JPH0477705A - Manufacture of optical waveguide - Google Patents

Manufacture of optical waveguide

Info

Publication number
JPH0477705A
JPH0477705A JP19120890A JP19120890A JPH0477705A JP H0477705 A JPH0477705 A JP H0477705A JP 19120890 A JP19120890 A JP 19120890A JP 19120890 A JP19120890 A JP 19120890A JP H0477705 A JPH0477705 A JP H0477705A
Authority
JP
Japan
Prior art keywords
optical waveguide
clad
resin
base material
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19120890A
Other languages
Japanese (ja)
Inventor
Chisato Yoshimura
千里 吉村
Hiroshi Fujimura
藤村 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP19120890A priority Critical patent/JPH0477705A/en
Publication of JPH0477705A publication Critical patent/JPH0477705A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain an optical waveguide not to generate a waveguide loss even in the case of using it at a certain place in a normal environmental condition excepting for a clean room by covering four peripheries around an optical waveguide part with a crack material. CONSTITUTION:A clad base material composed of the resin of a low refraction factor forming a recessed groove 2 for which a high refraction factor resin is charged, to be the optical waveguide part is completely covered with a clad member 5 composed of a low refraction factor material. A core member 3 is charged into a void formed by the clad member 5 in the recessed groove 2 by utilizing a capillary phenomenon or injecting resin. The core member 3 is composed of the transparent plastic resin of the high refraction factor and uses a synthetic resin such as polystyrene or polycarbonate, etc. Since the four peripheries of the core member 3 are completely covered with the crack member for an optical waveguide 20 having this structure, a foreign material such as dust is not stuck onto the core part 3 and the core part is not damaged.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光導波路の製造方法に関するものであり、詳
細には通信や情報機器等の光学系に利用される高分子光
導波路の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an optical waveguide, and more specifically, a method for manufacturing a polymer optical waveguide used in optical systems such as communication and information equipment. It is related to.

[従来の技術] 従来、屈折率の低い透明なプラスチック樹脂を金型に流
し込んで基板を作製し、更に前記金型の一部を取り外し
、代わりに前記基板上に細い帯状の空洞が形成されるよ
うな金型を重ね、この空洞内に屈折率の高いプラスチッ
ク樹脂を流し込むことによって、前記基板に接合した導
波路を形成する方法があった(特開昭55−12000
4号公報参照、以後先行技術1という)。
[Prior Art] Conventionally, a substrate is produced by pouring a transparent plastic resin with a low refractive index into a mold, and then a part of the mold is removed, and a thin strip-shaped cavity is formed on the substrate instead. There was a method of forming a waveguide bonded to the substrate by stacking molds such as these and pouring a plastic resin with a high refractive index into the cavity (Japanese Patent Laid-Open No. 12,000/1989).
(See Publication No. 4, hereinafter referred to as Prior Art 1).

また、凹溝状に形成された導波路パターンを有する平板
状のシリコーンゴム型のパターン溝の一端から透明な注
型用樹脂を毛細管現象を利用して流入させ、溝内に樹脂
が十分に充填した後に硬化させる。次に溝内に充填した
樹脂よりも低屈折率の注型用樹脂をパターンが形成され
ている側の面全体に流し込み硬化させる。その後、シリ
コーンゴム型からパターン状の樹脂と平板状の樹脂の硬
化物が一体となった成形品を取り外し、該成形品の導波
路パターンが形成されている側に再び低屈折率の樹脂を
全面に注型硬化させて光導波路を製造する方法がある(
特開昭61−138903号公報参照、以後先行技術2
という)。
In addition, transparent casting resin is flowed in from one end of the pattern groove of a flat silicone rubber mold with a waveguide pattern formed in the shape of a concave groove using capillary action, and the resin is sufficiently filled into the groove. After that, let it harden. Next, a casting resin having a lower refractive index than the resin filled in the groove is poured over the entire surface on which the pattern is formed and hardened. After that, the molded product in which the patterned resin and the flat resin cured product are integrated is removed from the silicone rubber mold, and a low refractive index resin is again applied to the entire surface of the molded product on the side where the waveguide pattern is formed. There is a method of manufacturing optical waveguides by casting and curing (
See Japanese Patent Application Laid-Open No. 61-138903, hereinafter referred to as Prior Art 2
).

