JPH0477609B2 - - Google Patents

Info

Publication number
JPH0477609B2
JPH0477609B2 JP62222772A JP22277287A JPH0477609B2 JP H0477609 B2 JPH0477609 B2 JP H0477609B2 JP 62222772 A JP62222772 A JP 62222772A JP 22277287 A JP22277287 A JP 22277287A JP H0477609 B2 JPH0477609 B2 JP H0477609B2
Authority
JP
Japan
Prior art keywords
filtration membrane
liquid
liquid filtration
base material
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62222772A
Other languages
Japanese (ja)
Other versions
JPS6467202A (en
Inventor
Fumio Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP22277287A priority Critical patent/JPS6467202A/en
Priority to DE8888308210T priority patent/DE3864219D1/en
Priority to EP88308210A priority patent/EP0306350B1/en
Priority to US07/240,723 priority patent/US4894160A/en
Publication of JPS6467202A publication Critical patent/JPS6467202A/en
Publication of JPH0477609B2 publication Critical patent/JPH0477609B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は医薬、食品分野等の精密濾過、限外濾
過等に有効な液体濾過膜構造体に関する。 〔従来技術〕 この種の液体濾過膜構造体は一般に、隔壁にて
囲まれて互に並列する2種類の多数の液体通路を
備えたハニカム構造体またはモノリス構造体であ
り、一方の流体通路が被処理液体の流通路に構成
されかつ他方の流体通路が隔壁を透過した被処理
液体中の特定の成分の流通路に構成されている。
このため、かかる液体濾過膜構造体においては、
隔壁が一方の流体通路側から他方の流体通路側へ
の液体濾過作用しか機能し得ず、構造体の単位体
積当りの液体濾過面積には限度がある。また、か
かる液体濾過膜構造体においては、例えば一方の
流体通路の下流側端を目封じするとともに同通路
に連通する排出口を形成し、かつ他方の流体通路
の上流側端を目封じしなければならないといつた
面倒な工作作業が必要である。 これに対処し得る液体濾過膜構造体として米国
特許第4069157号明細書に示されているように、
隔壁にて囲まれて互に並列する多数の流体通路を
備えるとともに、前記隔壁が多孔質の基材部と前
記流体通路側の全てに位置し前記基材部と一体の
液体濾過膜部を備えた液体濾過膜構造体が知られ
ている。かかる構造体においては、被処理液体が
流体通路に供給されて流動し、同通路を流動中特
定の成分が液体濾過膜部を透過して基材部中を流
動しつつ外部へ排出されるように構成されてい
る。 〔発明が解決しようとする問題点〕 ところで、かかる液体濾過膜構造体において
は、隔壁を構成する基材部、液体濾過膜部の流動
抵抗が濾過効率に大きく影響するにもかかわら
ず、基材部のみの平均細孔径、気孔率で規定され
ているにすぎず、基材部と液体濾過膜部の流動抵
抗の相乗効果について検討された例はない。しか
も、これらの流動抵抗は、平均細孔径、気孔率の
特性以外に細孔の形状、分布、数量、膜厚等複雑
な要因が関与するため的確な限定がなされていな
い。よつて従来の液体濾過膜構造体は、例えば構
造体中心部が有効に活用されていないなど濾過効
率が不十分なものであつた。また、かかる液体濾
過膜構造体における基材部の細孔径の分布は2〜
20μmの範囲にあり、細孔の80〜85%のものが細
孔径5〜15μmである。すなわち、基材部の平均
細孔径は5〜15μmの範囲にある。従つて、基材
部上の濾過膜部は基材部の細孔をうめるべく、2
〜20μmの粗大粒子と0.02〜4.0μmの微小粒子と
を混在させて形成される。このため、濾過膜部に
おいてはその一部が粗大粒子の隙間を微小粒子が
うめる状態となり、また他の一部が表層付近に微
粒子が堆積する状態となつて、全体としては細孔
分布が不均一であつて高い濾過精度は気体し得
ず、かつ目詰まり等の原因となる。濾過膜部の製
造には動的形成法が採用されていて熱的処理が施
されていないため、実用上は耐熱性に問題があ
る。 従つて、本発明の目的は、液体濾過膜構造体の
隔壁を特定の基材部と液体濾過膜部を備えた複層
構造に構成するとともに、これら両部の流動抵抗
の比を特定することにより、この種の液体濾過膜
構造体の濾過効率を向上させることにある。 〔問題点を解決するための手段〕 本発明は、隔壁にて囲まれて互に並列する多数
の流体通路を備えるとともに、前記隔壁が多孔質
の基材部と前記流体通路側の実質的に全てに位置
し前記基材部と一体の液体濾過膜部を備え、前記
流体通路の全てが濾過機能に有効に寄与する液体
濾過膜構造体であり、前記基材部の純水の透水量
が前記隔壁の純水の透水量の20倍以上で、かつ前
記液体濾過膜部の平均細孔径が10〜10000Åであ
り、被処理液体が前記流体通路を流動するととも
に、前記被処理液体中の特定の成分が前記液体濾
過膜部を透過し前記基材部中を流動しつつ同基材
部の排出部を経て構造体外へ排出されることを特
徴とする。 しかして、本発明に液体駅頭濾過膜構造体にお
いては、前記基材部の純水の透水量が前記隔壁の
純水の透水量の50倍以上であることが好ましく、
また前記隔壁の純水の透水量が1000/m2・hr・
(Kg/cm2)以下であることが好ましい。さらに、
液体濾過膜部の平均細孔径が10〜1000Åと微細な
場合は基材部の平均細孔径が0.2〜2μmであるこ
とが好ましく、かつこの場合基材部の純水の透水
量が隔壁の純水の透水量の400倍以上であること
が好ましい。なお、純水の透水量とは隔壁、基材
部、液体濾過膜部等の流動抵抗を定量化するもの
である。 また、本発明に係る液体濾過膜構造体において
は、前記排出部を外壁の側面部または一端部に備
え、かかる排出部は外壁から内部に延在していて
もよい。 さらにまた、本発明に係る液体濾過膜構造体
は、流体通路の断面形状が三角形、四角形、その
他の多角形、円形、楕円形等適宜形状のハニカム
構造体またはモノリス構造体であつて、流体通路
間の混合を良くするように隔壁に流体通路間を連
通させる切れ目を入れてもよく、セラミツク、焼
結金属、多孔質ガラス、多孔質プラスチツク等に
て形成される。液体濾過膜構造体をセラミツクに
て形成する場合には、セラミツク原料としてはア
ルミナ、シリカ、ムライト、コーデイエライト、
ジルコニア、チタニア等適宜のものが使用され、
基材部のみからなるハニカム構造体またはモノリ
ス構造体はセラミツク原料の微粉に有機バインダ
ー、可塑剤を加えて混練してなる調合物を多数の
スリツトを備えたダイスから押出し、かつこれを
焼成することにより形成される。また、液体濾過
膜部はかかるハニカム構造体またはモノリス構造
体の多数の貫通孔の内周に一体的に形成される
が、好ましくはアルミニウムアルコラートまたは
アルミニウムキレートを加水分解して得たアルミ
ナゾルをコートして焼成することにより、または
セラミツク原料の超微粉末を貼着、圧着して焼成
することにより適宜形成される。なお、本発明の
液体濾過膜構造体においては、隔壁の流体通路側
の全てに濾過膜部を備えていることが濾過効率の
点で好ましいが、必要に応じて基材部の一部を接
着剤を用いて目封じしたり、基材部上の一部に他
機能を有する薄膜を形成してもよい。 〔発明の作用・効果〕 本発明に係る液体濾過膜構造体においては、隔
壁を構成する基材部の流体通路側の実質的に全て
に液体濾過膜部が位置し、かつ基材部における流
動抵抗を液体濾過膜部の流動抵抗より極めて小さ
い特定の範囲に規定している。かかる構成は、隔
壁を構成する基材部および濾過膜部の流動抵抗が
濾過効率に大きな影響を及ぼすという知見に基づ
いて濾過効率を向上すべく意図したもので、平均
細孔径、気孔率以外に細孔の形状、分布、数量、
膜厚等複雑な要因が関与する上記流動抵抗を本発
明で規定する透水量の比により定量化し、かかる
透水量の比を特定することにより濾過効率を向上
させるものである。このため、隔壁の流体通路側
の実質的に全てが液体濾過作用を有し、濾過され
た特定の成分は基材部内を第2の流体通路として
流動し、かつ排出部を経て構造体外へ排出され
る。従つて、当該膜構造体においては単位体積当
りの液体濾過面積が著しく増大し、従来に比して
液体濾過効率が著しく向上しかつ同効率が一定の
場合には構造体を小型化することができる。 なお、当該液体濾過膜構造体においては、全て
の流体通路を被処理液体の流通路として使用する
ものであることから、従来のごとく全ての流体通
路を被処理液体の流通路と選択透過した特定成分
の流通路の2種類に構成すべく、構造体の一端側
の特定された多数の流体通路の開口端、および他
端側の特定された他の多数の流体通路の開口端を
目封じするという面倒な工作作業を必要としな
い。従つて、当該液体濾過膜構造体は容易に製造
することができる。 〔実施例〕 (1) 液体濾過膜構造体 第1図には本発明に係る第1液体濾過膜構造
体10A(以下第1構造体という)が示されて
いる。当該構造体10Aは四角柱状のセラミツ
ク製ハニカム構造体で、連続した隔壁11にて
囲まれて互に並列する断面四角形の多数の流体
通路12を備えている。隔壁11は第2図に示
すように基材部11aと液体濾過膜部11bと
により構成されている。液体濾過膜部11bは
基材部11aの流体通路12側の全ての面に一
体的に位置し、流体通路12の周壁を構成して
いる。当該構造体10Aにおいては、第1図に
示すようにケーシング21内に収容されて使用
されるが、基材部11aが露呈する外側面の中
央部に排出パイプ13が接着されているととも
に、ケーシング21内の左右のサポート22,
23間の外側面の全面が釉薬によつてコートさ
れて密閉され、かつ各サポート22,23より
端部側の外側面には液体濾過膜部11bが露呈
している。なお、排出パイプ13はケーシング
21から外部へ突出しており、また構造体10
Aの両端における隔壁11の露呈部は接着剤に
て密閉されている。被処理液体はケーシング2
1のインレツトポート21aから供給されて構
造体10Aの一端から各流体通路12に流入
し、同通路12を流動して他端から流出しケー
シング21のアウトレツトポート21bを経て
排出される。この間、被処理液体中の特定の成
分は隔壁11の液体濾過膜部11bを透過し、
基材部11a中を流動しつつ排出パイプ13を
経て排出される。なお、構造体10Aにおいて
は、排出パイプ13またはこれと同様に機能す
るパイプを複数設けてもよい。 第3図には本発明に係る第2液体濾過膜構造
体10Bが示されている。当該構造体10Bは
第1構造体10Aと同様の外形形状を呈し同図
に示すようにケーシング24内に収容されて使
用される。当該構造体10Bにおける両サポー
ト22,23間の外側面11cには基材部11
aが露呈し、かつ両サポート22,23より端
部側の外側面には液体濾過膜部11bが露呈し
ている。被処理液体はインレツトポート24a
から各流体通路12に流入し、アウトレツトポ
ート24bを経て排出される。この間、被処理
液体中の特定の成分は液体濾過膜部11bを透
過した後基材部11a中を流動し、両サポート
22,23間の外側面11cを透過し第2のア
ウトレツトポート24cから排出される。従つ
て、この外側面11cが排出部として機能す
る。 第4図には本発明に係る第3液体濾過膜構造
体10cが示されている。当該構造体10cも
第1構造体10Aと同様の外形形状を呈し、そ
の外側面には排出パイプ13に換えて排出孔1
4が穿設されている。排出孔14は断面長方形
を呈し、第5図に示すように構造体10Cの外
側面の一側に開口しているとともに所定の深さ
まで延びている。かかる排出孔14においては
基材部11aが露呈していて、特定の成分は液
体濾過膜部11bを透過した後、基材部11a
中を流動して排出孔14に達し、ケーシング2
4の第2のアウトレツトポート24cを経て排
出される。 以上の各構造体において、基材部11aの厚
みは0.15〜1.5mm、その平均細孔径は0.2〜5μm
であり、また液体濾過膜部11bの厚みは2〜
100μm、平均細孔径は10〜10000Åである。基
材部11aの平均細孔径が0.2μm未満では基材
部11aの拡散抵抗が無視し得なくなり、かつ
平均細孔径が5μmを超えると均一な微粒子か
らなる液体濾過膜部11bの形成が困難とな
る。の後述する純水の透水量の20倍以上であ
る。なお、上記各構造体の隔壁11は基材部1
1aと液体濾過膜部11bとからなる2層構造
体のものであるが、これら両部11a,11b
間または液体濾過膜部11bの外側面に副基材
