JPH0478575B2 - - Google Patents

Info

Publication number
JPH0478575B2
JPH0478575B2 JP18909883A JP18909883A JPH0478575B2 JP H0478575 B2 JPH0478575 B2 JP H0478575B2 JP 18909883 A JP18909883 A JP 18909883A JP 18909883 A JP18909883 A JP 18909883A JP H0478575 B2 JPH0478575 B2 JP H0478575B2
Authority
JP
Japan
Prior art keywords
infrared reflective
film
infrared
composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18909883A
Other languages
Japanese (ja)
Other versions
JPS6081046A (en
Inventor
Yoshasu Nobuto
Yukinobu Hoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18909883A priority Critical patent/JPS6081046A/en
Publication of JPS6081046A publication Critical patent/JPS6081046A/en
Publication of JPH0478575B2 publication Critical patent/JPH0478575B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Chemically Coating (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、硝子の表面に赤外線反射膜を形成す
るための薬剤組成物に関するものである。 従来例の構成とその問題点 赤外線反射硝子は、硝子の表面に酸化錫もしく
は酸化インジウムの透明性膜を均一に形成するこ
とにより構成されるもので、強度の赤外線反射性
能を確保するために、少量の不純物をドーピング
するのが常である。酸化錫に対しては、アンチモ
ン、弗素元素が導入され、酸化インジウムに対し
ては錫元素を用いれば良好な赤外線反射特性をも
たらすことが知られている。酸化インジウム系に
よる場合は、形成された膜の可視光線の透過性
が、不透明化しやすいため悪く、また膜の強度も
低いために傷が付きやすい。現在酸化錫膜を形成
した赤外線反射硝子はこのような欠点が出にくい
ため賞用されている。 酸化錫膜をもたらす主薬剤としては、塩化第一
錫、有機第一錫のアルコキシドまたはアシルオキ
シ化合物(以下有機第一錫系化合物と称する)や
ジメチル錫オキシドである。これらの薬剤は、酸
化錫膜を形成する方法がその性状から限定される
もので、塩化第一錫は昇華飛散性が大きいため硝
子基材をあらかじめ450℃以上に加熱しておき、
その表面にスプレーなどにより微細粒子状に噴霧
し、これをその表面に接触熱分解(以下ホツト基
材への噴霧法と称する)させる方法に適し、有機
第一錫系化合物は、熱分解に長時間を必要とする
ことから、室温において薬剤を基材表面に塗布乾
燥後、徐々に加熱して熱分解(以下コールド塗布
焼成法と称する)させる方法で実施されている。 塩化第一錫によるホツト基材への噴霧法による
酸化錫膜の形成方式では、一回の処理工程で容易
に3000Å程度の膜厚みまで形成ができるため、膜
厚が薄いと赤外線反射特性が十分でないというい
わゆる膜厚による依存性が消去できるという利点
を有する反面、加熱雰囲気内で多量の塩酸ガスや
弗化水素ガスの発生があり、このため設備関係の
腐食性が大きく、排出ガスの公害処理は容易なも
のではない。 有機第一錫系化合物によるコールド塗布焼成法
では、腐食性ガスの発生が大幅に軽減できるが、
薬剤の分解が不均一化しやすく部分的に白濁した
不連続の膜になりやすい。したがつて、この欠点
を避けようとするため、一回の処理で形成できる
赤外線反射膜の厚みが600Å以下になり、赤外線
反射特性が不十分であつた。さらに有機第一錫系
化合物を使用する場合、基材表面での有機第一錫
系化合物の酸化錫への熱分解移行が遅く、赤外線
反射特性の向上を目的として使用するドーピング
剤が加熱分解時に飛散しやすく十分なドーピング
効果が得られていない。有機第一錫系化合物のホ
ツト基材への噴霧法によれば、形成された膜は未
分解有機物を包含するため着色が大きく実用に供
しえないものとなる。したがつて、公害処理上有
利である有機第一錫系化合物を使用して、可視光
線の透過性に優れ、赤外線反射特性の良い赤外線
反射硝子の形成を可能とする薬剤組成物が強く望
まれていた。 発明の目的 本発明は、前記の事情に鑑みて公害上の支障が
極めて軽度であり、一回の形成処理により着色が
なく可視光線の透過性と赤外線反射性能に優れた
赤外線反射被膜形成用組成物を提供することを目
的とする。 発明の構成 第1の発明の赤外線反射被膜形成用組成物は、
一般式Sn(OR)2で表されるアルコキシド化合物
及び一般式Sn(OOCR)2で表わされるアシルオキ
シ化合物(ただし、前記のRは炭素数4〜8のア
ルキル基を表わす。)よりなる群から選んだ少な
くとも一種の100重量部に、一般式R′−NH2で表
わされる脂肪族第一アミン(ただし、R′は炭素
数1〜6のアルキル基を表わす。)と三弗化硼素
との錯化合物の3重量部〜15重量部を混合したも
のをメチルアルコールに均一に混合したことを特
徴とするものである。 また第2の発明は、一般式Sn(OR)2で表され
るアルコキシド化合物及び一般式Sn(OOCR)2
表わされるアシルオキシ化合物(ただし、前記の
Rは炭素数4〜8のアルキル基を表わす。)より
なる群から選んだ少なくとも一種の100重量部と、
一般式R′−NH2で表わされる脂肪族第一アミン
(ただし、R′は炭素数1〜6のアルキル基を表わ
す。)と三弗化硼素との錯化合物の3重量部〜15
重量部にさらに塩化パラジウムもしくは塩化白金
酸とを混合してなるものとを、メチルアルコール
に均一に混合したものである。 本発明の赤外線反射硝子形成用組成物は、反射
膜の形成方法として、ホツト基材への噴霧法やコ
ールド塗布焼成法に適用して、本発明の目的を満
足する赤外線反射硝子の形成を可能にするように
構成されているものである。 実施例の説明 以下、本発明を実施例に基づき詳細に説明す
る。 前記有機第一錫系化合物は、これ単独でアルコ
ールなどの溶剤により溶液として、ホツト基材へ
の噴霧法により容易に1000〜3000Åの膜厚みが得
られる。しかし、暗赤色ないし暗褐色の極めて着
色度の大きい可視光線透過性の悪い状態になる。
この赤外線反射特性は、(株)日立製作所製R−280
型赤外線分光々度計にIRR−3型赤外線反射シエ
ルを取り付け、クロム鏡面の反射率を100%とし
た装置により測定した結果、縦軸に赤外線反射率
(%)をとり、横軸は赤外線波長域(μ)とした
第1図において、ガラス基材のみの赤外線反射特
性を示す曲線1に比較して曲線2であり、ほとん
ど反射効果が見られない。また可視光線平均透過
率(%)は、(株)島津製作所製分光々度計UV−
120装置により波長域0.4〜2.5μの可視光線透過率
の平均値として求めたところ、膜厚1000Å及び
3000Åと変えた場合、第1表中No.1のソーダ硝子
のみに比較してNo.2〜3に示すように著しく低
く、膜の着色度も大きいものとなる。一方、前記
有機第一錫系化合物単独のアルコールなどの溶剤
による溶液を基材表面に塗布した乾燥後550℃で
30分間加熱分解して得たいわゆるコールド塗布焼
成法によつて形成した膜の膜厚は、600Å及び
1500Åであり、これらの可視光線平均透過率
(%)と膜の着色状態は第1表No.4〜5に示す結
果であり、赤外線反射特性は、第1図中の曲線2
に包含されてしまう状態である。一般式Sn(OR)
2で表わされるアルコキシド化合物及び一般式Sn
(OOCR)2で表わされるアシルオキシ化合物(た
だし、前記のRは炭素数4〜8のアルキル基を表
わす。)よりなる群から選んだ少なくとも一種に、
一般式R′−NH2で表わされる脂肪族第一アミン
(ただし、R′は炭素数1〜6のアルキル基を表わ
す。)と三弗化硼素との錯化合物を混合し、これ
をアルコールなどの溶剤による溶液とした本発明
の組成物によるホツト基材への噴霧法により赤外
線反射硝子を形成し、この赤外線反射特性を第1
図中曲線3(膜厚1000Å)、4(膜厚3000Å)に
示した。また、可視光線平均透過率(%)は第1
表No.6〜7に示した。この組成物をコールド塗布
焼成法により赤外線反射硝子を形成し、この赤外
線反射特性を第1図中曲線5(膜厚600Å)、6
(膜厚1500Å)に、可視光線平均透過率(%)は、
第1表中No.8〜9に示した。これらの状態から本
発明による赤外線反射被膜形成用組成物は、コー
ルド塗布焼成法で赤外線反射硝子を形成した場
合、赤外線反射膜の膜厚が1500Å程度まで良好な
可視光線の透過性を示し、かつ実用上最低限必要
であると考えられる50%以上の赤外線反射特性が
確保できることから、本発明の目的を十分満足で
きるものとなる。しかし、ホツト基材への噴霧法
による赤外線反射硝子の形成に対しては、薬剤組
成物の噴霧された微粒子が、加熱された基材表面
に接触した瞬間に有機第一錫系化合物から酸化錫
への熱分解が完全に終結せず、形成された赤外線
反射膜中に未分解有機物を包含することとなり、
着色が大きくかつ可視光線平均透過率の十分でな
い状態となる。本発明において、ホツト基材への
噴霧法を採用する場合、特に、塩化白金酸または
塩化パラジウムを加えた組成物とすることで、可
視光線平均透過性、着色の消失に顕著な効果を示
すものとなる。この結果を第1表中No.10〜11に示
す。この塩化白金酸または塩化パラジウムを加え
た本発明の組成物は、コールド塗布焼成法に適用
しても何等支障はなく、より好ましい結果をもた
らす。