[発明が解決しようとする課題〕 しかしながら、先行技術1の成形法で得られる光導波路
は、光導波路部となるコア材の上面がクラツド材によっ
て覆われていないため、コア材の上面に塵等の異物が付
着した場合や傷が付いた場合、光が散乱されて導波損失
が極端に太き(なる。また、光の実効的反射面はコア材
とクラツド材どの界面よりも%波長はどクラツド材側に
あるため、クラツド材によって覆われていないコア上部
の空気層に塵が浮遊していても光が散乱され、前記と同
様導波損失に悪影響を及ぼす。従って、コア材上面の塵
や傷に起因する導波損失の悪化を防ぐためには、光導波
路全体のパッケージ化が必要不可欠であった。
[Problems to be Solved by the Invention] However, in the optical waveguide obtained by the molding method of Prior Art 1, the upper surface of the core material that becomes the optical waveguide portion is not covered with the cladding material, so dust etc. If foreign matter adheres to the material or the material is scratched, the light will be scattered and the waveguide loss will become extremely large.Also, the effective reflection surface of the light is % wavelength smaller than any interface between the core material and the clad material. Since the core is on the cladding material side, even if there is dust floating in the air layer above the core that is not covered by the cladding material, light will be scattered, which will have a negative effect on the waveguide loss as described above. In order to prevent deterioration of waveguide loss caused by dust and scratches, it was essential to package the entire optical waveguide.

しかして、先行技術2は上記の要件を満足させるもので
はあるが、先導波路を形成するための工程が複雑で手間
がかかって繁雑であるばかりではなく、低屈折率の樹脂
の注型、硬化に長時間を要し、工業的製造方法として非
効率的で十分満足できるものではない。
Although Prior Art 2 satisfies the above requirements, not only is the process for forming the guiding waveguide complicated and time-consuming, but also the casting and curing of low refractive index resin is difficult. It takes a long time to prepare, and is inefficient and unsatisfactory as an industrial manufacturing method.

本発明は、上述した問題点を解決するためになされたも
のであり、光伝送回路全体をパッケージ化する必要がな
く、クリーンルームに限らず、通常の場所で使用した際
にも導波損失が悪化せず、塵等の異物がコア部に付着し
たり、コア部に傷が付くおそれをなくし、しかも先導波
路の形成を簡単に比較的短時間に行える光導波路の製造
方法を提供することを目的とするものである。
The present invention was made to solve the above-mentioned problems, and there is no need to package the entire optical transmission circuit, and the waveguide loss worsens when used not only in a clean room but also in a normal location. An object of the present invention is to provide a method for manufacturing an optical waveguide, which eliminates the risk of foreign matter such as dust adhering to the core part or causing damage to the core part, and which allows the formation of a guiding waveguide easily and in a relatively short time. That is.

[課題を解決するための手段〕 本発明者は、導波損失上問題のない高屈折率材料からな
る導波路部が低屈折率材料からなるクラツド材で完全に
被覆されている光導波路を簡単な操作で短時間に製造す
ることを鋭意検討した結果、予め所望の導波路パターン
が形成される溝が形成されたクラッド基材と前記光導波
路部を覆うクラッド被覆材とを金型を使用して成形して
おき、前記クラッド基材とクラッド被覆材を重ね合わせ
ることによって形成された空洞内へ高屈折率樹脂を充填
し、硬化することによって導波路部が完全に被覆保護さ
れた光導波路が簡単かつ短時間で形成されることを知見
し、本発明を完成させるに至った。すなわち、本発明は
、屈折率の異なるプラスチック材料を用いて形成される
光導波路の製造方法において、凹溝状に形成された導波
路パターンを有するクラッド基材とクラッド被覆材とを
細い帯状の空洞が形成されるように重ね合わせ、この空
洞内に前記両クラッド材を形成するプラスチック材料よ
りも屈折率の高いプラスチック材料を充填して、前記両
クラッド材と一体に接合した光導波路を形成することを
特徴とする光導波路の製造方法を要旨とするものである
[Means for Solving the Problems] The present inventor has devised a simple method for creating an optical waveguide in which a waveguide portion made of a high refractive index material that causes no problem in terms of waveguide loss is completely covered with a cladding material made of a low refractive index material. As a result of careful consideration of manufacturing methods in a short time using simple operations, we developed a method that uses a mold to form a clad base material with grooves in which the desired waveguide pattern is formed and a clad covering material that covers the optical waveguide section. The cavity formed by overlapping the clad base material and the clad covering material is filled with a high refractive index resin and cured to form an optical waveguide in which the waveguide portion is completely covered and protected. They found that it can be formed easily and in a short time, and have completed the present invention. That is, the present invention provides a method for manufacturing an optical waveguide formed using plastic materials having different refractive indexes, in which a clad base material having a waveguide pattern formed in the shape of a concave groove and a clad covering material are formed into a thin strip-shaped cavity. and filling this cavity with a plastic material having a higher refractive index than the plastic material forming both of the cladding materials to form an optical waveguide integrally joined with both of the cladding materials. The gist of the present invention is a method for manufacturing an optical waveguide characterized by the following.