部を一体的に介在させてもよい。これらの場
合、基材部11aの平均細孔径は2〜5μm、
副基材部の平均細孔径は0.2〜2μmであること
が好しく、前者の隔壁においては副基材部の作
用にて極めて緻密でかつ薄い液体濾過膜部11
bが容易に形成され、また後者の隔壁において
は被処理液体中の來雑物に対して液体濾過膜部
11bを保護する機能がある。 なお、第1図〜第5図は本発明の液体濾過膜
構造体の一例にすぎず、またこれらの構造体は
必ずしもケーシング内に収容されて使用する必
要はなく、例えば排出パイプ13を設けた構造
体10Aのままで被処理液体が充満する所定の
室の中に設置しても所望の濾過性能が得られ
る。また、各構造体の外側面を液体濾過膜部1
1bにするか、基材部11aにするか、あるい
は釉薬や接着剤等で密閉するかは、構造体の作
用状態に応じて適宜選定する。また、構造体の
両端における隔壁11の露呈部は接着剤で密閉
するか、液体濾過膜部を付着して用いることが
できる。さらに構造体の両端における隔壁11
の露呈部を、基材部11aにすることによつて
排出部として用いることもでき、この場合、流
体通路12の少なくとも一方端を目封止する必
要がある。 (2) 基材部11aの調整法 隔壁11を構成する基材部11aを下記a〜
eの方法にてそれぞれ調製した。 (a):平均粒径0.8μmのα−Al2O3粒子90部とカ
オリン10部との混合物に、水と有機バインダ
ーであるポリビニルアルコールを添加して混
練する。得られた杯土を押出し成形して乾燥
後、大気中1350℃で3時間焼成する。得られ
た成形体(基材部)の平均細孔径は0.2μm、
細孔容積は0.1c.c./gである。 (b):平均粒径1.5μmのα−Al2O3粒子を用いた
点を除き調製法(a)により基材部を得た。得ら
れた基材部の平均細孔径は0.7μm、細孔容積
は0.19c.c./gである。 (c):平均粒径5μmのα−Al2O3粒子を用い、調
製法(b)と同様にして平均細孔径2.0μm、細孔
容積0.23c.c./gの基材部を得た。 (d):平均粒径12μmのα−Al2O3粒子を用い、
調製法(c)と同様にして平均細孔径5.0μm、細
孔容積0.25c.c./gの基材部を得た。 (e):焼成温度を1500℃とした点を除き調製法(a)
により基材部を得た。得られた基材部の平均
細孔径は0.1μm、細孔容積は0.07c.c./gであ
る。 (3) 液体濾過膜部11bの調製法 隔壁11を構成する液体濾過膜部11bを下
記(イ)〜(ホ)の方法によりそれぞれ調製した。 (イ):アルミニウムイソプロポキシドを加熱加水
分解し、これに解膠剤である硝酸を添加して
ゾル担持液を調製する。このゾル担持液を基
材部の多数の貫通孔周面に被覆担持させて乾
燥した後、大気中400℃で3時間焼成した。
得られた薄膜(液体濾過膜部)の平均細孔径
は50Å、膜厚は15μmである。 (ロ):比表面積30m2/gのγ−Al2O3とα−
Al2O3との混合粉末に水、硝酸を添加して担
持スラリーを調製し、これを基材部の貫通孔
周面に被覆担持させて乾燥した後大気中1000
℃で3時間焼成し、平均細孔径400Å、膜厚
50μmの液体濾過膜部を得た。 (ハ):平均粒径0.5μmのα−Al2O3粒子に水、硝
酸、ポリビニルアルコールを添加して担持ス
ラリーを調製し、これを基材部の貫通孔周面
に被覆担持させて乾燥した後大気中1300℃で
3時間焼成し、平均細孔径2000Å(0.2μm)、
膜厚50μmの液体濾過膜部を得た。 (ニ):平均粒径2μmのα−Al2O3粉末に水、硝
酸、ポリビニルアルコールを添加して担持ス
ラリーを調製し、これを基材部の貫通孔周面
に被覆担持させて乾燥した後大気中1400℃で
3時間焼成し、平均細孔径10000Å(1μm)、
膜厚15μmの液体濾過膜部を得た。 (ホ):調製法(ハ)で得られた膜上に調製法(イ)により
平均細孔径50Å、膜厚15μmの液体濾過膜部
を得た。 以上の(イ)〜(ホ)の調製法によれば、実質的に均一
粒子からなる膜形成成分を基材部11a上に付着
させかつ焼成することにより、均一な細孔からな
る濾過膜部11bが得られる。 (3) 純水の透水量 基材部調製法(a)〜(e)に基づき外径10mm、壁厚
1mm、長さ15mmの有底パイプ状の基材部測定用
試料S1と、同試料を用いて液体濾過膜部調製法
(イ)〜(ホ)に基づき液体濾過膜部を備えた隔壁測定
用試料S2とを作製した。各測定用試料S1,S2
第6図に示す測定法に供し、純水の透水量を測
定した。なお、測定に当つては各測定用試料
S1、S2を密閉容器31内に収容し、接続管32
を各試料S1、S2の開口端部に気密的に接続す
る。これにより、市水を活性炭フイルタ、イオ
ン交換器を通しさらに分画分子量#2000の限外
濾過膜を通した水が加圧タンク33から所定圧
で各試料S1、S2の内孔内に供給され、同水は各
試料S1、S2を透過して容器31から排出管34
を経て流出する。水の供給圧(試料内外の圧力
差)は、基材部測定用試料S1にあつては0.2〜
0.5Kg/cm2、隔壁測定用試料S2にあつては1〜
3Kg/cm2とし、下記式により純水の透水量Q
/m2・hr・(Kg/cm2)が算出される。 Q=V/(A・ΔP) 但し、 V:純水の透水量(/hr) A:各試料の濾過面積(m2) ΔP:水の内外の圧力差(Kg/cm2) なお、各試料S1、S2は測定前に1晩水中に放
置し、その後水中に浸漬した状態で真空脱気を
行つた。 (4) 濾過実験 被処理水溶液を濾過する目的で、図面に示す
第1構造体10A〜第3構造体10Cを用いて
濾過実験を行つた。各構造体の調製法、特性は
第1表に、その結果は第2表に示す通りであ
り、また各構造体の形状、構造および実験の条
件は下記の通りである。 各構造体は縦81mm、横81mm、長さ150mmのハ
ニカム構造体で、各流体通路12は3.5mmの相
等直径からなり、また隔壁11を構成する基材
部11aの厚みが1mmであり、同基材部11a
には所定厚みの液体濾過膜部11bが形成され
ている。構造体の体積は984cm3、濾過膜面積は
6804cm2である。各構造体は外径120mm、長さ200
mmのステンレス製のケーシング21,24内に
収容して使用されるが、各構造体のうち第1構
造体10A型のものにおいては内径20mmの排出
パイプ13が用いられ、第2構造体10B型の
ものにおいては排出部として機能する外側面1
1cが130mmの長さにわたつて形成され、第3
構造体10c型のものにおいては排出孔14が
縦13.5mm、横50mm、深さ45mmの大きさに形成さ
れている。濾過実験は下記の3種類()〜
()の条件にて行つた。 ():ポリエチレングリコール#10000を1wt%
含む水溶液を被処理液として用い、同液を構
造体内に0.5m/secの速度で圧送した。透過
液を高速液クロで分析して液体濾過膜部にお
ける透過阻止率を算出した。 ():粒径500Åのコロイダルシリカを1wt%含
む水溶液を被処理液として用い、同液を構造
体内に0.5m/secの速度で圧送した。透過液
を100℃で十分に乾燥し、固形分の重量を測
定して透過液の、濃度を算出して透過阻止率
を算出した。 ():粒径2μmのα−Al2O3粒子を1wt%含む
水溶液を被処理液として用い、上記()と
同様に圧送しかつ透過阻止率を算出した。 なお、比較例として下記の2種類のパイプ結
束型の構造体10D,10Eを用い、被処理液
体を構造体のパイプ内側に軸方向に流入させて
濾過実験を行つた。構造体10Dはパイプ状基
材部の内周に液体濾過膜部を有する長さ150mm
のパイプ体を間隔20mmの四角配列にて144本配
列してケーシング内にて結束し、構造体の体積
を8640cm3、濾過膜面積を6782cm2とした(膜面積
同一)。構造体10Eは上記パイプ体を16本同
様に配列してケーシング内にて結束し、構造体
の体積を960cm3、濾過膜面瀬を754cm3とした(体
積同一)。
[Industrial Application Field] The present invention relates to a liquid filtration membrane structure that is effective for precision filtration, ultrafiltration, etc. in the pharmaceutical and food fields. [Prior Art] This type of liquid filtration membrane structure is generally a honeycomb structure or a monolith structure having two types of liquid passages arranged in parallel and surrounded by partition walls, one of which is a liquid filtration membrane structure. One fluid passage is configured as a flow path for the liquid to be treated, and the other fluid passage is configured as a flow path for a specific component in the liquid to be treated that has passed through the partition wall.
Therefore, in such a liquid filtration membrane structure,
The partition wall can only function to filter liquid from one fluid passage side to the other fluid passage side, and there is a limit to the liquid filtration area per unit volume of the structure. In addition, in such a liquid filtration membrane structure, for example, the downstream end of one fluid passage must be sealed and a discharge port communicating with the same passage must be formed, and the upstream end of the other fluid passage must be sealed. This requires a lot of laborious work. As shown in US Pat. No. 4,069,157, a liquid filtration membrane structure that can deal with this problem is
A large number of fluid passages surrounded by partition walls and arranged in parallel are provided, and the partition wall includes a porous base material part and a liquid filtration membrane part located on all sides of the fluid passageway and integrated with the base material part. Liquid filtration membrane structures are known. In such a structure, the liquid to be treated is supplied to the fluid passage and flows, and while flowing through the passage, specific components pass through the liquid filtration membrane part and flow through the base material part, and are discharged to the outside. It is composed of [Problems to be Solved by the Invention] By the way, in such a liquid filtration membrane structure, although the flow resistance of the base material part and the liquid filtration membrane part that constitute the partition wall greatly affects the filtration efficiency, the base material It is only defined by the average pore diameter and porosity of the base material part and the liquid filtration membrane part, and there is no example in which the synergistic effect of the flow resistance of the base material part and the liquid filtration membrane part has been studied. Moreover, these flow resistances are not precisely limited because complex factors such as the shape, distribution, number, and film thickness of the pores are involved in addition to the characteristics of the average pore diameter and porosity. Therefore, conventional liquid filtration membrane structures have insufficient filtration efficiency, for example, because the central portion of the structure is not effectively utilized. In addition, the pore diameter distribution of the base material in such a liquid filtration membrane structure is 2 to 2.
