diagram of the gyro compass of the present invention, Fig. 2 is a cross-sectional view to explain the repulsive force of the repulsion line wheel when it is subjected to horizontal acceleration, and Fig. 3 is a repulsion when it is tilted. 4 is a cross-sectional view for explaining the repulsive force of the wire, FIG. 4 is a diagram showing another embodiment of the present invention, FIG. 5 is a structural diagram of a conventional Anschutz type gyro compass, and FIG. 6 is a diagram of the prior art. FIG. 7 is a diagram showing the structure of the gyro compass, FIG. 7 is a diagram showing the relationship between the rolling ball and the repulsion wheel when the gyro compass is tilted upward and downward as shown in FIG. 6, and FIG. 8 is a diagram showing the electrode arrangement of the gyro compass. 1... Rolling ball, 2.6... Support liquid, 3.5 River liquid tank. 4, 41.42.43... Repulsion line ring. 31 Figure 5 6m

Claims (1)

【特許請求の範囲】[Claims] 指北の中枢機構である転輪球と、該転輪球を収納する液
槽と、該液槽内に前記転輪球を支持する支持液とを具備
してなるジャイロコンパスにおいて、転輪球内部に、前
記転輪球を前記液槽の中央に保持する反発力を発生する
反発線輪を、前記転輪球の垂直軸と直交する面内で且つ
前記垂直軸周りに、前記転輪球の球心を挟んで一対又は
前記転輪球の球心上に1つ配置したこと、を特徴とする
ジャイロコンパス。
In a gyro compass comprising a wheel ball which is the central mechanism of the pointing wheel, a liquid tank that stores the wheel ball, and a support liquid that supports the wheel ball in the liquid tank, the wheel ball A repulsion coil that generates a repulsive force that holds the roller ball in the center of the liquid tank is installed inside the roller ball, and the roller wheel is disposed within a plane orthogonal to the vertical axis of the roller ball and around the vertical axis. A gyro compass, characterized in that a pair of gyro compasses are disposed on both sides of the spherical center of the gyro compass, or one gyro compass is arranged on the spherical center of the rotating ball.
JP7971685A 1985-04-15 1985-04-15 Gyrocompass Granted JPS61237011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7971685A JPS61237011A (en) 1985-04-15 1985-04-15 Gyrocompass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7971685A JPS61237011A (en) 1985-04-15 1985-04-15 Gyrocompass

Publications (2)

Publication Number Publication Date
JPS61237011A true JPS61237011A (en) 1986-10-22
JPH047926B2 JPH047926B2 (en) 1992-02-13

Family

ID=13697928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7971685A Granted JPS61237011A (en) 1985-04-15 1985-04-15 Gyrocompass

Country Status (1)

Country Link
JP (1) JPS61237011A (en)

Also Published As

Publication number Publication date
JPH047926B2 (en) 1992-02-13

Similar Documents

Publication Publication Date Title
US6263160B1 (en) Stabilized platform systems for payloads
US1743533A (en) Gyroscope supporting and centering apparatus
Schmidt Magnetohydrodynamics of an active region
JPS61237011A (en) Gyrocompass
US3722295A (en) Multiple rotation gyroscope with hydrodynamic suspension
JP7026935B2 (en) Anti-vibration device using swirling flow and anti-vibration method using swirling flow
KR20220008663A (en) floating marine structure
US7637022B2 (en) Damping system and method for a pendulously supported crossline generator
US2431304A (en) Gyro compass instrument
JPS6153514A (en) Gyrocompass
US3855711A (en) Gyrocompass
US4517750A (en) Vertical indicating method and device
JP7516857B2 (en) Attitude control device and attitude control method
US2878678A (en) Gyroscope
JPS6271307A (en) Antenna stabilizer
US20130305823A1 (en) Gyroscope
GB772432A (en) Gyroscopic instruments
JPH10129585A (en) Anti-rolling device
US3568328A (en) Aircraft compass
GB2025616A (en) Magnetic compass
JPH086257Y2 (en) Gyro compass
JPS5938150B2 (en) Floating roof balancing device for tank earthquake resistance
US1273759A (en) Gyroscopic compass for ships.
JPS5873808A (en) Control system for attitude of gyroglobe in gyrocompass
USRE19338E (en) Automatic steering mechanism