以下図面により本発明の詳細な説明する。第3図は本発
明による方法を用いて作製した光導波路の斜視図であり
、1は先導波路部となる高屈折率樹脂を充填する凹溝2
が形成されている低屈折率の樹脂からなるクラッド基材
である。この基材は、例えば透明なポリメチルメタクリ
レート、メチルペンテンポリマー等を使用して射出成形
、注型、または圧縮成形、その他適宜の成形方法によっ
て予め成形されたプラスチック製品である。
The present invention will be explained in detail below with reference to the drawings. FIG. 3 is a perspective view of an optical waveguide fabricated using the method according to the present invention, in which 1 indicates a groove 2 filled with a high refractive index resin which becomes a leading waveguide section.
This is a clad base material made of a low refractive index resin. This base material is a plastic product pre-molded by injection molding, casting, compression molding, or any other suitable molding method using, for example, transparent polymethyl methacrylate, methyl pentene polymer, or the like.

なお、このクラッド基材1のクラッド被覆材5との接合
面4にはクラッド被覆材5のクラッド基材1との接合面
6に設けられた突起部9と対応する位置に凹部7を設け
るとクラッド基材1とクラッド被覆材5との位置合わせ
が簡単になり、両者の重ね合わせが更に簡単に行える。
Note that a recess 7 is provided on the joint surface 4 of the clad base material 1 with the clad covering material 5 at a position corresponding to the protrusion 9 provided on the joint surface 6 of the clad covering material 5 with the clad base material 1. The clad base material 1 and the clad covering material 5 can be easily aligned, and the two can be superimposed even more easily.