The pore size is in the range of 20 μm, and 80-85% of the pores have a pore size of 5-15 μm. That is, the average pore diameter of the base material is in the range of 5 to 15 μm. Therefore, the filtration membrane part on the base material part has two parts in order to fill the pores of the base material part.
It is formed by mixing coarse particles of ~20 μm and fine particles of 0.02 to 4.0 μm. As a result, in some parts of the filtration membrane, fine particles fill the gaps between coarse particles, and in other parts, fine particles accumulate near the surface layer, resulting in an uneven pore distribution as a whole. Uniform and high filtration accuracy cannot be achieved with gas, which may cause clogging. Since a dynamic formation method is adopted to manufacture the filtration membrane part and no thermal treatment is performed, there is a problem in heat resistance in practical use. Therefore, an object of the present invention is to construct the partition wall of a liquid filtration membrane structure into a multilayer structure including a specific base material part and a liquid filtration membrane part, and to specify the ratio of flow resistance of these two parts. The objective is to improve the filtration efficiency of this type of liquid filtration membrane structure. [Means for solving the problem] The present invention includes a large number of fluid passages surrounded by partition walls and arranged in parallel with each other, and the partition walls substantially connect a porous base material portion and the fluid passage side. The liquid filtration membrane structure is provided with a liquid filtration membrane part located in all of the parts and integrated with the base part, and in which all of the fluid passages effectively contribute to the filtration function, and the amount of pure water permeable through the base part is The permeability of pure water through the partition wall is 20 times or more, and the average pore diameter of the liquid filtration membrane portion is 10 to 10,000 Å, and the liquid to be treated flows through the fluid passage, and the specificity in the liquid to be treated is The component is characterized in that it permeates the liquid filtration membrane part, flows through the base part, and is discharged to the outside of the structure via the discharge part of the base part. Therefore, in the liquid station head filtration membrane structure according to the present invention, it is preferable that the amount of pure water permeable through the base portion is 50 times or more the amount of pure water permeable through the partition wall,
In addition, the amount of pure water permeable through the partition wall is 1000/m 2・hr・
(Kg/cm 2 ) or less is preferable. moreover,
When the average pore diameter of the liquid filtration membrane part is as fine as 10 to 1000 Å, it is preferable that the average pore diameter of the base material part is 0.2 to 2 μm, and in this case, the amount of pure water permeable through the base material part is smaller than that of the partition wall. It is preferably 400 times or more the permeability of water. Note that the amount of pure water that permeates is a measure of the flow resistance of the partition wall, base material, liquid filtration membrane, etc. Further, in the liquid filtration membrane structure according to the present invention, the discharge section may be provided on a side surface or one end of the outer wall, and the discharge section may extend inward from the outer wall. Furthermore, the liquid filtration membrane structure according to the present invention is a honeycomb structure or a monolith structure in which the cross-sectional shape of the fluid passage is triangular, square, other polygons, circular, oval, etc. In order to improve mixing between the fluid passages, a cut may be made in the partition wall to communicate between the fluid passages, and the partition wall is made of ceramic, sintered metal, porous glass, porous plastic, or the like. When the liquid filtration membrane structure is made of ceramic, ceramic raw materials include alumina, silica, mullite, cordierite,
Appropriate materials such as zirconia and titania are used,
A honeycomb structure or a monolith structure consisting only of a base material is produced by extruding a mixture made by adding an organic binder and a plasticizer to fine powder of a ceramic raw material and kneading it through a die equipped with a large number of slits, and then firing the mixture. formed by The liquid filtration membrane portion is integrally formed on the inner periphery of the numerous through holes of the honeycomb structure or monolith structure, and is preferably coated with alumina sol obtained by hydrolyzing aluminum alcoholate or aluminum chelate. It can be formed as appropriate by firing an ultrafine powder of a ceramic raw material, or by pasting and pressing ultrafine powder of a ceramic raw material and firing it. In the liquid filtration membrane structure of the present invention, it is preferable in terms of filtration efficiency that the partition wall is provided with a filtration membrane portion on the entire fluid passage side, but if necessary, a