INDUSTRIAL APPLICATION FIELD The present invention relates to a pharmaceutical composition for forming an infrared reflective film on the surface of glass. Conventional configurations and their problems Infrared reflective glass is constructed by uniformly forming a transparent film of tin oxide or indium oxide on the surface of the glass.In order to ensure strong infrared reflective performance, It is customary to dope with small amounts of impurities. It is known that the elements antimony and fluorine are introduced into tin oxide, and the use of tin element into indium oxide provides good infrared reflection characteristics. In the case of an indium oxide film, the visible light transmittance of the formed film is poor because it easily becomes opaque, and the film has low strength and is easily scratched. Currently, infrared reflective glass coated with a tin oxide film is highly prized because it is less prone to such defects. The main agent for forming a tin oxide film is stannous chloride, an organic stannous alkoxide or acyloxy compound (hereinafter referred to as an organic stannous compound), or dimethyltin oxide. The method of forming a tin oxide film with these agents is limited due to their properties.Since stannous chloride has a high sublimation and scattering property, it is necessary to heat the glass substrate to 450°C or higher in advance.
Organic stannous compounds are suitable for catalytic thermal decomposition (hereinafter referred to as the hot substrate spraying method) by spraying fine particles onto the surface of the substrate. Since this method requires time, a method is used in which a chemical is applied to the surface of a substrate at room temperature, dried, and then gradually heated to thermally decompose it (hereinafter referred to as the cold coating and baking method). In the method of forming a tin oxide film by spraying stannous chloride onto a hot substrate, a film thickness of approximately 3000 Å can be easily formed in a single treatment process, so a thin film has sufficient infrared reflective properties. On the other hand, a large amount of hydrochloric acid gas and hydrogen fluoride gas is generated in the heated atmosphere, which is highly corrosive to equipment, and it is difficult to treat exhaust gas pollution. is not easy. The cold coating and firing method using organic stannous compounds can significantly reduce the generation of corrosive gases, but
The decomposition of the drug tends to be uneven, resulting in a partially cloudy, discontinuous film. Therefore, in an attempt to avoid this drawback, the thickness of the infrared reflective film that can be formed in one treatment has been reduced to 600 Å or less, resulting in insufficient infrared reflective properties. Furthermore, when using an organic stannous compound, the thermal decomposition of the organic stannous compound to tin oxide on the surface of the substrate is slow, and the doping agent used for the purpose of improving infrared reflection properties is removed during thermal decomposition. It easily scatters and a sufficient doping effect cannot be obtained. According to the method of spraying an organic stannous compound onto a hot substrate, the formed film contains undecomposed organic matter and is highly colored, making it impractical. Therefore, there is a strong desire for a pharmaceutical composition that uses organic stannous compounds, which are advantageous in terms of pollution treatment, to enable the formation of infrared-reflecting glass with excellent visible light transmittance and good infrared-reflecting properties. was. Purpose of the Invention In view of the above-mentioned circumstances, the present invention provides a composition for forming an infrared reflective coating that causes very little pollution problems, is free from coloring through a single formation process, and has excellent visible light transmittance and infrared reflective performance. The purpose is to provide something. Structure of the Invention The composition for forming an infrared reflective film of the first invention includes:
Selected from the group consisting of alkoxide compounds represented by the general formula Sn(OR) 2 and acyloxy compounds represented by the general formula Sn(OOCR) 2 (wherein R represents an alkyl group having 4 to 8 carbon atoms). However, 100 parts by weight of at least one type of aliphatic primary amine represented by the general formula R'- NH2 (wherein R' represents an alkyl group having 1 to 6 carbon atoms) and boron trifluoride are added. It is characterized in that a mixture of 3 to 15 parts by weight of the compound is uniformly mixed in methyl alcohol. The second invention also provides an alkoxide compound represented by the general formula Sn(OR) 2 and an acyloxy compound represented by the general formula Sn(OOCR) 2 (wherein R represents an alkyl group having 4 to 8 carbon atoms). 100 parts by weight of at least one selected from the group consisting of:
3 parts by weight to 15 parts by weight of a complex compound of an aliphatic primary amine represented by the general formula R'- NH2 (wherein R' represents an alkyl group having 1 to 6 carbon atoms) and boron trifluoride.