クラッド被覆材5はクラッド基材1と同様低屈折率の樹
脂を使用して予め成形されたプラスチック製品であり、
接合の容易さの点から両者が同一の樹脂からなるプラス
チック製品であることが好ましい。コア材3は高屈折率
の透明プラスチック樹脂からなり、例えば、ポリスチレ
ン、ポリカーボネート等の合成樹脂が用いられる。この
ような構造からなる光導波路はコア材3の四周がクラツ
ド材によって完全に被覆されるから塵等の異物がコア部
に付着したり、コア部に傷が付くことが全くなくなるの
で導波損失に悪影響を受けることがなくなる。次に、第
3図の構造からなる光導波路の製造方法を第1図〜第4
図により説明する。第1図はクラッド基材の斜視図であ
り、クラッド基材1のクラッド被覆材5との接合面4に
は上記の如く凹溝2が形成されており、更に必要に応じ
て凹部7が設けられる。第2図はクラッド被覆材5の斜
視図であり、クラッド基材1の接合面4と接触する平面
に形成された接合面6には突起部9が、クラッド基材1
の接合面4に凹部7が穿設されている場合には、それと
対応して該凹部7に対応する位置に設けられ、該突起部
9が前記凹部7に容易に嵌合する寸法に形成されている
。このようなりラッド基材1とクラッド被覆材5とを第
3図に示すように重ね合わされるように、第4図に示す
ように治具11を用いて凹部7に突起部9が嵌合するよ
うにし、かつ接合面4と6の周辺が高周波誘導加熱装置
13に接続されたインダクター15に隣接するように配
置し、高周波を発振し、両接合面を瞬間的に加熱して、
クラッド基材1とクラッド被覆材5とを溶融密着させる
。なお、第4図は両者を溶融密着させた後の略示図であ
る。この際、突起部9は隣接するコア材3同志を確実に
シールする作用及びクラッド基材1とクラッド被覆材5
との溶融密着を容易にする作用の両方を併せ待つ。それ
ゆえ、突起部9の一部又は全部の表面に高周波を良く吸
収する物質、例えばフェライト、SiC等を付着させる
か、あるいは突起部9の中に含有させることによって、
クラッド基材1とクラッド被覆材5との接合をより効果
的に行なうことができる。その後、上記凹溝2と接合面
6とで形成される空洞に前記コア材3を毛細管現象を利
用するか又は樹脂射出によって充填する。
The cladding material 5 is a plastic product pre-molded using a low refractive index resin, similar to the cladding base material 1.
From the viewpoint of ease of joining, it is preferable that both are plastic products made of the same resin. The core material 3 is made of a transparent plastic resin with a high refractive index, and for example, a synthetic resin such as polystyrene or polycarbonate is used. In an optical waveguide with such a structure, the four circumferences of the core material 3 are completely covered with the cladding material, so that there is no possibility of foreign matter such as dust adhering to the core part or damage to the core part, so there is no waveguide loss. will no longer be adversely affected. Next, a method for manufacturing an optical waveguide having the structure shown in Fig. 3 will be explained in Figs.
This will be explained using figures. FIG. 1 is a perspective view of the clad base material, and the groove 2 is formed as described above on the joint surface 4 of the clad base material 1 with the clad covering material 5, and a recess 7 is further provided as necessary. It will be done. FIG. 2 is a perspective view of the cladding material 5, in which a protrusion 9 is formed on the joint surface 6 formed on a plane that contacts the joint surface 4 of the clad base material 1.
If a recess 7 is formed in the joint surface 4 of the recess 7, the protrusion 9 is formed at a position corresponding to the recess 7, and the protrusion 9 is dimensioned to easily fit into the recess 7. ing. In this way, the protrusion 9 is fitted into the recess 7 using the jig 11 as shown in FIG. 4 so that the rad base material 1 and the clad covering material 5 are overlapped as shown in FIG. and the peripheries of the joint surfaces 4 and 6 are arranged so as to be adjacent to the inductor 15 connected to the high frequency induction heating device 13, and high frequency is oscillated to instantaneously heat both the joint surfaces.
The clad base material 1 and the clad covering material 5 are melted and adhered to each other. Incidentally, FIG. 4 is a schematic diagram after the two have been melted and brought into close contact with each other. At this time, the protrusion 9 serves to reliably seal the adjacent core materials 3 and the clad base material 1 and the clad covering material 5.
It also has the effect of facilitating melting and adhesion. Therefore, by attaching a substance that absorbs high frequencies well, such as ferrite or SiC, to the surface of part or all of the protrusion 9, or by incorporating it into the protrusion 9,
The clad base material 1 and the clad covering material 5 can be bonded more effectively. Thereafter, the cavity formed by the groove 2 and the joint surface 6 is filled with the core material 3 using capillary action or by resin injection.

この場合、溶融密着させたクラツド材を金型内に挿入し
て金型内を真空にして、金型温度、時間、射出圧力を制
御してコア材3の射出成形を開始すればよい。さらに、
特開昭57−4748号公報に開示されているようなイ
ンダクターはさみ込み方式又は内蔵方式の金型を使用し
て、高周波加熱によってクラッド基材lとクラッド被覆
材5との溶融密着を行い、続いて同じ金型内にてコア材
3の充填を行えばさらにいっそう光導波路20の製造時
間を短縮できる。
In this case, injection molding of the core material 3 may be started by inserting the melted and tightly bonded cladding material into the mold, creating a vacuum inside the mold, and controlling the mold temperature, time, and injection pressure. moreover,
Using an inductor sandwiching type or built-in type mold as disclosed in Japanese Patent Application Laid-Open No. 57-4748, the clad base material l and the clad covering material 5 are melted and bonded by high frequency heating, and then If the core material 3 is filled in the same mold, the manufacturing time of the optical waveguide 20 can be further shortened.

また、上記の手順を変えて先ずクラッド基材1及びクラ
ッド被覆材5を各々成形しておき、次にクラッド基材l
の凹溝2にコア材3形成用高屈折率樹脂を毛細管現象に
よって注入充填するか、又はクラッド基材1成形に続い
て樹脂射出によって充填してコア材3を形成する。その
後、上記クラッド被覆材5を治具11を用いて凹部7に
突起部9を嵌合させ、続いて上記と同様に高周波によっ
て加熱し、クラッド基材1とクラッド被覆材5を溶融密
着させて光導波路を製造することもできる。
Alternatively, the above procedure may be changed to first mold the clad base material 1 and the clad covering material 5, and then mold the clad base material l.
The core material 3 is formed by injecting and filling the high refractive index resin for forming the core material 3 into the concave groove 2 by capillary action, or by filling it by resin injection following the molding of the clad base material 1. Thereafter, the protrusion 9 of the cladding material 5 is fitted into the recess 7 using the jig 11, and then the cladding base material 1 and the cladding material 5 are melted and adhered by heating with high frequency in the same manner as above. Optical waveguides can also be manufactured.