part of the base material portion may be bonded. The plugs may be sealed using an agent, or a thin film having other functions may be formed on a portion of the base material portion. [Operations and Effects of the Invention] In the liquid filtration membrane structure according to the present invention, the liquid filtration membrane portion is located substantially entirely on the fluid passage side of the base portion constituting the partition, and the fluid flow in the base portion is The resistance is defined within a specific range that is extremely smaller than the flow resistance of the liquid filtration membrane section. This configuration was intended to improve filtration efficiency based on the knowledge that the flow resistance of the base material part and the filtration membrane part that make up the partition wall has a large effect on filtration efficiency. Pore shape, distribution, quantity,
The above-mentioned flow resistance, which is caused by complicated factors such as membrane thickness, is quantified by the water permeation ratio defined in the present invention, and the filtration efficiency is improved by specifying the water permeation ratio. Therefore, substantially all of the fluid passage side of the partition wall has a liquid filtering action, and the filtered specific component flows within the base material part as a second fluid passage and is discharged to the outside of the structure via the discharge part. be done. Therefore, in the membrane structure, the liquid filtration area per unit volume is significantly increased, the liquid filtration efficiency is significantly improved compared to the conventional one, and when the same efficiency is constant, the structure can be made smaller. can. In addition, in this liquid filtration membrane structure, since all the fluid passages are used as flow passages for the liquid to be treated, it is difficult to specify that all the fluid passages are selectively permeable as the flow passages for the liquid to be treated, as in the past. In order to configure two types of component flow paths, the open ends of the specified number of fluid passages on one end side of the structure and the open ends of the other specified number of fluid passages on the other end side are sealed. There is no need for such troublesome work. Therefore, the liquid filtration membrane structure can be easily manufactured. [Example] (1) Liquid filtration membrane structure FIG. 1 shows a first liquid filtration membrane structure 10A (hereinafter referred to as the first structure) according to the present invention. The structure 10A is a ceramic honeycomb structure in the shape of a square prism, and is surrounded by continuous partition walls 11 and includes a large number of parallel fluid passages 12 having a square cross section. As shown in FIG. 2, the partition wall 11 is composed of a base material portion 11a and a liquid filter membrane portion 11b. The liquid filtration membrane portion 11b is integrally located on all surfaces of the base portion 11a on the fluid passage 12 side, and constitutes a peripheral wall of the fluid passage 12. The structure 10A is used housed in a casing 21 as shown in FIG. Left and right support 22 in 21,
The entire outer surface between the supports 22 and 23 is coated with glaze and sealed, and the liquid filtering membrane portion 11b is exposed on the outer surface on the end side of each support 22, 23. Note that the discharge pipe 13 protrudes from the casing 21 to the outside, and also extends from the structure 10.
The exposed portions of the partition wall 11 at both ends of A are sealed with adhesive. The liquid to be treated is in casing 2
The fluid is supplied from the inlet port 21a of the casing 21, flows into each fluid passage 12 from one end of the structure 10A, flows through the same passage 12, flows out from the other end, and is discharged through the outlet port 21b of the casing 21. During this time, specific components in the liquid to be treated permeate through the liquid filtration membrane portion 11b of the partition wall 11,
It is discharged through the discharge pipe 13 while flowing through the base material portion 11a. Note that in the structure 10A, a plurality of discharge pipes 13 or pipes functioning similarly to the discharge pipe 13 may be provided. FIG. 3 shows a second liquid filtration membrane structure 10B according to the present invention. The structure 10B has the same external shape as the first structure 10A, and is used while being housed in a casing 24 as shown in the figure. A base material portion 11 is provided on the outer surface 11c between the supports 22 and 23 in the structure 10B.
a is exposed, and a liquid filtration membrane portion 11b is exposed on the outer surface on the end side of both supports 22 and 23. The liquid to be treated is inlet port 24a
The fluid flows into each fluid passage 12 from the outlet port 24b and is discharged through the outlet port 24b. During this time, a specific component in the liquid to be treated passes through the liquid filtration membrane section 11b, flows through the base section 11a, passes through the outer surface 11c between the supports 22 and 23, and exits from the second outlet port 24c. be discharged. Therefore, this outer surface 11c functions as a discharge section. FIG. 4 shows a third liquid filtration membrane structure 10c according to the present invention. The structure 10c also has the same external shape as the first structure 10A, and has a discharge hole 1 instead of the discharge pipe 13 on its outer surface.
4 is drilled. The discharge hole 14 has a rectangular cross section, and as shown in FIG. 5, is open on one side of the outer surface of the structure 10C and extends to a predetermined depth. In the discharge hole 14, the base material part 11a is exposed, and after passing through the liquid filtration membrane part 11b, the specific component is transferred to the base material part 11a.