Parts by weight of palladium chloride or chloroplatinic acid are uniformly mixed in methyl alcohol. The composition for forming infrared reflective glass of the present invention can be applied to a method of spraying onto a hot substrate or a cold coating and baking method as a method for forming a reflective film, and can form an infrared reflective glass that satisfies the object of the present invention. It is configured to do so. Description of Examples Hereinafter, the present invention will be described in detail based on Examples. The organic stannous compound can easily be used alone as a solution in a solvent such as alcohol to obtain a film thickness of 1000 to 3000 Å by spraying onto a hot substrate. However, the color becomes dark red to dark brown with a very high degree of coloration and has poor visible light transmittance.
This infrared reflection characteristic is based on R-280 manufactured by Hitachi, Ltd.
The results were measured using a model infrared spectrophotometer with an IRR-3 model infrared reflection shell attached and the reflectance of the chrome mirror surface set at 100%.The vertical axis shows the infrared reflectance (%), and the horizontal axis shows the infrared wavelength. In FIG. 1, the area (μ) is curve 2, which shows almost no reflection effect compared to curve 1, which shows the infrared reflection characteristics of only the glass substrate. In addition, the visible light average transmittance (%) is measured using a spectrophotometer UV-
120 device as the average value of visible light transmittance in the wavelength range 0.4 to 2.5μ, it was found that the film thickness was 1000Å and
When the thickness is changed to 3000 Å, the degree of coloring of the film becomes significantly lower as shown in Nos. 2 and 3 compared to only the soda glass of No. 1 in Table 1. On the other hand, a solution of the organic stannous compound alone in a solvent such as alcohol was applied to the surface of the substrate, dried and then heated at 550°C.
The film thickness of the film formed by the so-called cold coating and baking method obtained by thermal decomposition for 30 minutes was 600 Å and
The average visible light transmittance (%) and coloring state of the film are shown in Table 1 Nos. 4 and 5, and the infrared reflection characteristics are shown in curve 2 in Figure 1.
It is a state where it is included in. General formula Sn(OR)
Alkoxide compound represented by 2 and general formula Sn
(OOCR) At least one selected from the group consisting of acyloxy compounds represented by 2 (wherein R represents an alkyl group having 4 to 8 carbon atoms),
A complex compound of an aliphatic primary amine represented by the general formula R'- NH2 (wherein R' represents an alkyl group having 1 to 6 carbon atoms) and boron trifluoride is mixed, and this is mixed with an alcohol, etc. An infrared reflective glass is formed by spraying the composition of the present invention as a solution in a solvent of
In the figure, curves 3 (film thickness 1000 Å) and 4 (film thickness 3000 Å) are shown. In addition, the visible light average transmittance (%) is the first
It is shown in Table No. 6-7. This composition was used to form infrared reflective glass by a cold coating and firing method, and the infrared reflective characteristics were measured by curves 5 (600 Å film thickness) and 6 in Figure 1.
(film thickness 1500Å), average visible light transmittance (%) is
Shown in Nos. 8 and 9 in Table 1. Based on these conditions, the composition for forming an infrared reflective film according to the present invention exhibits good visible light transmittance up to an infrared reflective film thickness of about 1500 Å when an infrared reflective glass is formed by a cold coating and firing method, and Since it is possible to secure an infrared reflection characteristic of 50% or more, which is considered to be the minimum requirement for practical use, the object of the present invention can be fully satisfied. However, when forming infrared reflective glass by spraying onto a hot substrate, the moment the sprayed fine particles of the drug composition come into contact with the heated substrate surface, the organic stannous compound converts into tin oxide. Thermal decomposition to
The coloring is large and the visible light average transmittance is insufficient. In the present invention, when a spraying method is employed on a hot substrate, a composition to which chloroplatinic acid or palladium chloride is added has a remarkable effect on visible light average transmittance and disappearance of coloring. becomes. The results are shown in Nos. 10 to 11 in Table 1. The composition of the present invention to which chloroplatinic acid or palladium chloride is added has no problem when applied to the cold coating and baking method, and provides more favorable results.