[実施例] 以下、本発明を具体化した一実施例を図面を参照して説
明する。
[Example] Hereinafter, an example embodying the present invention will be described with reference to the drawings.

まず、第1図に示すような凹溝2及び凹部7を有するク
ラッド基材1を屈折率が約1.5の低屈折率樹脂(例え
ばポリメチルメタクリレート樹脂)を射出成形によって
形成した。
First, a clad base material 1 having grooves 2 and recesses 7 as shown in FIG. 1 was formed by injection molding a low refractive index resin (for example, polymethyl methacrylate resin) having a refractive index of about 1.5.

次に、第2図に示すように突起部9を前記凹部7に対応
する位置に有するクラッド被覆材を上記と同一の樹脂を
使用して射出成形した。突起部9の大きさは前記凹部7
に嵌合する寸法に形成されており、かつその全表面にフ
ェライトの粉末を薄く塗布した。
Next, as shown in FIG. 2, a cladding material having projections 9 at positions corresponding to the recesses 7 was injection molded using the same resin as above. The size of the protrusion 9 is the same as that of the recess 7.
The ferrite powder is thinly coated on its entire surface.

このようにして形成されたクラッド基材1とクラッド被
覆材5とを凹部7に突起部9が嵌合するように向かい合
わせ、第4図に示すように治具11を用いてかみ合わせ
、治具11の内面に設けたインダクターはさみ込み方式
の金型(金型は図示省略)のインダクター15に接合面
4,6の周辺が隣接するように設置し、高周波誘導加熱
装置13から高周波を10秒間発振し、接合面を瞬間的
に加熱し、クラッド基材1とクラッド被覆材5とを溶融
密着させ、隣接する凹溝2同志を確実にシールして帯状
の空洞を形成する。次に、引き続き該空洞に屈折率が約
1.6の高屈折樹脂(例えばポリスチレン樹脂)を金型
内を真空にして5秒間射出してコア材3を形成し、しか
るのち10秒間冷却後金型から取り出し、第3図に示す
光導波路20を得た。
The clad base material 1 and the clad covering material 5 thus formed are faced to each other so that the protrusion 9 fits into the recess 7, and are engaged using a jig 11 as shown in FIG. The inductor 15 of an inductor sandwiching type mold (the mold is not shown) provided on the inner surface of the inductor 11 is installed so that the peripheries of the bonding surfaces 4 and 6 are adjacent to each other, and high frequency waves are oscillated for 10 seconds from the high frequency induction heating device 13. Then, the bonding surfaces are instantaneously heated, the clad base material 1 and the clad covering material 5 are melted and brought into close contact with each other, and the adjacent grooves 2 are reliably sealed to form a band-shaped cavity. Next, a high refractive resin (for example, polystyrene resin) with a refractive index of about 1.6 is injected into the cavity for 5 seconds while the inside of the mold is evacuated to form the core material 3, and then cooled for 10 seconds and then molded. It was taken out from the mold to obtain an optical waveguide 20 shown in FIG.

全サイクル時間は35秒であった。Total cycle time was 35 seconds.