It flows through the inside and reaches the discharge hole 14, and the casing 2
It is discharged through the second outlet port 24c of No. 4. In each of the above structures, the thickness of the base material portion 11a is 0.15 to 1.5 mm, and the average pore diameter is 0.2 to 5 μm.
, and the thickness of the liquid filtration membrane portion 11b is 2~
100 μm, average pore diameter is 10-10000 Å. If the average pore diameter of the base material portion 11a is less than 0.2 μm, the diffusion resistance of the base material portion 11a cannot be ignored, and if the average pore diameter exceeds 5 μm, it becomes difficult to form the liquid filtration membrane portion 11b made of uniform fine particles. Become. This is more than 20 times the water permeability of pure water, which will be described later. Note that the partition wall 11 of each structure described above is the base material part 1.
1a and a liquid filtration membrane part 11b, both of these parts 11a and 11b
A sub-base material portion may be integrally interposed between them or on the outer surface of the liquid filtration membrane portion 11b. In these cases, the average pore diameter of the base material portion 11a is 2 to 5 μm,
The average pore diameter of the sub-base material part is preferably 0.2 to 2 μm, and in the former partition wall, the liquid filtration membrane part 11 is extremely dense and thin due to the action of the sub-base material part.
b is easily formed, and the latter partition wall has the function of protecting the liquid filtering membrane portion 11b from impurities in the liquid to be treated. Note that FIGS. 1 to 5 are only examples of the liquid filtration membrane structure of the present invention, and these structures do not necessarily need to be used while being housed in a casing. Even if the structure 10A is installed in a predetermined chamber filled with the liquid to be treated, the desired filtration performance can be obtained. In addition, the outer surface of each structure is connected to the liquid filtration membrane part 1.
1b, base material portion 11a, or sealed with glaze, adhesive, etc., is appropriately selected depending on the operational state of the structure. Further, the exposed portions of the partition wall 11 at both ends of the structure may be sealed with an adhesive or may be used by attaching a liquid filtration membrane portion. Furthermore, partition walls 11 at both ends of the structure
It is also possible to use the exposed portion as the base material portion 11a as a discharge portion. In this case, it is necessary to plug at least one end of the fluid passage 12. (2) Method of adjusting the base material portion 11a The base material portion 11a constituting the partition wall 11 is adjusted by the following a~
Each was prepared by the method of e. (a): To a mixture of 90 parts of α-Al 2 O 3 particles with an average particle size of 0.8 μm and 10 parts of kaolin, water and polyvinyl alcohol as an organic binder are added and kneaded. The resulting potted clay is extruded, dried, and then fired in the atmosphere at 1350°C for 3 hours. The average pore diameter of the obtained molded body (base material part) was 0.2 μm,
The pore volume is 0.1 cc/g. (b): A base material part was obtained by the preparation method (a) except that α-Al 2 O 3 particles with an average particle size of 1.5 μm were used. The average pore diameter of the obtained base material portion was 0.7 μm, and the pore volume was 0.19 cc/g. (c): Using α-Al 2 O 3 particles with an average particle diameter of 5 μm, a base material portion with an average pore diameter of 2.0 μm and a pore volume of 0.23 cc/g was obtained in the same manner as in the preparation method (b). (d): Using α-Al 2 O 3 particles with an average particle size of 12 μm,
A base material portion having an average pore diameter of 5.0 μm and a pore volume of 0.25 cc/g was obtained in the same manner as in the preparation method (c). (e): Preparation method (a) except that the firing temperature was 1500℃
A base material part was obtained. The average pore diameter of the obtained base material portion was 0.1 μm, and the pore volume was 0.07 cc/g. (3) Method for preparing liquid filtration membrane portion 11b Liquid filtration membrane portion 11b constituting partition wall 11 was prepared by the following methods (a) to (e), respectively. (a): Aluminum isopropoxide is heated and hydrolyzed, and nitric acid, which is a deflocculant, is added thereto to prepare a sol-supported solution. This sol-supporting liquid was coated and supported on the circumferential surfaces of numerous through holes in the base material portion, dried, and then baked at 400° C. for 3 hours in the atmosphere.
The average pore diameter of the obtained thin film (liquid filtration membrane part) was 50 Å, and the film thickness was 15 μm. (b): γ-Al 2 O 3 and α- with a specific surface area of 30 m 2 /g
A supporting slurry was prepared by adding water and nitric acid to the mixed powder with Al 2 O 3 , and this was coated and supported on the circumferential surface of the through hole of the base material. After drying, the slurry was exposed to air for 1000 m
Baked at ℃ for 3 hours, average pore diameter 400Å, film thickness
A liquid filtration membrane section of 50 μm was obtained. (c): Prepare a support slurry by adding water, nitric acid, and polyvinyl alcohol to α-Al 2 O 3 particles with an average particle size of 0.5 μm, coat and support the slurry on the circumferential surface of the through-hole in the base material, and dry. After that, it was fired in the air at 1300℃ for 3 hours, and the average pore diameter was 2000Å (0.2μm).