【表】【table】

【表】 評価基準 ○ 良、△ 可、× 不可
塩化パラジウムまたは塩化白金酸は、有機第一
錫系化合物と共に熱分解される場合に酸化促進的
触媒効果が加えられ、有機成分の分解飛散が極め
てスムーズにかつ完全に酸化錫成分への移行を完
結するものとなる。 本発明の赤外線反射被膜形成用組成物による反
射膜の膜厚変化による赤外線反射特性の状態を示
した第2図において、曲線1(膜厚600Å)、曲線
2(膜厚1000Å)、曲線3(膜厚2000Å)、曲線4
(膜厚3000Å)、曲線5(膜厚4000Å)、曲線6
(膜厚5000Å)の結果から、赤外線反射特性の膜
厚依存性は3000Åまでは大きいが、これを越える
膜厚では極めて僅少となる。本発明による赤外線
反射被膜形成用組成物は、コールド塗布焼成法に
よれば1500Å、ホツト基材への噴霧法によれば膜
厚3000Åでも着色がなく、可視光線平均透過性が
良好で、実用上最低限必要であると考えられる50
%以上の赤外線反射特性が確保できる。 赤外線反射特性が最高となる最適のドーピング
材の組合せ状態であつても、膜厚の依存性が3000
Å程度まであることから、本発明で使用する一般
式Sn(OR)2またはSn(OOCR)2であらわされるア
ルコキシドまたはアシルオキシ化合物において、
Rで示されるアルキル基は炭素数が3以下の場合
各種の溶剤に溶解しにくく、本発明の目的に適さ
ない。また炭素数が多くなればなるほど膜形成時
の熱分解飛散量が多くなり、形成される赤外線反
射膜の膜厚はコールド塗布焼成法の適用において
は影響が大きい。縦軸を赤外線反射硝子の膜厚
(Å)、横軸は有機第一錫系化合物のアルキル基の
炭素数とした第3図に示すコールド塗布焼成法に
よる赤外線反射硝子の赤外線反射膜厚を示す曲線
において、50%以上の赤外線反射特性が確保でき
る(膜厚1000Å以上が形成できる)有機第一錫系
化合物のアルキル基の炭素数は8以内が目的を満
足するものとなる。 赤外線反射特性を確保するために本発明で使用
する一般式R′−NH2であらわされる脂肪族第一
アミン類と三弗化硼素との錯化合物において、
R′で示されるアルキル基の炭素数は、板厚3mm
のソーダ硝子の片面のみに、ジエトキシ錫100重
量部に対して、脂肪族第一アミンの炭素数が1,
2,4,5,6、そして8と変化させた三弗化硼
素錯化合物を8重量部加えたアルコールによる均
一混合組成物を使用し、赤外線反射膜を2000Åと
した赤外線反射硝子について可視光線平均透過率
(%)を求め第4図の曲線を得た。この結果から
脂肪族第一アミン類と三弗化硼素との錯化合物
(BF3:NH2−R′)のR′の有効な炭素数は6以内
である。この条件を満足する脂肪族第一アミン類
と三弗化硼素との錯化合物は、三弗化硼素メチル
アミン錯化合物、三弗化硼素エチルアミン錯化合
物、三弗化硼素プロピルアミン錯化合物、三弗化
硼素ブチルアミン錯化合物、三弗化硼素ペンチル
アミン錯化合物、三弗化硼素ヘキシルアミン錯化
合物である。 脂肪族第一アミン類と三弗化硼素との錯化合物
の有機第一錫系化合物に対する組合せる量は、本
発明において特に限定するものではないが、有機
第一錫系化合物に対する組合せ量を適宜変化させ
たアルコール均一溶解組成物により赤外線反射膜
の膜厚を2000Åとした場合の赤外線反射硝子によ
る赤外線反射特性は、赤外線波長3.75μ(500℃)
における反射率を縦軸にとり、横軸は脂肪族第一
アミン類と三弗化硼素との錯化合物の使用量とし
た第5図に示すとおりであり、有機第一錫系化合
物100重量部に対して、好ましくは3重量部以上
である。しかし良好な透明性を確保する観点から
15重量部以内にするのが好ましい。 本発明における赤外線反射被膜形成用組成物に
おいて、特にホツト基材への噴霧法で可視光線平
均透過率が良好で膜の着色除去に顕著な効果を示
す塩化パラジウムは、二価パラジウム(PdCl2
である。また塩化白金酸は塩化第一白金酸(H2
〔PtCl4〕)あるいは、塩化第二白金酸(H2
〔PtCl6〕)のいずれであつても本発明の目的に合
致するものであり、結晶水を有していても特に支
障はない。本発明で使用する有機第一錫系化合物
に対する塩化パラジウムまたは塩化白金酸の使用
すべき量の範囲は特に限定するものではないが、
有機第一錫系化合物の熱分解に寄与するに必要に
して最少量を、得られる赤外線反射硝子の価格面
を考慮して決めれば良い。 赤外線反射被膜形成用組成物の各種の薬剤を混
合して均一な溶液系を保持することは、本発明の
目的を満足する赤外線反射硝子を形成する上で重
要である。これを実現する溶剤としては、特にア
ルコール系が有効であり、一価アルコール、二価
アルコール(グリコール類)や多価アルコールの
少量混合系が採用され、適宜選定して使用すれば
特に支障はない。 赤外線反射硝子を形成するに必要な基材として
の条件は、特に限定するものではなく、セラミツ
ク、磁器、ホーロなどの無機質のもので膜の形成
が可能である耐熱性を有していれば良いが、のぞ
き窓的な用途に使用する目的であるならば、ソー
ダ硝子、あるいは耐熱硝子など透明度のあるもの
が好ましい。 実施例 1 ジブトキシ錫 92.0重量部 三弗化硼素エチルアミン錯化合物 8.0重量部 ヘキシルアルコール 16.5重量部 ブチルアルコール 16.5重量部 上記の材料を均一に混合し、赤外線反射被膜形
成用組成物を作製した。板厚3mm、大きさ100×
100mmのソーダ硝子をこの組成物中に浸漬し、引
上げた後、150℃で30分間乾燥し、再度同じ操作
を繰返した後、片面をアセトンを含ませた布で拭
きとり、550℃で30分間焼成して、赤外線反射硝
子を形成した。この膜厚を、
PANKPRECISION INDUSTRIES LTD製
TALYSTEP−1により赤外線反射膜の一部を亜
鉛末と塩酸により還元剥離させ、その露出した硝
子面との段差を測定した結果1400Åであつた。こ
の赤外線反射硝子は着色がなく、(株)島津製作所製
分光々度計UV−120装置により波長域0.4〜2.5μ
の可視光線平均透過率を求めた結果、74.0%を示
した。前記に示したと同一の方法により赤外線反
射特性を測定した結果は第2表No.1に示した。 実施例 2 ジブトキシ錫 92.0重量部 三弗化硼素エチルアミン錯化合物 8.0重量部 塩化白金酸〔H2(PtCl6)・6H2O〕 0.5重量部 ヘキシルアルコール 25.0重量部 ブチルアルコール 25.0重量部 上記の材料を均一に混合して赤外線反射被膜形
成用組成物を作製した。板厚3mm、大きさ100×
100mmのソーダ硝子を600℃に加熱し、その片面上
に、圧力2.0Kg/cm2の空気圧力によりスプレー噴
霧し、3000Åの赤外線反射膜を有する赤外線反射
硝子を形成した。この硝子は着色がなく、可視光
線平均透過率は71%を示し、赤外線反射特性は第
2表No.2の結果を得た。 実施例 3 実施例1と同一の操作により、実施例2に示し
た赤外線反射被膜形成用組成物を用いて、コール
ド塗布焼成法による赤外線反射硝子を形成した。
この反射硝子の膜厚は1200Åであり、白濁や着色
は全く認められず、可視光線平均透過率は73%を
示し、赤外線反射特性は第2表No.3の結果を得
た。
[Table] Evaluation criteria ○ Good, △ Fair, × Bad When palladium chloride or chloroplatinic acid is thermally decomposed together with an organic stannous compound, an oxidation-promoting catalytic effect is added, and the decomposition and scattering of organic components is extremely low. The transition to the tin oxide component is completed smoothly and completely. In FIG. 2, which shows the state of the infrared reflection characteristics due to changes in the film thickness of the reflective film formed by the composition for forming an infrared reflective film of the present invention, curve 1 (thickness: 600 Å), curve 2 (thickness: 1000 Å), curve 3 ( film thickness 2000Å), curve 4
(film thickness 3000 Å), curve 5 (film thickness 4000 Å), curve 6