[発明の効果] 以上詳述したように、本発明によれば光導波路部の四周
がクラツド材によって完全に包囲被覆されているため、
先任送路全体のパッケージ化を必要としない、クリーン
ルーム以外の通常の環境条件の場所で使用しても導波損
失に同等悪影響を受けない光導波路を簡単にしかも短時
間に製造できるので、大量にかつ安価に光導波路を製作
しつる利点がある。
[Effects of the Invention] As detailed above, according to the present invention, the four circumferences of the optical waveguide section are completely surrounded by the cladding material.
Optical waveguides that do not require packaging of the entire transmission path and are not affected by waveguide loss even when used in locations other than clean rooms under normal environmental conditions can be manufactured easily and in a short time, making it possible to manufacture them in large quantities. Moreover, there is an advantage that the optical waveguide can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のクラッド基材の斜視図、第2図は本発
明のクラッド被覆材の斜視図、第3図は本発明の製造方
法で作製した光導波路の斜視図、第4図は高周波誘導加
熱によってクラッド基材とクラッド被覆材を接合する装
置及び溶融密着後クラッド材の概略模式図である。 1・・・クラッド基材、2・・・凹溝、3・・・コア材
、4・・・接合面、5・・・クラッド被覆材、6・・・
接合面、7凹部、9・・・突起部、11・・・治具、1
3・・・高周波誘導加熱装置、15・・・インダクター
、20・・・光導波路。
FIG. 1 is a perspective view of the cladding base material of the present invention, FIG. 2 is a perspective view of the cladding material of the present invention, FIG. 3 is a perspective view of an optical waveguide manufactured by the manufacturing method of the present invention, and FIG. 4 is a perspective view of the cladding material of the present invention. FIG. 2 is a schematic diagram of an apparatus for joining a clad base material and a clad covering material by high-frequency induction heating, and a clad material after melting and adhesion. DESCRIPTION OF SYMBOLS 1... Clad base material, 2... Concave groove, 3... Core material, 4... Joint surface, 5... Clad covering material, 6...
Joint surface, 7 recess, 9... protrusion, 11... jig, 1
3... High frequency induction heating device, 15... Inductor, 20... Optical waveguide.

Claims (5)

【特許請求の範囲】[Claims] (1)屈折率の異なるプラスチック材料を用いて形成さ
れる光導波路の製造方法において、凹溝状に形成された
導波路パターンを有するクラッド基材とクラッド被覆材
とを細い帯状の空洞が形成されるように重ね合わせ、こ
の空洞内に前記両クラッド材を形成するプラスチック材
料よりも屈折率の高いプラスチック材料を充填して、前
記両クラッド材と一体に接合した光導波路を形成するこ
とを特徴とする光導波路の製造方法。
(1) In a method for manufacturing an optical waveguide formed using plastic materials with different refractive indexes, a thin band-shaped cavity is formed between a clad base material having a waveguide pattern formed in the shape of a groove and a clad covering material. and the cavity is filled with a plastic material having a higher refractive index than the plastic materials forming both of the cladding materials, thereby forming an optical waveguide integrally joined with both of the cladding materials. A method for manufacturing an optical waveguide.
(2)前記クラッド基材またはクラッド被覆材のいずれ
か一方の接合面が突起部を有する面であることを特徴と
する請求項1記載の光導波路の製造方法。
(2) The method for manufacturing an optical waveguide according to claim 1, wherein the bonding surface of either the clad base material or the clad coating material is a surface having a protrusion.
(3)前記クラッド基材と前記クラット被覆材との接合
方法が高周波加熱方法であることを特徴とする請求項1
記載の光導波路の製造方法。
(3) Claim 1, wherein the method of joining the clad base material and the clad covering material is a high frequency heating method.
A method of manufacturing the optical waveguide described above.
(4)前記空洞にコア材を充填する方法が射出成形法ま
たは毛細管現象を利用する方法であることを特徴とする
請求項1記載の光導電路の製造方法。
(4) The method for manufacturing a photoconductive path according to claim 1, wherein the method for filling the core material into the cavity is an injection molding method or a method using capillary phenomenon.
(5)前記クラッド基材またはクラッド被覆材のいずれ
か一方の接合面が高周波の高吸収材を含むかまたは付着
した突起部を有する面であることを特徴とする請求項1
記載の光導波路の製造方法。
(5) Claim 1 characterized in that the joint surface of either the clad base material or the clad covering material is a surface having a protrusion containing or adhering to a high-frequency high-absorbing material.
A method of manufacturing the optical waveguide described above.
JP19120890A 1990-07-19 1990-07-19 Manufacture of optical waveguide Pending JPH0477705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19120890A JPH0477705A (en) 1990-07-19 1990-07-19 Manufacture of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19120890A JPH0477705A (en) 1990-07-19 1990-07-19 Manufacture of optical waveguide

Publications (1)

Publication Number Publication Date
JPH0477705A true JPH0477705A (en) 1992-03-11

Family

ID=16270704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19120890A Pending JPH0477705A (en) 1990-07-19 1990-07-19 Manufacture of optical waveguide

Country Status (1)