A liquid filtration membrane portion with a membrane thickness of 50 μm was obtained. (d): A supporting slurry was prepared by adding water, nitric acid, and polyvinyl alcohol to α-Al 2 O 3 powder with an average particle size of 2 μm, and this was coated and supported on the circumferential surface of the through-hole of the base material and dried. After firing in the atmosphere at 1400℃ for 3 hours, the average pore diameter was 10000Å (1μm),
A liquid filtration membrane portion with a membrane thickness of 15 μm was obtained. (e): A liquid filtration membrane portion having an average pore diameter of 50 Å and a membrane thickness of 15 μm was obtained by the preparation method (a) on the membrane obtained by the preparation method (c). According to the preparation methods (a) to (e) above, the membrane-forming component made of substantially uniform particles is deposited on the base material part 11a and fired, thereby forming a filtration membrane part made of uniform pores. 11b is obtained. (3) Water permeability of pure water Based on the base material preparation methods (a) to (e), sample S 1 for base material measurement in the shape of a bottomed pipe with an outer diameter of 10 mm, wall thickness of 1 mm, and length of 15 mm was prepared. Liquid filtration membrane preparation method using sample
Based on (a) to (e), a partition wall measurement sample S2 equipped with a liquid filtration membrane portion was prepared. Each measurement sample S 1 and S 2 was subjected to the measurement method shown in FIG. 6, and the amount of pure water permeated was measured. In addition, for each measurement sample
S 1 and S 2 are housed in a closed container 31, and a connecting pipe 32
are hermetically connected to the open ends of each sample S 1 and S 2 . As a result, city water is passed through an activated carbon filter, an ion exchanger, an ultrafiltration membrane with a molecular weight cutoff of #2000, and then the water is transferred from the pressurized tank 33 to the inner holes of each sample S 1 and S 2 at a predetermined pressure. The water passes through each sample S 1 and S 2 and exits from the container 31 to the discharge pipe 34.
It flows out through the process. The water supply pressure (pressure difference between inside and outside of the sample) is 0.2 to 0.2 for base material measurement sample S1 .
0.5Kg/cm 2 , 1~ for partition wall measurement sample S 2
3Kg/ cm2 , pure water permeability Q is calculated by the following formula.
/m 2・hr・(Kg/cm 2 ) is calculated. Q=V/(A・ΔP) However, V: Pure water permeability (/hr) A: Filtration area of each sample (m 2 ) ΔP: Pressure difference between inside and outside of water (Kg/cm 2 ) Samples S 1 and S 2 were left in water overnight before measurement, and then vacuum degassed while immersed in water. (4) Filtration Experiment In order to filter the aqueous solution to be treated, a filtration experiment was conducted using the first structure 10A to the third structure 10C shown in the drawings. The preparation method and characteristics of each structure are shown in Table 1, the results are shown in Table 2, and the shape, structure, and experimental conditions of each structure are as follows. Each structure is a honeycomb structure with a length of 81 mm, a width of 81 mm, and a length of 150 mm. Each fluid passage 12 has an equal diameter of 3.5 mm, and the thickness of the base material portion 11a constituting the partition wall 11 is 1 mm. Base material part 11a
A liquid filtration membrane portion 11b having a predetermined thickness is formed in the portion. The volume of the structure is 984cm 3 and the area of the filtration membrane is
It is 6804cm2 . Each structure has an outer diameter of 120mm and a length of 200mm
mm stainless steel casings 21 and 24, of which the first structure 10A type uses a discharge pipe 13 with an inner diameter of 20 mm, and the second structure 10B type In some cases, the outer surface 1 that functions as a discharge part
1c is formed over a length of 130mm, and the third
In the structure 10c type, the discharge hole 14 is formed to have a length of 13.5 mm, a width of 50 mm, and a depth of 45 mm. There are three types of filtration experiments () ~
It was conducted under the conditions in (). (): 1wt% polyethylene glycol #10000
An aqueous solution containing the above was used as the liquid to be treated, and the liquid was pumped into the structure at a speed of 0.5 m/sec. The permeate was analyzed by high-speed liquid chromatography to calculate the permeation rejection rate in the liquid filtration membrane section. (): An aqueous solution containing 1 wt% of colloidal silica with a particle size of 500 Å was used as the liquid to be treated, and the liquid was pumped into the structure at a speed of 0.5 m/sec. The permeate was sufficiently dried at 100°C, the weight of the solid content was measured, the concentration of the permeate was calculated, and the permeation inhibition rate was calculated. (): An aqueous solution containing 1 wt% of α-Al 2 O 3 particles with a particle size of 2 μm was used as the liquid to be treated, and the same method as in () above was used to calculate the permeation rejection rate. In addition, as a comparative example, a filtration experiment was conducted using the following two types of pipe bundle type structures 10D and 10E, and causing the liquid to be treated to flow in the axial direction inside the pipes of the structures. Structure 10D has a liquid filtration membrane part on the inner periphery of a pipe-shaped base material part, and has a length of 150 mm.
144 pipe bodies were arranged in a rectangular array with an interval of 20 mm and bundled in a casing, and the volume of the structure was 8640 cm 3 and the area of the filtration membrane was 6782 cm 2 (the membrane area is the same). In the structure 10E, 16 pipe bodies were arranged in the same manner and bundled in a casing, and the volume of the structure was 960 cm 3 and the filtration membrane surface was 754 cm 3 (same volume).