(Film thickness: 5000 Å) The dependence of the infrared reflection characteristics on the film thickness is large up to 3000 Å, but becomes extremely small at film thicknesses exceeding this. The composition for forming an infrared reflective film according to the present invention has no coloration even at a film thickness of 1500 Å when applied by a cold coating and baking method, or 3000 Å when applied to a hot substrate by a spraying method, and has a good average visible light transmittance, which is useful for practical use. 50 considered to be the minimum required
% or more of infrared reflection characteristics can be ensured. Even with the optimal combination of doping materials that gives the best infrared reflection characteristics, the dependence on film thickness is 3000.
In the alkoxide or acyloxy compound represented by the general formula Sn(OR) 2 or Sn(OOCR) 2 used in the present invention,
When the alkyl group represented by R has 3 or less carbon atoms, it is difficult to dissolve in various solvents and is not suitable for the purpose of the present invention. In addition, as the number of carbon atoms increases, the amount of thermal decomposition and scattering during film formation increases, and the thickness of the formed infrared reflective film has a large influence when the cold coating and baking method is applied. The vertical axis is the film thickness (Å) of the infrared reflective glass, and the horizontal axis is the carbon number of the alkyl group of the organic stannous compound. Figure 3 shows the infrared reflective film thickness of the infrared reflective glass obtained by the cold coating and firing method. In the curve, the number of carbon atoms in the alkyl group of the organic stannous compound that can ensure infrared reflection characteristics of 50% or more (can form a film thickness of 1000 Å or more) is 8 or less to satisfy the purpose. In the complex compound of aliphatic primary amines represented by the general formula R′-NH 2 and boron trifluoride used in the present invention to ensure infrared reflective properties,
The number of carbon atoms in the alkyl group represented by R′ is 3 mm in plate thickness.
On only one side of the soda glass, the carbon number of the aliphatic primary amine is 1, per 100 parts by weight of diethoxytin.
Visible light average for infrared reflective glass with an infrared reflective film of 2000 Å using a homogeneous mixed composition of alcohol to which 8 parts by weight of boron trifluoride complex compounds modified as 2, 4, 5, 6, and 8 were added. The transmittance (%) was determined and the curve shown in FIG. 4 was obtained. From this result, the effective carbon number of R' in the complex compound of aliphatic primary amines and boron trifluoride (BF 3 :NH 2 -R') is 6 or less. Complex compounds of aliphatic primary amines and boron trifluoride that satisfy this condition include boron trifluoride methylamine complex, boron trifluoride ethylamine complex, boron trifluoride propylamine complex, and boron trifluoride propylamine complex. They are boron butylamine complex compound, boron trifluoride pentylamine complex compound, and boron trifluoride hexylamine complex compound. The amount of the complex compound of aliphatic primary amines and boron trifluoride to be combined with the organic stannous compound is not particularly limited in the present invention, but the amount of the complex compound with respect to the organic stannous compound can be adjusted as appropriate. When the thickness of the infrared reflective film is set to 2000 Å using the changed alcohol uniformly dissolved composition, the infrared reflective properties of the infrared reflective glass are as follows: infrared wavelength 3.75μ (500℃)
As shown in Figure 5, the vertical axis is the reflectance and the horizontal axis is the amount of the complex compound of aliphatic primary amines and boron trifluoride. On the other hand, it is preferably 3 parts by weight or more. However, from the perspective of ensuring good transparency
It is preferably within 15 parts by weight. In the composition for forming an infrared reflective film in the present invention, palladium chloride, which has a good average transmittance of visible light and is particularly effective in removing coloration from a film when sprayed onto a hot substrate, is divalent palladium (PdCl 2 ).
It is. In addition, chloroplatinic acid is chloroplatinic acid (H 2
[PtCl 4 ]) or platinic chloride (H 2
[PtCl 6 ]), it meets the purpose of the present invention, and there is no particular problem even if it contains water of crystallization. Although the range of the amount of palladium chloride or chloroplatinic acid to be used for the organic stannous compound used in the present invention is not particularly limited,
The minimum amount necessary to contribute to the thermal decomposition of the organic stannous compound may be determined in consideration of the price of the infrared reflective glass to be obtained. It is important to mix the various agents in the composition for forming an infrared reflective film and maintain a uniform solution system in order to form an infrared reflective glass that satisfies the object of the present invention. Alcohol-based solvents are particularly effective for achieving this, and mixtures of small amounts of monohydric alcohols, dihydric alcohols (glycols), and polyhydric alcohols are used, and if they are selected and used appropriately, there will be no particular problem. . The conditions for the base material necessary to form infrared reflective glass are not particularly limited, as long as it is an inorganic material such as ceramic, porcelain, or hollow and has heat resistance that allows the formation of a film. However, if it is intended to be used as a peephole, transparent materials such as soda glass or heat-resistant glass are preferred. Example 1 Dibutoxytin 92.0 parts by weight Boron trifluoride ethylamine complex 8.0 parts by weight Hexyl alcohol 16.5 parts by weight Butyl alcohol 16.5 parts by weight The above materials were uniformly mixed to prepare a composition for forming an infrared reflective film. Plate thickness 3mm, size 100×
A 100 mm piece of soda glass was immersed in this composition, pulled up, dried at 150°C for 30 minutes, repeated the same process, wiped off one side with a cloth soaked in acetone, and dried at 550°C for 30 minutes. It was fired to form an infrared reflective glass. This film thickness is
Manufactured by PANKPRECISION INDUSTRIES LTD
Using TALYSTEP-1, a part of the infrared reflective film was removed by reduction using zinc powder and hydrochloric acid, and the height difference between the exposed glass surface and the exposed glass surface was measured to be 1400 Å. This infrared reflective glass is uncolored and has a wavelength range of 0.4 to 2.5μ when measured using a spectrophotometer UV-120 device manufactured by Shimadzu Corporation.
The average visible light transmittance was found to be 74.0%. The infrared reflection characteristics were measured by the same method as shown above, and the results are shown in Table 2, No. 1. Example 2 Dibutoxytin 92.0 parts by weight Boron trifluoride ethylamine complex 8.0 parts by weight Chloroplatinic acid [H 2 (PtCl 6 )・6H 2 O] 0.5 parts by weight Hexyl alcohol 25.0 parts by weight Butyl alcohol 25.0 parts by weight The above materials They were mixed uniformly to prepare a composition for forming an infrared reflective film. Plate thickness 3mm, size 100×
A 100 mm piece of soda glass was heated to 600°C and sprayed onto one side of the glass using an air pressure of 2.0 kg/cm 2 to form an infrared reflective glass having an infrared reflective film of 3000 Å. This glass had no coloration, had an average visible light transmittance of 71%, and had the results of infrared reflection characteristics shown in Table 2, No. 2. Example 3 In the same manner as in Example 1, an infrared reflective glass was formed using the composition for forming an infrared reflective film shown in Example 2 by a cold coating and firing method.
The film thickness of this reflective glass was 1200 Å, no clouding or coloring was observed, the average transmittance of visible light was 73%, and the results of infrared reflection characteristics shown in Table 2, No. 3 were obtained.

【表】 発明の効果 本発明の赤外線反射被膜形成用組成物は、以上
の説明からも明らかなように、ホツト基材への噴
霧法、コールド塗布焼成法に適用して、一回の焼
成により着色がなく、可視光線平均透過性に優
れ、良好な赤外線反射膜を容易に形成することが
できる。また、赤外線反射硝子形成の処理過程で
従来使用していた塩化第一錫を薬剤とする組成物
による場合のように、多量の塩酸ガスの発生がな
く、設備の腐食性はほとんどなく、排気の公害処
理も極めて軽度である。本発明の赤外線反射硝子
形成用組成物は、いずれの膜形成方法によつて
も、1000Å以上の膜厚が確保できることから、赤
外線反射硝子としての各種用途に供した場合の耐
引掻傷性が確保される。 なお、本発明の組成物より形成される赤外線反
射硝子は良好な導電性を有することから、透明導
電膜としての用途、例えば液晶表示用電極、抵抗
体などに供することもできる。
[Table] Effects of the Invention As is clear from the above description, the composition for forming an infrared reflective film of the present invention can be applied to a hot substrate spraying method and a cold coating and firing method, and can be applied to a single firing. It is free from coloration, has excellent average visible light transmittance, and can easily form a good infrared reflective film. In addition, unlike in the case of compositions containing stannous chloride as a chemical, which were conventionally used in the process of forming infrared reflective glass, there is no generation of large amounts of hydrochloric acid gas, there is almost no corrosiveness to equipment, and there is no exhaust gas. Pollution treatment is also extremely light. The composition for forming infrared reflective glass of the present invention can secure a film thickness of 1000 Å or more by any film forming method, and therefore has excellent scratch resistance when used in various applications as infrared reflective glass. Secured. In addition, since the infrared reflective glass formed from the composition of the present invention has good conductivity, it can also be used as a transparent conductive film, such as electrodes for liquid crystal displays, resistors, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は赤外線波長域3.4〜7.0μにおける従来
品と本発明の一実施例品の赤外線反射特性比較
図、第2図は第1図と同一の赤外線波長域におけ
る本発明の実施例における赤外線反射被膜形成用
組成物による赤外線反射硝子の膜厚変化による赤
外線反射特性図、第3図は本発明の実施例による
赤外線反射被膜形成用組成物を構成する有機第一
錫系化合物のアルキル基の大きさが及ぼす赤外線
反射膜の膜厚変化を示す図、第4図は本発明の実
施例の組成物に組合わせる三弗化硼素第一アミン
類のアミンを形づくるアルキル基の変化が及ぼす
赤外線反射膜の可視光線平均透過率を示す図、第
5図は有機第一錫系化合物に組合わせる三弗化硼
素第一アミン類の添加量が及ぼす赤外線反射特性
の関係図である。
Figure 1 is a comparison diagram of the infrared reflection characteristics of a conventional product and an example of the present invention in the infrared wavelength range of 3.4 to 7.0μ, and Figure 2 is a comparison diagram of the infrared reflection characteristics of the example of the present invention in the same infrared wavelength range as Figure 1. Figure 3 shows the infrared reflection characteristics of the change in film thickness of the infrared reflective glass using the composition for forming a reflective coating. Figure 4 shows the change in the thickness of the infrared reflective film depending on the size of the infrared reflection film, and Figure 4 shows the infrared reflection caused by changes in the alkyl groups forming the amine of the boron trifluoride primary amines combined in the composition of the example of the present invention. FIG. 5 is a graph showing the average visible light transmittance of the film, and is a graph showing the relationship between the infrared reflection characteristics and the amount of boron trifluoride primary amines combined with the organic stannous compound.

Claims (1)

【特許請求の範囲】 1 一般式Sn(OR)2で表されるアルコキシド化
合物及び一般式Sn(OOCR)2で表わされるアシル
オキシ化合物(ただし、前記のRは炭素数4〜8
のアルキル基を表わす。)よりなる群から選んだ
少なくとも一種の100重量部に、一般式R′−NH2
で表わされる脂肪族第一アミン(ただし、R′は
炭素数1〜6のアルキル基を表わす。)と三弗化
硼素との錯化合物の3重量部〜15重量部を混合し
たものを、メチルアルコールに均一に混合したこ
とを特徴とする赤外線反射被膜形成用組成物。 2 一般式Sn(OR)2で表されるアルコキシド化
合物及び一般式Sn(OOCR)2で表わされるアシル
オキシ化合物(ただし、前記のRは炭素数4〜8
のアルキル基を表わす。)よりなる群から選んだ
少なくとも一種の100重量部と、一般式R′−NH2
で表わされる脂肪族第一アミン(ただし、R′は
炭素数1〜6のアルキル基を表わす。)と三弗化
硼素との錯化合物の3重量部〜15重量部にさらに
塩化パラジウムもしくは塩化白金酸とを混合して
なるものとを、メチルアルコールに均一に混合し
たことを特徴とする赤外線反射被膜形成用組成
物。
[Scope of Claims] 1. Alkoxide compounds represented by the general formula Sn(OR) 2 and acyloxy compounds represented by the general formula Sn(OOCR) 2 (wherein R is a carbon atom having 4 to 8 carbon atoms)
represents an alkyl group. ) and 100 parts by weight of at least one selected from the group consisting of
A mixture of 3 to 15 parts by weight of a complex compound of an aliphatic primary amine represented by (where R' represents an alkyl group having 1 to 6 carbon atoms) and boron trifluoride was mixed with methyl A composition for forming an infrared reflective film, characterized in that it is uniformly mixed with alcohol. 2 Alkoxide compounds represented by the general formula Sn(OR) 2 and acyloxy compounds represented by the general formula Sn(OOCR) 2 (wherein R is a carbon number of 4 to 8
represents an alkyl group. ) and 100 parts by weight of at least one selected from the group consisting of
Palladium chloride or platinum chloride is added to 3 to 15 parts by weight of a complex compound of an aliphatic primary amine represented by (where R' represents an alkyl group having 1 to 6 carbon atoms) and boron trifluoride. 1. A composition for forming an infrared reflective film, characterized in that a composition obtained by mixing a mixture with an acid and methyl alcohol is uniformly mixed with methyl alcohol.
JP18909883A 1983-10-07 1983-10-07 Composition for forming infrared-ray reflecting glass Granted JPS6081046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18909883A JPS6081046A (en) 1983-10-07 1983-10-07 Composition for forming infrared-ray reflecting glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18909883A JPS6081046A (en) 1983-10-07 1983-10-07 Composition for forming infrared-ray reflecting glass

Publications (2)

Publication Number Publication Date
JPS6081046A JPS6081046A (en) 1985-05-09
JPH0478575B2 true JPH0478575B2 (en) 1992-12-11

Family

ID=16235312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18909883A Granted JPS6081046A (en) 1983-10-07 1983-10-07 Composition for forming infrared-ray reflecting glass

Country Status (1)

Country Link
JP (1) JPS6081046A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3735627A1 (en) * 1987-10-21 1989-05-03 Goldschmidt Ag Th LIQUID PREPARATION FOR THE PRODUCTION OF ELECTRICALLY CONDUCTIVE AND INFRARED-REFLECTIVE FLUOREDOTED TINNOXIDE LAYERS ON GLASS OR GLASS CERAMIC SURFACES, AND METHOD FOR THE PRODUCTION OF LIKE LAYERS USING THIS USE

Also Published As

Publication number Publication date
JPS6081046A (en) 1985-05-09

Similar Documents

Publication Publication Date Title
US4401474A (en) Pyrolytic coating reactant for defect and durability control
GB2093442A (en) Composition and process for preparing transparent conducting film
US4500567A (en) Method for forming tin oxide coating
KR20030066541A (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film, and display device
AU575648B2 (en) Iridescence suppressing coating process
JPH0478575B2 (en)
JPS6236046A (en) Formation of tin oxide film
JPH0217496B2 (en)
HUT58783A (en) Process for producing antistatic coating composition
JPS6081045A (en) Composition for forming infrared-ray reflecting glass
JP3821963B2 (en) COATING AGENT FOR GLASS AND METHOD FOR COATING GLASS MATERIAL USING THE SAME
US4963437A (en) Liquid preparation for the production of electrically conductive and infrared-reflecting fluorine-doped tin oxide layers on glass or glass-ceramic surfaces, as well as a method for the production of such layer
JPH0419651B2 (en)
JPH04255768A (en) Coating solution for forming transparent electrically conductive film
JP3865589B2 (en) Method for forming colored film
GB2039865A (en) Production of spectrally selective coatings on enamelled metal surfaces
JP804H (en) Method of forming conductive coating
JPS63257121A (en) Formation of conducting film
JP2003026999A (en) Colored film-forming coating fluid
JP7083342B2 (en) A method for manufacturing a transparent substrate with a low-reflection film, a photoelectric conversion device, a coating liquid for forming a low-reflection film of a transparent substrate with a low-reflection film, and a transparent substrate with a low-reflection film.
JP4054669B2 (en) Manufacturing method of low reflection glass plate
JP3707980B2 (en) Colored film forming coating solution
JP3751169B2 (en) Method for forming oxide film
JP4317487B2 (en) Manufacturing method of substrate having conductive film with low reflection function
JP2002188054A (en) Coating liquid for forming colored film