Country Link
JP (1) JPH0477705A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0718646A1 (en) * 1994-12-05 1996-06-26 Sharp Kabushiki Kaisha Method for producing a polymeric optical waveguide
JP2004184480A (en) * 2002-11-29 2004-07-02 Fuji Xerox Co Ltd Manufacturing method of polymer optical waveguide
JP2004226941A (en) * 2002-11-28 2004-08-12 Fuji Xerox Co Ltd Method for manufacturing polymer optical waveguide and optical element, and optical element
JP2005043747A (en) * 2003-07-24 2005-02-17 Fuji Xerox Co Ltd Method for manufacturing macromolecule optical waveguide
JP2012229189A (en) * 2011-04-27 2012-11-22 Nihon Univ Method for synthesis of lactate
US20140306362A1 (en) * 2013-04-10 2014-10-16 National Kaohsiung University Of Applied Sciences Method for manufacturing light-guide device
US10151888B2 (en) * 2017-03-29 2018-12-11 Mellanox Technologies, Ltd. Optical waveguide structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0718646A1 (en) * 1994-12-05 1996-06-26 Sharp Kabushiki Kaisha Method for producing a polymeric optical waveguide
JP2004226941A (en) * 2002-11-28 2004-08-12 Fuji Xerox Co Ltd Method for manufacturing polymer optical waveguide and optical element, and optical element
JP4581328B2 (en) * 2002-11-28 2010-11-17 富士ゼロックス株式会社 Polymer optical waveguide and optical element manufacturing method
JP2004184480A (en) * 2002-11-29 2004-07-02 Fuji Xerox Co Ltd Manufacturing method of polymer optical waveguide
JP4534415B2 (en) * 2002-11-29 2010-09-01 富士ゼロックス株式会社 Method for producing polymer optical waveguide
JP2005043747A (en) * 2003-07-24 2005-02-17 Fuji Xerox Co Ltd Method for manufacturing macromolecule optical waveguide
JP4561059B2 (en) * 2003-07-24 2010-10-13 富士ゼロックス株式会社 Method for producing polymer optical waveguide
JP2012229189A (en) * 2011-04-27 2012-11-22 Nihon Univ Method for synthesis of lactate
US20140306362A1 (en) * 2013-04-10 2014-10-16 National Kaohsiung University Of Applied Sciences Method for manufacturing light-guide device
US9545766B2 (en) * 2013-04-10 2017-01-17 National Kaohsiung University Of Applied Sciences Method for manufacturing light-guide device
US10151888B2 (en) * 2017-03-29 2018-12-11 Mellanox Technologies, Ltd. Optical waveguide structure

Similar Documents

Publication Publication Date Title
JP2003172841A5 (en)
JPH0688916A (en) Molded waveguide and manufacture thereof
EP0611971B1 (en) Molded waveguide with a unitary cladding region and method of making
JPH0477705A (en) Manufacture of optical waveguide
US5540799A (en) Method of fabricating optical waveguide from a laminate
JP2004037776A (en) Optical waveguide and optical waveguide device
JP2000326348A (en) Mold for lens, its manufacture, and manufacture of lens
US20050018315A1 (en) Method of manufacturing hybrid aspherical lens
JP2001133650A (en) Optical waveguide substrate, method for manufacturing the optical waveguide substrate, optical waveguide part and method for manufacturing the optical waveguide part
JPH09152522A (en) Structure for connecting optical fiber aligning parts and optical waveguide substrate
JPS6029710A (en) Manufacture of star coupler
WO2004097488A1 (en) Method of manufacturing hybrid aspherical lens
JPH11337850A (en) Assembling method for polymer waveguide optical switch
US20030012518A1 (en) Optical fiber coupler receptacle member
JP2002318318A (en) Optical waveguide, method for manufacturing the waveguide, and optical module using the optical waveguide
JPS6014206A (en) Optical waveguide
JP2002071993A (en) Optical waveguide substrate, method of manufacturing the same, optical waveguide parts and method of manufcturing the same
JPH01297601A (en) Production of optical circuit plate
JP3427860B2 (en) Optical device module and manufacturing method thereof
JPS5988714A (en) Manufacture of optical waveguide
JPS63266405A (en) Optical circuit board and its production
JPH02308207A (en) Formation of reflection preventive film of optical connector
JPH03110505A (en) Rib-shaped optical waveguide and its manufacture
JPS60217303A (en) Hologram sealing body
JPH07254657A (en) Integrated circuit package and its optical transmission window formation method