【表】【table】

【表】【table】

【表】 (5) 考察 第2表の濾過性能の欄から明らかなように、
濾過実験に供した濾過膜構造体は実用上何等問
題がない透過阻止率95%以上のものであり、こ
のような透過阻止率の濾過膜構造体の濾過性能
である透過液量および透過速度のデータが比較
して列記されている。これらのデータにおいて
は、透過条件が同一である実験No.1〜4、実験
No.9〜11および実験No.13、14が一群(第1群と
称する)であり、実験No.5、6、12が他の一群
(第2群と称する)であり、また実験No.7、8
が他の一群(第3群と称する)である。 第1群においては、実験No.1〜4、9、10の
構造体は透水量比が20以上のものであるのに対
して実験No.11の構造対は透水量比が14であり、
前者の透過液量が3.0〜3.2でかつ透過速度が4.4
〜4.7であるのに対して、後者の構造体の透過
液量は1.9でかつ透過速度は2.8である。従つ
て、このような結果からは透水量比が14の構造
体は濾過性能が低いものと判断される。また、
第2群においては、実験No.5、6の構造体は透
水量比が20以上のものであるのに対して実験No.
12の構造体の透水量比は10であり、前者の透過
液量は64〜67でかつ透過速度が95〜98であるの
に対して、後者の透過液量は51.0でかつ透過速
度は75である。従つて、この結果からは透過水
量が10の構造体は濾過性能が低いものと判断さ
れる。なお、第3群の構造体、実験No.7、8の
構造体は透水量比がいずれも20以上のもので、
高い透過液量および透過速度を有している。 また、第1群における実験No.13、14の構造体
はパイプ結束型のもので、他の構造体であるハ
ニカム構造体とは構造が全く相違するものであ
り、膜面積を他の構造体の膜面積と略同一に設
定した場合(実験No.13)には構造体の体積が著
しく増大するという問題を有し、かつ構造体の
体積を他の構造体の体積と略同一に設定した場
合(実験No.14)には膜面積が極めて低下すると
いう問題を有しており、これらはいずれも濾過
効率が極めて悪いものであることが明かであ
る。 なお、透水量比が50以上特に400以上の場合
には透過液量が多く、特に効率的な濾過が可能
である。基材部の平均細孔径については0.2〜
5μmが好適であり、濾過膜部の平均細孔径が
50Åと小さい場合には平均細孔径5μmの基材
部上に副基材部を備えた複層構造の基材部(実
験No.4)を用いることが好ましい。基材部の透
水量については100〜4000/m2・hr・(Kg/
cm2)の値が好適であり、かつ隔壁の透水量につ
いては5〜1000l/m2・hr・(Kg/cm2)の値が好
適である。
[Table] (5) Discussion As is clear from the filtration performance column in Table 2,
The filtration membrane structure used in the filtration experiment had a permeation rejection rate of 95% or more, which poses no problem in practical use, and the permeate amount and permeation rate, which are the filtration performance of a filtration membrane structure with such a permeation rejection rate, were evaluated. Data are listed for comparison. In these data, experiments Nos. 1 to 4 and experiments with the same transmission conditions
Nos. 9 to 11 and Experiment Nos. 13 and 14 are one group (referred to as the first group), Experiment Nos. 5, 6, and 12 are the other group (referred to as the second group), and Experiment No. 7, 8
is another group (referred to as the third group). In the first group, the structures of Experiment Nos. 1 to 4, 9, and 10 had a water permeability ratio of 20 or more, whereas the structure pair of Experiment No. 11 had a water permeability ratio of 14.
The former has a permeate volume of 3.0 to 3.2 and a permeation rate of 4.4.
~4.7, whereas the latter structure has a permeate volume of 1.9 and a permeation rate of 2.8. Therefore, from these results, it is determined that a structure with a water permeability ratio of 14 has low filtration performance. Also,
In the second group, the structures in Experiment Nos. 5 and 6 had water permeability ratios of 20 or more, whereas those in Experiment No.
The water permeability ratio of the 12 structures is 10, and the former has a permeate volume of 64 to 67 and a permeation rate of 95 to 98, while the latter has a permeate volume of 51.0 and a permeation rate of 75. It is. Therefore, from this result, it is determined that a structure with a permeated water amount of 10 has low filtration performance. In addition, the structures of the third group and the structures of Experiment Nos. 7 and 8 all had water permeability ratios of 20 or more.
It has high permeate volume and permeation rate. In addition, the structures in Experiments No. 13 and 14 in the first group were of the pipe bundling type, and their structures were completely different from the other honeycomb structures, and the membrane area was smaller than that of the other structures. (Experiment No. 13), there was a problem that the volume of the structure increased significantly, and the volume of the structure was set to be approximately the same as the volume of other structures. (Experiment No. 14) had the problem that the membrane area was extremely reduced, and it is clear that the filtration efficiency was extremely poor in all of these cases. Note that when the water permeation ratio is 50 or more, particularly 400 or more, the amount of permeated liquid is large, and particularly efficient filtration is possible. The average pore diameter of the base material is 0.2~
5μm is suitable, and the average pore diameter of the filtration membrane part is
When the pore size is as small as 50 Å, it is preferable to use a base material part with a multilayer structure (Experiment No. 4) having a sub-base material part on a base material part with an average pore diameter of 5 μm. The water permeability of the base material is 100 to 4000/m 2・hr・(Kg/
cm 2 ), and the water permeability of the partition walls is preferably 5 to 1000 l/m 2 ·hr·(Kg/cm 2 ).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る第1液体濾過膜構造体の
斜視図、第2図は同構造体の部分拡大断面図、第
3図は本発明に係る第2液体濾過膜構造体の斜視
図、第4図は本発明に係る第3液体濾過膜構造体
の斜視図、第5図は同構造体の部分拡大断面図、
第6図は純水の透水量測定法の説明図である。 符号の説明、10A,10B,10C……液体
濾過膜構造体、11……隔壁、11a……基材
部、11b……液体濾過膜部、12……流体通
路、21,24……ケーシング。
FIG. 1 is a perspective view of a first liquid filtration membrane structure according to the present invention, FIG. 2 is a partially enlarged sectional view of the same structure, and FIG. 3 is a perspective view of a second liquid filtration membrane structure according to the present invention. , FIG. 4 is a perspective view of a third liquid filtration membrane structure according to the present invention, and FIG. 5 is a partially enlarged sectional view of the same structure.
FIG. 6 is an explanatory diagram of a method for measuring pure water permeability. Explanation of symbols, 10A, 10B, 10C...liquid filtration membrane structure, 11...partition wall, 11a...base material part, 11b...liquid filtration membrane part, 12...fluid passage, 21, 24...casing.

