JPH0479161A - Manufacture of platinum alloy catalyst - Google Patents

Manufacture of platinum alloy catalyst

Info

Publication number
JPH0479161A
JPH0479161A JP2194351A JP19435190A JPH0479161A JP H0479161 A JPH0479161 A JP H0479161A JP 2194351 A JP2194351 A JP 2194351A JP 19435190 A JP19435190 A JP 19435190A JP H0479161 A JPH0479161 A JP H0479161A
Authority
JP
Japan
Prior art keywords
platinum
carried
catalyst
auxiliary component
platinum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2194351A
Other languages
Japanese (ja)
Inventor
Akitoshi Seya
瀬谷 彰利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2194351A priority Critical patent/JPH0479161A/en
Publication of JPH0479161A publication Critical patent/JPH0479161A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Abstract

PURPOSE:To produce platinum alloy catalyst excellent in characteristics and reliability by allowing platinum acting as a major component to be carried by a carbon catalyst carrier at its surface, and also allowing an auxiliary component to be then carried thereby, alloying carried platinum with the auxiliary component by means of heat treatment, and thereby removing the auxiliary component which has not be reacted. CONSTITUTION:Platinum acting as a major component is carried by a carbon catalyst carrier 2 at its surface in a first process, an auxiliary component for example, iron is carried by a carbon catalyst carrier 2 at its surface in a second process, and both carried platinum and the carried auxiliary component, that is, iron are alloyed by means of heat treatment through an oxygen free furnace thereafter, so that the auxiliary component which has not been reacted, is thereby removed. By this constitution, phosphide is not generated, which blocks the dispersion of reaction gas in an electrode catalyst layer 5 or lowers water repellency, and phospholic acid type fuel cell can thereby be provided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は燃料電池用白金合金触媒の製造方法に係り、
特に燃料電池特性と信鎖性に優れる白金合金触媒の製造
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a method for producing a platinum alloy catalyst for fuel cells,
In particular, it relates to a method for producing a platinum alloy catalyst that has excellent fuel cell properties and reliability.

〔従来の技術〕[Conventional technology]

燃料電池は燃料の持つ化学エネルギーを直接電気エネル
ギーに変換するものであり、その構成は第2図に示すよ
うな電極6を例えばリン酸よりなる電解液層8をはさん
で配置し、外部のガス供給系より前記各電極へ燃料ガス
及び酸化剤ガスを供給し、各電極の電極触媒上で燃料ガ
ス及び酸化剤ガスを電気化学的に反応させ、その結果と
して系外に電気エネルギーを取り出す発電装置の一種で
ある。
A fuel cell directly converts the chemical energy of fuel into electrical energy, and its configuration is as shown in Figure 2, in which electrodes 6 are placed across an electrolyte layer 8 made of, for example, phosphoric acid, and an external Power generation in which fuel gas and oxidant gas are supplied from the gas supply system to each of the electrodes, the fuel gas and oxidant gas are electrochemically reacted on the electrode catalyst of each electrode, and as a result, electrical energy is taken out of the system. It is a type of device.

電極6は多孔質のカーボン基材4の上に電極触媒層5を
付着させて構成される。電極触媒層5は触媒担体2の表
面に触媒1を担持させてからフッ素樹脂の微粒子3によ
り結着して形成される。この電極触媒層5の内部ではカ
ーボン基材側からのガスと電解液層からの電解液とが接
触し、3相界面が形成され、電気化学的反応が進行する
。シリコンカーバイト微粒子9は電解液8を保持する。
The electrode 6 is constructed by depositing an electrode catalyst layer 5 on a porous carbon base material 4. The electrode catalyst layer 5 is formed by supporting the catalyst 1 on the surface of the catalyst carrier 2 and then binding it with fine particles 3 of fluororesin. Inside this electrode catalyst layer 5, the gas from the carbon base material side and the electrolytic solution from the electrolytic solution layer come into contact, a three-phase interface is formed, and an electrochemical reaction progresses. Silicon carbide fine particles 9 hold electrolyte 8 .

この電気化学的反応を効率良く行わせるためには、電極
触媒層内の触媒粒子と電解液とガスが接する3相界面を
多くするとともに触媒粒子の活性を高くする必要がある
。3相界面を多くするために触媒1の粒子径を小さくし
て触媒表面積を大きくしている。また、触媒の活性を高
くするために、たとえばリン酸型燃料電池の場合、白金
合金を用いることにより活性を高めている。
In order to carry out this electrochemical reaction efficiently, it is necessary to increase the number of three-phase interfaces where the catalyst particles, electrolyte, and gas in the electrode catalyst layer are in contact with each other, and to increase the activity of the catalyst particles. In order to increase the number of three-phase interfaces, the particle size of the catalyst 1 is decreased to increase the catalyst surface area. Furthermore, in order to increase the activity of the catalyst, for example, in the case of a phosphoric acid fuel cell, a platinum alloy is used to increase the activity.

白金合金触媒はカーボンブラック触媒担体に5〜20重
量%の割合で担持して用いられる。従来は塩化白金酸溶
液中で塩化白金酸を還元してカーボン触媒担体の上に白
金を析出させ、次いで硝酸鉄溶液中で硝酸鉄を還元して
鉄をカーボン担体上に析出させ、続いて800〜900
℃の温度で1〜2h熱処理してカーボン触媒担体上に担
持された微細な白金合金触媒を得ていた。主成分である
白金と合金化される副成分は鉄の他、ニッケル等の遷移
金属元素が用いられる。
The platinum alloy catalyst is used by being supported on a carbon black catalyst carrier in a proportion of 5 to 20% by weight. Conventionally, chloroplatinic acid is reduced in a chloroplatinic acid solution to precipitate platinum onto a carbon catalyst support, then iron nitrate is reduced in an iron nitrate solution to deposit iron onto a carbon support, and then 800% ~900
A fine platinum alloy catalyst supported on a carbon catalyst carrier was obtained by heat treatment at a temperature of 1 to 2 hours. In addition to iron, transition metal elements such as nickel are used as subcomponents that are alloyed with platinum, which is the main component.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上述のような従来の白金合金触媒の製法に
おいては、副成分の全てが完全に白金と合金化している
わけではなく製造条件のばらつき等によって一部が未反
応のまま遊離して残存している。このような未反応の副
成分は触媒の活性を高める効果がないばかりでなく、電
解液であるリン酸と反応してリン化物となったり、酸溶
解のあとリン化物となって再析出したりして、ガス拡散
を阻害しあるいは電極触媒層の撥水性を低下させ、その
結果燃料電池の特性と信転性を低下させるという問題が
あった。
However, in the conventional method for manufacturing platinum alloy catalysts as described above, not all of the subcomponents are completely alloyed with platinum, and due to variations in manufacturing conditions, some may remain unreacted and liberated. There is. Such unreacted subcomponents not only have no effect on increasing the activity of the catalyst, but also react with the electrolyte phosphoric acid to form phosphides, or may redeposit as phosphides after acid dissolution. This poses a problem in that gas diffusion is inhibited or the water repellency of the electrode catalyst layer is reduced, resulting in a reduction in the characteristics and reliability of the fuel cell.

未反応の副成分が残らないようにするために熱処理温度
を高めたり、反応時間を長くしたりして製造条件のばら
つきの影響をなくそうとすると触媒粒子径が成長して大
きくなり、白金合金触媒の触媒活性が失われてしまう。
If an attempt is made to eliminate the effects of variations in manufacturing conditions by increasing the heat treatment temperature or lengthening the reaction time in order to prevent unreacted subcomponents from remaining, the catalyst particle size will grow and become larger. The catalytic activity of the catalyst is lost.

この発明は上述の点に鑑みてなされ、その目的は白金合
金触媒の粒子径は小さくし、かつ未反応の副成分が残存
しないようにして、特性と信鯨性に優れる白金合金触媒
の製造方法を提供することにある。
This invention was made in view of the above-mentioned points, and its purpose is to reduce the particle size of the platinum alloy catalyst and to prevent unreacted subcomponents from remaining, thereby producing a platinum alloy catalyst with excellent properties and reliability. Our goal is to provide the following.

C!1aを解決するための手段〕 上述の目的はこの発明によれば 第一工程と、第二工程と、第三工程と、第四工程とを有
し、 第一工程は、カーボン触媒担体の上に主成分である白金
を担持する工程であり、 第二工程はカーボン触媒担体の上に副−成分を担持する
工程であり、 第三工程は熱処理によって前記担持された白金と副成分
とを合金化し、 第四工程は未反応副成分を除去する工程であるとするこ
とにより達成される。
C! Means for Solving 1a] According to the present invention, the above-mentioned object has a first step, a second step, a third step, and a fourth step, and the first step is to The second step is to support the sub-components on the carbon catalyst carrier, and the third step is to alloy the supported platinum and the sub-components by heat treatment. The fourth step is a step of removing unreacted by-components.

第四工程ははアルカリ洗浄、酸洗浄等の工程を用いるこ
とができる。
In the fourth step, steps such as alkaline cleaning and acid cleaning can be used.

〔作用〕[Effect]

反応条件のばらつき等で未反応副成分が残存しても第四
工程で除去される。
Even if unreacted subcomponents remain due to variations in reaction conditions, they are removed in the fourth step.

〔実施例〕〔Example〕

次にこの発明の実施例を図面に基いて説明する。 Next, embodiments of the present invention will be described based on the drawings.

アセチレンブラック5ooo gを超音波を用いて40
01の水に充分分散させる。金属として2000 gの
白金を含有する塩化白金酸の水溶液2001を添加して
充分攪拌する。0.1 MNa*COa水溶液1951
を加え、約2hかけて55℃に昇温させる。30重量%
の過酸化水素水10.71を加え、0.2Mギ酸水溶液
2051を5hかけて添加する。反応が終了してからケ
ーキをろ別し、塩素イオンが検出されなくなるまで充分
に洗浄する。 50℃で真空乾燥して、20重量%の白
金が担持された触媒担体が得られる。
40g of acetylene black using ultrasound
Thoroughly disperse in 01 water. An aqueous solution 2001 of chloroplatinic acid containing 2000 g of platinum as metal is added and thoroughly stirred. 0.1 MNa*COa aqueous solution 1951
was added, and the temperature was raised to 55°C over about 2 hours. 30% by weight
10.71 liters of hydrogen peroxide solution was added, and 2051 liters of 0.2M formic acid aqueous solution was added over 5 hours. After the reaction is complete, filter the cake and wash thoroughly until no chlorine ions are detected. By vacuum drying at 50° C., a catalyst carrier on which 20% by weight of platinum is supported is obtained.

次にこの触媒担体5000 gを0.01 M Fe(
NOs)s水溶液3801に分散させ、50℃で1h攪
拌する。これは白金合金組成として鉄42.8原子%に
相当する。攪拌を続けながら、0.1%N840B水溶
液2401を20hかけて滴加する。このとき水酸化鉄
Fe (OH) sが触媒担体上に析出する。固形物を
吸引ろ過し、水洗し50℃で真空乾燥する。粉砕して電
気炉に入れ、窒素ガスに7%の水素ガスを含む混合ガス
を流し200〜350℃の温度で1h加熱する。このと
き鉄は完全に還元される0以上の工程で得られた白金と
鉄の担持された触媒担体を赤外線瞬間加熱装置に装填し
、炉内の酸素を除去するために15m1n。
Next, 5000 g of this catalyst carrier was mixed with 0.01 M Fe (
Disperse in NOs)s aqueous solution 3801 and stir at 50°C for 1 hour. This corresponds to 42.8 atomic percent iron as a platinum alloy composition. While continuing to stir, 0.1% N840B aqueous solution 2401 was added dropwise over 20 hours. At this time, iron hydroxide Fe (OH) s is deposited on the catalyst carrier. The solid matter is suction filtered, washed with water and vacuum dried at 50°C. The powder is crushed and placed in an electric furnace, and heated at a temperature of 200 to 350° C. for 1 hour while flowing a mixed gas containing nitrogen gas and 7% hydrogen gas. At this time, the catalyst carrier supporting platinum and iron obtained in the step 0 or more in which iron is completely reduced was loaded into an infrared instantaneous heating device, and heated to 15 ml to remove oxygen in the furnace.

間窒素ガスを流す0次に窒素ガスを微量流し、窒素ふん
囲気を維持しながら、600℃/sin、の速度で昇温
し950℃の温度で303間保持する。降温は600℃
/■in、の速度で行う、室温まで冷却して白金合金触
媒が得られる (担持量約24%)。白金合金触媒をx
1回折法で測定すると、平均結晶粒径として40人が得
られる0回折角2θとして41.1″″33°、 47
.4°の超格子線が観測される。これらはそれぞれ(1
11)面、 (110)面、 (020)面の回折線で
ある。しかしながらX線回折線には鉄の回折線も観測さ
れる。これは、未反応の鉄である。電気炉温度、還元反
応時の濃度分布等の反応条件のばらつきによって生成し
たものと考えられる。熱処理により得られた白金合金触
媒をl NLSOa 溶液5001に加え、50℃で5
h攪拌する。ろ過したあと硫酸イオンが検知されなくな
るまで純水を用いてよく洗浄する。
Next, a small amount of nitrogen gas was flowed, and while maintaining a nitrogen atmosphere, the temperature was raised at a rate of 600° C./sin, and the temperature was maintained at 950° C. for 303 hours. Temperature drop is 600℃
A platinum alloy catalyst is obtained by cooling to room temperature at a rate of /■in (supported amount: about 24%). x platinum alloy catalyst
When measured by 1 diffraction method, the average crystal grain size is 40, and the zero diffraction angle 2θ is 41.1″″33°, 47
.. 4° superlattice lines are observed. These are each (1
These are the diffraction lines of the (11) plane, (110) plane, and (020) plane. However, iron diffraction lines are also observed in the X-ray diffraction lines. This is unreacted iron. It is thought that this was generated due to variations in reaction conditions such as electric furnace temperature and concentration distribution during reduction reaction. The platinum alloy catalyst obtained by heat treatment was added to lNLSOa solution 5001 and heated at 50°C for 50 minutes.
h Stir. After filtering, thoroughly wash with pure water until sulfate ions are no longer detected.

第1図は本発明の実施例に係る白金合金触媒を用いる電
極の特性(特性線11)を従来の白金合金触媒を用いる
電極の特性(特性線12)と対比して示す線図である。
FIG. 1 is a diagram showing the characteristics of an electrode using a platinum alloy catalyst according to an example of the present invention (characteristic line 11) in comparison with the characteristics of an electrode using a conventional platinum alloy catalyst (characteristic line 12).

特性線11は遊離した鉄を含まないため、初期特性も良
好であり、かつ安定に維持される。従来の合金触媒は鉄
を遊離しているため、特性が大きく低下する。
Since the characteristic line 11 does not include free iron, the initial characteristics are also good and maintained stably. Conventional alloy catalysts liberate iron, resulting in significantly reduced properties.

上述の例では遊離した副成分である鉄を除去する工程は
、触媒製造の段階で行っているが、白金合金触媒を組込
んで電極を成型したあとあるいは成型して焼成した後に
行うこともできる。
In the above example, the step of removing iron, which is a free subcomponent, is carried out at the catalyst manufacturing stage, but it can also be carried out after incorporating the platinum alloy catalyst and molding the electrode, or after molding and firing. .

〔発明の効果〕〔Effect of the invention〕

この発明によれば第−工程と、第二工程と、第三工程と
、第四工程とを有し、 第一工程は、カーボン触媒担体の上に主成分である白金
を担持する工程であり、 第三工程はカーボン触媒担体の上に副成分を担持する工
程であり、 第三工程は熱処理によって前記担持された白金と副成分
とを合金化し、 第四工程は未反応副成分を除去する工程であるので、第
三工程後に残った未反応の副成分は、第四工程により除
去され、電極触媒層において反応ガス拡散を阻害したり
、撥水性を低下させるリン化物の発生がなくなり、特性
と信頼性に優れるリン酸型燃料電池が得られる。
According to this invention, there are a first step, a second step, a third step, and a fourth step, and the first step is a step of supporting platinum, which is a main component, on a carbon catalyst carrier. , the third step is a step of supporting subcomponents on a carbon catalyst carrier, the third step is to alloy the supported platinum and subcomponents by heat treatment, and the fourth step is to remove unreacted subcomponents. Since it is a process, unreacted subcomponents remaining after the third process are removed in the fourth process, eliminating the generation of phosphides that inhibit reaction gas diffusion and reducing water repellency in the electrode catalyst layer, improving the characteristics. A phosphoric acid fuel cell with excellent reliability can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る白金合金触媒を用いる電
極の特性(特性線11)を従来の白金合金触媒を用いる
電極の特性(特性線12)と対比して示す線図、第2図
はリン酸型燃料電池を示す模式断面図である。 1:触媒、2:触媒担体、5:電極触媒層。 第1図 第2図
FIG. 1 is a diagram showing the characteristics of an electrode using a platinum alloy catalyst according to an example of the present invention (characteristic line 11) in comparison with the characteristics of an electrode using a conventional platinum alloy catalyst (characteristic line 12); The figure is a schematic cross-sectional view showing a phosphoric acid fuel cell. 1: catalyst, 2: catalyst carrier, 5: electrode catalyst layer. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1)第一工程と、第二工程と、第三工程と、第四工程と
を有し、 第一工程は、カーボン触媒担体の上に主成分である白金
を担持する工程であり、 第二工程はカーボン触媒担体の上に副成分を担持する工
程であり、 第三工程は熱処理によって前記担持された白金と副成分
とを合金化し、 第四工程は未反応副成分を除去する工程であることを特
徴とする白金合金触媒の製造方法。
[Claims] 1) It has a first step, a second step, a third step, and a fourth step, and the first step is to support platinum, which is the main component, on a carbon catalyst carrier. The second step is a step of supporting subcomponents on a carbon catalyst carrier, the third step is a heat treatment to alloy the supported platinum and the subcomponents, and the fourth step is a step of supporting unreacted subcomponents. 1. A method for producing a platinum alloy catalyst, comprising a step of removing.
JP2194351A 1990-07-23 1990-07-23 Manufacture of platinum alloy catalyst Pending JPH0479161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2194351A JPH0479161A (en) 1990-07-23 1990-07-23 Manufacture of platinum alloy catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2194351A JPH0479161A (en) 1990-07-23 1990-07-23 Manufacture of platinum alloy catalyst

Publications (1)

Publication Number Publication Date
JPH0479161A true JPH0479161A (en) 1992-03-12

Family

ID=16323141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2194351A Pending JPH0479161A (en) 1990-07-23 1990-07-23 Manufacture of platinum alloy catalyst

Country Status (1)

Country Link
JP (1) JPH0479161A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317546A (en) * 2004-04-27 2005-11-10 Samsung Sdi Co Ltd Membrane-electrode assembly for fuel cell and fuel cell system including the same
JP2009117381A (en) * 2004-04-22 2009-05-28 Samsung Sdi Co Ltd Manufacturing method of membrane electrode assembly for fuel cell, and manufacturing method of fuel cell system including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117381A (en) * 2004-04-22 2009-05-28 Samsung Sdi Co Ltd Manufacturing method of membrane electrode assembly for fuel cell, and manufacturing method of fuel cell system including the same
JP2005317546A (en) * 2004-04-27 2005-11-10 Samsung Sdi Co Ltd Membrane-electrode assembly for fuel cell and fuel cell system including the same
US7629072B2 (en) 2004-04-27 2009-12-08 Samsung Sdi Co., Ltd. Membrane-electrode assembly for fuel cell and fuel cell system comprising the same

Similar Documents

Publication Publication Date Title
KR20190077432A (en) An electrocatalyst composition comprising a noble metal oxide supported on tin oxide
JP2879649B2 (en) Method for producing platinum-based catalyst
US20120003569A1 (en) Method of forming a ternary alloy catalyst for fuel cell
JP4994605B2 (en) Membrane-electrode assembly for fuel cell and fuel cell system including the same
JP4776240B2 (en) Electrode catalyst, method for producing the same, and fuel cell
US4513094A (en) Single-batch process to prepare noble metal vanadium alloy catalyst on a carbon based support
JPH09167620A (en) Electrode catalyst for fuel cell and its manufacture, and electrode and fuel cell using the catalyst
JPS618851A (en) Fuel battery and electrolyte catalyst therefor
JP2000003712A (en) Catalyst for high molecular solid electrolyte fuel cell
JPH01227361A (en) Manufacture of anode for fuel cell
JPH05217586A (en) Fuel cell and manufacture thereof
Lv et al. Electrochemical durability of heat-treated carbon nanospheres as catalyst supports for proton exchange membrane fuel cells
JPH0479161A (en) Manufacture of platinum alloy catalyst
JPH03236160A (en) Electrode catalyst layer for fuel cell and manufacture thereof
JPH05135773A (en) Catalyst for phosphoric acid type fuel cell and manufacture thereof
JPH0629027A (en) Fuel cell and its manufacture
JPH0368452A (en) Production of platinum alloy catalyst
JPH06132034A (en) Alloy catalyst for phosphoric acid fuel cell and manufacture of catalyst therefor
JPH06124712A (en) Catalyst for phosphoric acid fuel cell and manufacture of the catalyst
JP2001205086A (en) Method for manufacturing platinum/ruthenium alloy- bearing catalyst
TW201304861A (en) Catalysts free from noble metals suitable for the electrochemical reduction of oxygen
JPH04371230A (en) Production of catalyst for fuel cell
JPS6312349A (en) Production of pt alloy catalyst for fuel cell
JP2808867B2 (en) Method for producing fuel cell alloy catalyst
US3682709A (en) Process for improving nickel base,nonnoble metal fuel cell catalysts