Claims (1)

【特許請求の範囲】 1 隔壁にて囲まれて互に並列する多数の流体通
路を備えるとともに、前記隔壁が多孔質の基材部
と前記流体通路側の実質的に全てに位置し前記基
材部と一体の液体濾過膜部を備え、前記流体通路
の全てが濾過機能に有効に寄与する液体濾過膜構
造体であり、前記基材部の純水の透水量が前記隔
壁の純水の透水量の20倍以上で、かつ前記液体濾
過膜部の平均細孔径が10〜10000Åであり、被処
理液体が前記流体通路を流動するとともに、前記
被処理液体中の特定の成分が前記液体濾過膜部を
透過し前記基材部中を流動しつつ同基材部の排出
部を経て構造体外へ排出されることを特徴とする
液体濾過膜構造体。 2 前記基材部の純水の透水量が前記隔壁の純水
の透水量の50倍以上である特許請求の範囲第1項
に記載の液体濾過膜構造体。 3 前記隔壁の純水の透水量が1000/m2・hr・
(Kg/cm2)以下である特許請求の範囲第1項また
は第2項に記載の液体濾過膜構造体。 4 前記排出部を外壁の側面側に備えている特許
請求の範囲第1項、第2項または第3項に記載の
液体濾過膜構造体。 5 前記排出部を外壁の一端部に備えている特許
請求の範囲第1項、第2項または第3項に記載の
液体濾過膜構造体。 6 前記排出部が外壁から内部に延在している特
許請求の範囲第4項または第5項に記載の液体濾
過膜構造体。 7 前記隔壁がセラミツク質からなる特許請求の
範囲第1項、第2項、第3項、第4項、第5項ま
たは第6項に記載の液体濾過膜構造体。
[Scope of Claims] 1. A fluid passageway including a large number of parallel fluid passages surrounded by partition walls, and wherein the partition walls are located in substantially all of the porous base material portion and the fluid passage side, The liquid filtration membrane structure is provided with a liquid filtration membrane part integral with the partition wall, and all of the fluid passages effectively contribute to the filtration function, and the amount of pure water permeable through the base material part is equal to the permeation amount of pure water through the partition wall. and the average pore diameter of the liquid filtration membrane portion is 10 to 10,000 Å, and the liquid to be treated flows through the fluid passage, and specific components in the liquid to be treated pass through the liquid filtration membrane. A liquid filtration membrane structure, characterized in that the liquid passes through the base part and flows through the base part, and is discharged to the outside of the structure through the discharge part of the base part. 2. The liquid filtration membrane structure according to claim 1, wherein the amount of pure water that permeates through the base portion is 50 times or more the amount of pure water that permeates through the partition wall. 3 The permeability of pure water through the partition wall is 1000/m 2・hr・
(Kg/cm 2 ) or less, the liquid filtration membrane structure according to claim 1 or 2. 4. The liquid filtration membrane structure according to claim 1, 2, or 3, wherein the discharge portion is provided on a side surface of the outer wall. 5. The liquid filtration membrane structure according to claim 1, 2 or 3, wherein the discharge part is provided at one end of the outer wall. 6. The liquid filtration membrane structure according to claim 4 or 5, wherein the discharge portion extends inward from the outer wall. 7. The liquid filtration membrane structure according to claim 1, 2, 3, 4, 5, or 6, wherein the partition wall is made of ceramic.
JP22277287A 1987-09-04 1987-09-04 Membrane structure for liquid filtration Granted JPS6467202A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP22277287A JPS6467202A (en) 1987-09-04 1987-09-04 Membrane structure for liquid filtration
DE8888308210T DE3864219D1 (en) 1987-09-04 1988-09-05 HONEYCOMB STRUCTOR FOR FLUID FILTRATION.
EP88308210A EP0306350B1 (en) 1987-09-04 1988-09-05 Honeycomb structure for fluid filtration
US07/240,723 US4894160A (en) 1987-09-04 1988-09-06 Honeycomb structure for fluid filtration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22277287A JPS6467202A (en) 1987-09-04 1987-09-04 Membrane structure for liquid filtration

Publications (2)

Publication Number Publication Date
JPS6467202A JPS6467202A (en) 1989-03-13
JPH0477609B2 true JPH0477609B2 (en) 1992-12-08

Family

ID=16787646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22277287A Granted JPS6467202A (en) 1987-09-04 1987-09-04 Membrane structure for liquid filtration

Country Status (1)

Country Link
JP (1) JPS6467202A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098386A1 (en) * 2013-12-27 2015-07-02 富士フイルム株式会社 Inorganic filter
CN106215574A (en) * 2016-08-31 2016-12-14 芜湖恒耀汽车零部件有限公司 The automobile tail gas filtering device preparation method of ceramic membrane filter material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069157A (en) * 1975-11-20 1978-01-17 E. I. Du Pont De Nemours And Company Ultrafiltration device
JPS623782A (en) * 1985-06-27 1987-01-09 エ−ピ−ブイ インタ−ナシヨナル リミテツド Method and apparatus for filtering beer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2553758B1 (en) * 1983-10-25 1991-07-05 Ceraver POROUS MATERIAL AND TUBULAR FILTER COMPRISING SUCH MATERIAL

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069157A (en) * 1975-11-20 1978-01-17 E. I. Du Pont De Nemours And Company Ultrafiltration device
JPS623782A (en) * 1985-06-27 1987-01-09 エ−ピ−ブイ インタ−ナシヨナル リミテツド Method and apparatus for filtering beer

Also Published As

Publication number Publication date
JPS6467202A (en) 1989-03-13

Similar Documents

Publication Publication Date Title
US4894160A (en) Honeycomb structure for fluid filtration
EP2045001B1 (en) Ceramic filter
JP5599785B2 (en) Ceramic pervaporation membrane and ceramic vapor permeable membrane
EP0780148B1 (en) Cross-flow filtration device with increasing thickness walls
JP3067740B2 (en) Ceramic filter module
EP2161073B1 (en) Inorganic separation membrane complex, and production thereof
JPH11322465A (en) Porous ceramic material and its preparation
JPH01501534A (en) cross flow filtration device
JP4800646B2 (en) Ceramic filter and manufacturing method thereof
JPH01502494A (en) Filter structure and method for forming filter structure
JP2000354746A (en) Filter using ceramic porous body
JP6490665B2 (en) Monolithic separation membrane structure, method for producing monolithic separation membrane structure, and dehydration method
JPH0699039A (en) Monolithic ceramic filter
JP2012500176A (en) Mullite module for liquid filtration
JP2021120157A (en) Production method of ceramic membrane filter
JP2019081141A (en) Ceramic porous support body for separation membrane
JPH0477609B2 (en)
JP3400829B2 (en) Monolith type ceramic filter
JP2002143655A (en) Ceramic filter and producing method of ceramic filter
JP2007229564A (en) Manufacturing method of ceramic filter
JPH0471566B2 (en)
JP4519376B2 (en) Method for producing porous filter
JP2003230822A (en) Porous filter and water purifier, and filter inspection device and method
WO2016129644A1 (en) Honeycomb filter
JP7096163B2 (en) Method for drying the separation membrane and method for manufacturing the separation membrane structure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees