JPH0471566B2 - - Google Patents

Info

Publication number
JPH0471566B2
JPH0471566B2 JP62222771A JP22277187A JPH0471566B2 JP H0471566 B2 JPH0471566 B2 JP H0471566B2 JP 62222771 A JP62222771 A JP 62222771A JP 22277187 A JP22277187 A JP 22277187A JP H0471566 B2 JPH0471566 B2 JP H0471566B2
Authority
JP
Japan
Prior art keywords
separation membrane
gas separation
gas
base material
membrane structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62222771A
Other languages
Japanese (ja)
Other versions
JPS6467224A (en
Inventor
Fumio Abe
Hiroshi Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP62222771A priority Critical patent/JPS6467224A/en
Priority to EP88308210A priority patent/EP0306350B1/en
Priority to DE8888308210T priority patent/DE3864219D1/en
Priority to US07/240,723 priority patent/US4894160A/en
Publication of JPS6467224A publication Critical patent/JPS6467224A/en
Publication of JPH0471566B2 publication Critical patent/JPH0471566B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はクヌーセンガス拡散に基づくガス分
離、凝縮性ガス分離等に用いられるガス分離膜構
造体に関する。 〔従来技術〕 この種のガス分離膜構造体は特開昭59−186621
号公報、実開昭59−193518号公報、同59−193519
号公報、同59−193520号公報等にて開示されてい
るように、隔壁にて互に並列する2種類の多数の
流体通路を備えたハニカム構造体であり、一方の
流体通路が被処理ガスの流通路に構成されかつ他
方の流体通路が隔壁を透過した被処理ガス中の特
定のガス成分の流通路に構成されている。 〔発明が解決しようとする問題点〕 このため、かかるガス分離膜構造体において
は、隔壁が一方の流体通路側から他方の流体通路
側への選択透過作用しか機能し得ず、構造体の単
位体積当りの選択透過面積には限度がある。ま
た、かかるガス分離膜構造体においては、例えば
一方の流体通路の下流側端を目封じするとともに
同通路に連通する排出口を形成し、かつ他方の流
体通路の上流側端を目封じしなければならないと
いつた面倒な工作作業が必要である。 従つて、本発明の目的は、ガス分離膜構造体の
隔壁を特定の基材部とガス分離膜部を備えた複層
構造に構成し、流体通路側の全てに選択透過作用
を付与することにより単位体積当りの選択透過面
積を増大させて、ガス分離膜構造体の分離効率を
向上させるとともに、構造体の製造の際の面倒な
工作作業を解消または低減させることにある。 〔問題点を解決するための手段〕 本発明は、隔壁にて囲まれて互に並列する多数
の流体通路を備えるとともに、前記隔壁が多孔質
の基材部と前記流体通路側の実質的に全てに位置
し前記基材部と一体のガス分離膜部を備えてなる
ガス分離膜構造体であり、前記基材部の純窒素透
過量が前記隔壁の純窒素透過量の20倍以上で、か
つ前記ガス分離膜部の平均細孔径が1000Å以下で
あり、被処理流体が前記流体通路を流動するとと
もに、前記被処理流体中の特定のガス成分が前記
ガス分離膜部を濃縮されて透過し前記基材部中を
拡散しつつ同基材部のガス排出部を経て構造体外
へ排出されることを特徴とする。 しかして、本発明に係るガス分離膜構造体にお
いては、前記基材部の純窒素透過量が前記隔壁の
純窒素透過量の50倍以上であることが好ましく、
また前記隔壁の純窒素透過量が100mol/m2
hr・atm以下であることが好ましい。なお、純窒
素透過量とは隔壁、基材部、ガス分離膜部等の拡
散抵抗を定量化するものである。 また、本発明に係るガス分離膜構造体において
は、前記ガス排出部を外壁の側面部または一端部
に備え、かかるガス排出部は外壁から内部に延在
していてもよい。 さらにまた、本発明に係るガス分離膜構造体
は、流体通路の断面形状が三角形、四角形、その
他の多角形、円形、楕円形等適宜形状のハニカム
構造体であつて、流体通路間の混合を良くするよ
うに隔壁に流体通路間を連通させる切れ目を入れ
てもよく、セラミツク、焼結金属、多孔質ガラ
ス、多孔質プラスチツク等にて形成される。ガス
分離膜構造体をセラミツクにて形成する場合に
は、セラミツク原料としてはアルミナ、シリカ、
ムライト、コーデイエライト、ジルコニア、チタ
ニア等適宜のものが使用され、基材部のみからな
るハニカム構造体はセラミツク原料の微粉に有機
バインダー、可塑剤を加えて混練してなる調合物
を多数のスリツトを備えたダイスから押出し、か
つこれを焼成することにより形成される。また、
ガス分離膜部はかかるハニカム構造体の多数の貫
通孔の内周に一体的に形成されるが、好ましくは
アルミニウムアルコラートまたはアルミニウムキ
レートを加水分解して得たアルミナゾルをコート
して焼成することにより、またはセラミツク原料
の超微粉末を貼着、圧着して焼成することにより
適宜形成される。 なお、本発明のガス分離膜構造体においては、
隔壁の流体通路側の全にガス分離膜部を備えてい
ることが分離効率の点で好ましいが、必要に応じ
て基材部の一部を接着剤を用いて目封じしたり、
基材部上の一部に他機能を有する薄膜を形成して
もよい。 〔発明の作用・効果〕 本発明に係るガス分離膜構造体においては、隔
壁を構成する基材部の流体通路側の実質的に全て
にガス分離膜部が位置し、かつ基材部におけるガ
ス拡散抵抗をガス分離膜部のガス拡散抵抗より極
めて小さい特定の範囲に規定している。このた
め、隔壁の流体通路側の実質的に全てが選択透過
作用を有し、選択透過された特定のガス成分は基
材部内を第2の流体通路として拡散し、かつガス
排出部を経て構造体外へ排出される。従つて、当
該ガス分離膜構造体においては単位体積当りの選
択透過面積が著しく増大し、従来に比してガス分
離効率が著しく向上しかつ同効率が一定の場合に
は構造体を小型化することができる。 また、当該ガス分離膜構造体においては、全て
の流体通路を被処理ガスの流通路に使用するもの
であることから、従来のごとく全ての流体通路を
被処理ガスの流通路と選択透過した特定ガス成分
の流通路の2種類に構成すべく、構造体の一端側
の特定された多数の流体通路の開口端、および他
端側の特定された他の多数の流体通路の開口端を
目封じするという面倒な工作作業を必要としな
い。従つて、当該ガス分離膜構造体は容易に製造
することができる。 〔実施例〕 (1) ガス分離膜構造体 第1図には本発明に係る第1ガス分離膜構造
体10A(以下第1構造体という)が示されて
いる。当該構造体10Aは四角柱状のセラミツ
ク製ハニカム構造体で、連続した隔壁11にて
囲まれて互に並列する断面四角形の多数の流体
通路12を備えている。隔壁11は第2図に示
すように基材部11aとガス分離膜部11bと
により構成されている。分離膜部11bは基材
部11aの流体通路12側の全ての面に一体的
に位置し、流体通路12の周壁を構成してい
る。当該構造体10Aにおいては、第1図に示
すようにケーシング21内に収容されて使用さ
れるが、基材部11aが露呈する外側面の中央
部に排出パイプ13が接着されているととも
に、ケーシング21内の左右のサポート22,
23間の外側面の全面が釉薬にてコートされて
密閉され、かつ各サポート22,23より端部
側の外側面には分離膜部11bが露呈してい
る。なお排出パイプ13はケーシング21から
外部へ突出しており、また構造体10Aの両端
における隔壁11の露呈部は接着剤にて密閉さ
れている。被処理ガスはケーシング21のイン
レツトポート21aから供給されて構造体10
Aの一端から各流体通路12に流入し、同通路
12を流通して他端から流出しケーシング21
のアウトレツトポート21bを経て排出され
る。この間、被処理ガス中の特定のガス成分は
隔壁11の分離膜部11bを濃縮されて透過
し、基材部11a中を拡散しつつ排出パイプ1
3を経て排出される。なお、構造体10Aにお
いては、排出パイプ13またはこれと同様に機
能するパイプを複数設けてもよい。 第3図には本発明に係る第2ガス分離膜構造
体10Bが示されている。当該構造体10Bは
第1構造体10Aと同様の外形形状を呈し、同
図に示すようにケーシング24内に収容されて
使用される。当該構造体10Bにおける両サポ
ート22,23間の外側面11cには基材部1
1aが露呈し、かつ両サポート22,23より
端部側の外側面には分離膜部11bが露呈して
いる。被処理ガスはインレツトポート24aか
ら各流体通路12に流入し、アウトレツトポー
ト24bを経て排出される。この間、被処理ガ
ス中の特定のガス成分は分離膜部11bを濃縮
されて透過した後基材部11a中を拡散し、両
サポート22,23間の外側面11cを透過し
第2のアウトレツトポート24cから排出され
る。従つて、この外側面11cが排出部として
機能する。 第4図には本発明に係る第3ガス分離膜構造
体10Cが示されている。当該構造体10Cも
第1構造体10Aと同様の外形形状を呈してる
が、その外側面には排出パイプ13に換えて排
出孔14が穿設されている。排出孔14は断面
長方形を呈し、第5図に示すように構造体10
Cの外側面の一側に開口しているとともに所定
の深さまで延びている。かかる排出孔14にお
いては基材部11aが露呈していて、特定のガ
ス成分は分離膜部11bを濃縮されて透過した
後、基材部11a中を拡散して排出孔14に達
し、ケーシング24の第2のアウトレツトポー
ト24cを経て排出される。 以上の各構造体において、基材部11aの厚
みは0.15〜1.5mm、その平均細孔径は0.2〜5μm
であり、また分離膜部11bの厚みは2〜
100μm、平均細孔径は1000Å以下である。基
材部11aの平均細孔径が0.2μm未満では基材
部11aの拡散抵抗が無視し得なくなり、かつ
平均細孔径が5μmを超えると均一な微小粒子
からなる分離膜部11bの形成が困難となる。
また、基材部11aの後述する純窒素透過量は
隔壁11の同透過量の20倍以上である。なお、
上記各構造体の隔壁11は基材部11aと分離
膜部11bとからなる2層構造体のものである
が、これら両部11a,11b間または分離膜
部11bの外側面に副基材部を一体的に介在さ
せてもよい。これらの場合、基材部11aの平
均細孔径は2〜5μm、副基材部の平均細孔径
は0.2〜2μmであることが好しく、前者の隔壁
においては副基材部の作用にて極めて緻密でか
つ薄い分離膜部11bが容易に形成され、また
後者の隔壁においては被処理ガス中のダストに
対して分離膜部11bを保護する機能がある。 なお、第1図〜第5図の構造体は本発明のガ
ス分離膜構造体の一例にすぎず、またこれらの
構造体は必ずしもケーシング内に収容されて使
用する必要はなく、例えば排出パイプ13を設
けた構造体10Aのままで被処理ガスが充満す
る所定空間の中に設置しても所望の分離性能が
得られる。また、各構造体の外側面をガス分離
膜部11bにするか、基材部11aにするか、
あるいは釉薬や接着剤等で密閉するかは構造体
の作用状態に応じて適宜選定する。また、構造
体の両端における隔壁11の露呈部は接着剤で
密閉するか、ガス分離膜を付着して用いること
ができる。さらに、構造体の両端における隔壁
11の露呈部を基材部11aにすることによつ
てガス排出部として用いることもでき、この場
合流体通路12の少なくとも一方端を目封止す
る必要がある。 (2) 基材部11aの調製法 隔壁11を構成する基材部11aを下記(a)〜(e)
の方法にてそれぞれ調製した。 (a):平均粒径0.8μmのα−Al2O3粒子90部とカ
オリン10部との混合物に、水と有機バインダ
ーであるポリビニルアルコールを添加して混
練する。得られた坏土を押出し成形して乾燥
後、大気中1350℃で3時間焼成する。得られ
た成形体(基材部)の平均細孔径は0.2μm、
細孔容積は0.1c.c./gである。 (b):平均粒径1.5μmのα−Al2O3粒子を用いた
点を除き調製法(a)により基材部を得た。得ら
れた基材部の平均細孔径は0.7μm、細孔容積
は0.19c.c./gである。 (c):平均粒径5μmのα−Al2O3粒子を用い、調
製法(b)と同様にして平均細孔径2.0μm、細孔
容積0.23c.c./gの基材部を得た。 (d):平均粒径12μmのα−Al2O3粒子を用い、
調製法(c)と同様にして平均細孔径5.0μm、細
孔容積0.25c.c./gの基材部を得た。 (e):焼成温度を1500℃とした点を除き調製法(a)
により基材部を得た。得られた基材部の平均
細孔径は0.1μm、細孔容積は0.07c.c./gであ
る。 (3) 分離膜部11bの調製法 隔壁11を構成する分離膜部11bを下記(イ)〜
(ホ)の方法によりそれぞれ調製した。 (イ):アルミニウムイソプロポキシドを加熱加水
分解し、これに解膠剤である硝酸を添加して
ゾル担持液を調製する。このゾル担持液を基
材部の多数の貫通孔週面に被覆担持させて乾
燥した後、大気中400℃で3時間焼成した。
得られた薄膜(分離膜部)の平均細孔径は50
Å、膜厚は15μmである。 (ロ):調製法(イ)で得られた薄膜にケイ酸ソーダを
3時間焼成し、平均細孔径30Å膜厚15μmの
分離膜を得た。 (ハ):平均粒径0.5μmのα−Al2O3粒子に水、硝
酸、ポリビニルアルコールを添加して担持ス
ラリーを調製して、これを基材部の貫通孔周
面に被覆担持させて乾燥した後大気中1300℃
で3時間焼成し、基材部に平均細孔径0.2μ
m、膜厚50μmの副基材部を形成した。次い
で、この副基材部上に調製法(イ)により平均細
孔径50Å、膜厚15μmの分離膜部を形成した
(3層構造)、 (ニ):比表面積80m2/gのr−Al2O3粉末に水、
硝酸を添加して担持スラリーを調製して、こ
れを基材部の貫通孔周面に被覆担持させて乾
燥した後大気中800℃で3時間焼成した。得
られた分離膜部の平均細孔径は100Å、膜厚
は50μmである。 (ホ):市販の水酸化ジルコニウムに水、硝酸を添
加して担持スラリーを調製して、これを基材
部の貫通孔周面に被覆担持させて乾燥し、大
気中400℃で3時間焼成して平均細孔径250
Å、膜厚80μmの分離膜部を得た。 以上の(イ)〜(ホ)の調製法によれば、実質的に均一
粒子からなる膜形成成分を基材部11a上に付着
させかつ焼成することにより、均一な細孔からな
る分離膜部11bが得られる。 (3) N2透過量 基材部調製法(a)〜(e)に基づき外径10mm、壁厚1
mm、長さ150mmの有底パイプ状の基材部測定用試
料S1と、同試料を用いて分離膜部調製法(イ)〜(ホ)に
基づき分離膜部を備えた隔壁測定用試料S2とを作
製した。各測定用試料S1,S2を第6図に示す測定
法に供し、水中置換法にてN2透過量を測定した。
なお、測定に当つては各測定用試料S1,S2を密閉
容器31内に収容し、接続管32を各試料S1,S2
の開口端部に気密的に接続する。これにより、ボ
ンベ33から所定圧力に調製されたN2ガスが各
試料S1,S2の内孔内に供給され、同N2ガスは各
試料S1,S2の内孔内に供給され、同N2ガスは各
試料S1,S2を透過して容器31に接続した排出管
34を経て流出する。N2ガスの供給圧(試料内
外の圧力差)は、基材部測定用試料S1にあつては
0.2〜0.5atm、隔壁測定用試料S2にあつては1〜
3atmとし、下記式によりN2透過量Qmol/m2
hr・atmが算出される。 Q=V/(A・△P) 但し、V:N2透過量(mol/hr) A:各試料の透過膜面積(m2) △P:N2ガスの内外の圧力差(atm) (4) 除湿実験 空気中の水分を除去する目的で、図面に示す第
1構造体10A〜第3構造体10Cを用いて除湿
実験を行つた。各構造体の調製法、特性は第1表
に、その結果は第2表に示す通りであり、また各
構造体の形状、構造および実験の条件は下記の通
りである。 各構造体は縦81mm、横81mm、長さ150mmのハニ
カム構造体で、各流体通路12は3.5mmの相等直
径からなり、また隔壁11を構成する基材部11
aの厚みが1mmであり、同基材部11aには所定
厚みの分離膜部11bが形成されている。構造体
の体積は984cm2、分離面積は6840cm2である。各構
造体は外径120mm、長さ200mmのステンレス製のケ
ーシング21,24内に収容して使用されるが、
各構造体のうち第1構造体10A型のものにおい
ては内径20mmの排出パイプ13が用いられ、第2
構造体10B型のものにおいては排出部として機
能する外側面11cが130mmの長さにわたつて形
成され、第3構造体10C型のものにおいては排
出孔14が縦13.5mm、横50mm、深さ45mmの大きさ
に形成されている。 除湿実験には温度25℃、相対湿度70%の空気を
使用し、同空気を6m2/hrの流量で各構造体へ流
入させた。なお、排出パイプ13、第2アウトレ
ツトポート24c側を5〜10torrの減圧とした。 なお、比較例として下記の2種類のパイプ結束
型の構造体10D,10Eを用い、被処理空気を
構造体の外周に直交して流入させて除湿実験を行
つた。構造体10Dはパイプ状基材部の外周に分
離膜部を有する長さ150mmのパイプ体を間隔20mm
の四角配列にて144本配列してケーシング内にて
結束し、構造体の体積を8640cm2、分離膜面積を
6782cm2とした(膜面積同一)。構造体10Eは上
記パイプ体を16本同様に配列してケーシング内に
て結束し、構造体の体積を960cm2、分離膜面積を
754cm2とした。(体積同一)。
[Industrial Application Field] The present invention relates to a gas separation membrane structure used for gas separation based on Knudsen gas diffusion, condensable gas separation, etc. [Prior art] This type of gas separation membrane structure is disclosed in Japanese Patent Application Laid-Open No. 59-186621.
Publication No. 59-193518, Publication No. 59-193519
As disclosed in Japanese Patent Publication No. 59-193520, etc., it is a honeycomb structure having two types of large number of fluid passages that are parallel to each other at partition walls, and one fluid passage is used for the gas to be treated. The other fluid passage is configured as a flow path for a specific gas component in the gas to be treated that has passed through the partition wall. [Problems to be Solved by the Invention] Therefore, in such a gas separation membrane structure, the partition wall can only function as selective permeation from one fluid passage side to the other fluid passage side, and the unit of the structure There is a limit to the selective permeation area per volume. In addition, in such a gas separation membrane structure, for example, the downstream end of one fluid passage must be sealed and a discharge port communicating with the passage must be formed, and the upstream end of the other fluid passage must be sealed. This requires a lot of laborious work. Therefore, an object of the present invention is to configure the partition wall of a gas separation membrane structure into a multi-layer structure including a specific base material part and a gas separation membrane part, and to impart a selective permeation effect to the entire fluid passage side. The object of the present invention is to increase the selective permeation area per unit volume, improve the separation efficiency of the gas separation membrane structure, and eliminate or reduce troublesome work in manufacturing the structure. [Means for Solving the Problems] The present invention includes a large number of fluid passages surrounded by partition walls and arranged in parallel with each other, and the partition walls substantially connect a porous base material portion and the fluid passage side. A gas separation membrane structure comprising a gas separation membrane part located entirely on the base part and integral with the base part, the amount of pure nitrogen permeation through the base part being 20 times or more as the amount of pure nitrogen permeation through the partition wall, and the average pore diameter of the gas separation membrane portion is 1000 Å or less, and the fluid to be treated flows through the fluid passage, and a specific gas component in the fluid to be treated is concentrated and permeates through the gas separation membrane portion. It is characterized in that the gas is diffused in the base material part and discharged to the outside of the structure through a gas discharge part of the base material part. Therefore, in the gas separation membrane structure according to the present invention, it is preferable that the amount of pure nitrogen permeated through the base portion is 50 times or more the amount of pure nitrogen permeated through the partition wall,
In addition, the amount of pure nitrogen permeation through the partition wall is 100mol/ m2 .
It is preferable that it is hr・atm or less. Note that the amount of pure nitrogen permeation quantifies the diffusion resistance of partition walls, base material parts, gas separation membrane parts, etc. Further, in the gas separation membrane structure according to the present invention, the gas discharge section may be provided on a side surface or one end of the outer wall, and the gas discharge section may extend inward from the outer wall. Furthermore, the gas separation membrane structure according to the present invention is a honeycomb structure in which the cross-sectional shape of the fluid passages is triangular, quadrangular, other polygonal, circular, oval, etc., and the gas separation membrane structure is a honeycomb structure that prevents mixing between the fluid passages. In order to improve the performance, a cut may be made in the partition wall to provide communication between the fluid passages, and the partition wall is formed of ceramic, sintered metal, porous glass, porous plastic, or the like. When the gas separation membrane structure is made of ceramic, the ceramic raw materials include alumina, silica,
Appropriate materials such as mullite, cordierite, zirconia, titania, etc. are used, and the honeycomb structure consisting only of the base material is made by kneading a mixture of fine powder of ceramic raw materials with an organic binder and a plasticizer, through a large number of slits. It is formed by extruding from a die equipped with and firing it. Also,
The gas separation membrane portion is integrally formed on the inner periphery of the numerous through holes of such a honeycomb structure, and is preferably coated with alumina sol obtained by hydrolyzing aluminum alcoholate or aluminum chelate and fired. Alternatively, it can be appropriately formed by adhering, pressing, and firing ultrafine powder of ceramic raw material. In addition, in the gas separation membrane structure of the present invention,
It is preferable from the viewpoint of separation efficiency that the entire fluid passage side of the partition wall is provided with a gas separation membrane part, but if necessary, a part of the base material part may be sealed with an adhesive or
A thin film having other functions may be formed on a portion of the base material portion. [Operations and Effects of the Invention] In the gas separation membrane structure according to the present invention, the gas separation membrane portion is located on substantially the entire fluid passage side of the base material portion constituting the partition wall, and the gas separation membrane portion in the base material portion The diffusion resistance is defined within a specific range that is extremely smaller than the gas diffusion resistance of the gas separation membrane. Therefore, substantially all of the fluid passage side of the partition wall has a selective permeation effect, and the selectively permeated specific gas component diffuses within the base material part as a second fluid passage, and passes through the gas discharge part to the structure. It is excreted from the body. Therefore, in the gas separation membrane structure, the selective permeation area per unit volume is significantly increased, and the gas separation efficiency is significantly improved compared to the conventional one, and when the same efficiency is constant, the structure can be made smaller. be able to. In addition, in this gas separation membrane structure, since all the fluid passages are used as flow passages for the gas to be treated, it is necessary to specify that all the fluid passages are selectively permeable as the flow passages for the gas to be treated, as in the past. In order to configure two types of gas component flow passages, the open ends of a large number of identified fluid passages on one end side of the structure and the open ends of a large number of other identified fluid passages on the other end side are sealed. There is no need for the troublesome work of doing so. Therefore, the gas separation membrane structure can be easily manufactured. [Example] (1) Gas separation membrane structure FIG. 1 shows a first gas separation membrane structure 10A (hereinafter referred to as the first structure) according to the present invention. The structure 10A is a ceramic honeycomb structure in the shape of a square prism, and is surrounded by continuous partition walls 11 and includes a large number of parallel fluid passages 12 having a square cross section. As shown in FIG. 2, the partition wall 11 is composed of a base material portion 11a and a gas separation membrane portion 11b. The separation membrane portion 11b is integrally located on all surfaces of the base portion 11a on the fluid passage 12 side, and constitutes a peripheral wall of the fluid passage 12. The structure 10A is used housed in a casing 21 as shown in FIG. Left and right support 22 in 21,
The entire outer surface between the supports 22 and 23 is coated with glaze and sealed, and the separation membrane portion 11b is exposed on the outer surface on the end side of each support 22, 23. Note that the discharge pipe 13 protrudes from the casing 21 to the outside, and the exposed portions of the partition wall 11 at both ends of the structure 10A are sealed with adhesive. The gas to be treated is supplied from the inlet port 21a of the casing 21 to the structure 10.
A flows into each fluid passage 12 from one end of A, flows through the same passage 12, and flows out from the other end of the casing 21.
It is discharged through the outlet port 21b. During this time, a specific gas component in the gas to be treated is concentrated and passes through the separation membrane part 11b of the partition wall 11, and diffuses in the base material part 11a while passing through the discharge pipe 1.
It is discharged after 3 steps. Note that in the structure 10A, a plurality of discharge pipes 13 or pipes functioning similarly to the discharge pipe 13 may be provided. FIG. 3 shows a second gas separation membrane structure 10B according to the present invention. The structure 10B has the same external shape as the first structure 10A, and is used while being housed in a casing 24 as shown in the figure. A base material portion 1 is provided on the outer surface 11c between the supports 22 and 23 in the structure 10B.
1a is exposed, and a separation membrane portion 11b is exposed on the outer surface on the end side of both supports 22 and 23. The gas to be treated flows into each fluid passage 12 through the inlet port 24a and is discharged through the outlet port 24b. During this time, a specific gas component in the gas to be treated is concentrated and passes through the separation membrane section 11b, diffuses through the base section 11a, passes through the outer surface 11c between the supports 22 and 23, and passes through the second outlet. It is discharged from port 24c. Therefore, this outer surface 11c functions as a discharge portion. FIG. 4 shows a third gas separation membrane structure 10C according to the present invention. The structure 10C also has the same external shape as the first structure 10A, but a discharge hole 14 is bored in its outer surface instead of the discharge pipe 13. The discharge hole 14 has a rectangular cross section, and as shown in FIG.
It is open on one side of the outer surface of C and extends to a predetermined depth. In the discharge hole 14, the base portion 11a is exposed, and specific gas components are concentrated and permeate the separation membrane portion 11b, diffuse through the base portion 11a, reach the discharge hole 14, and pass through the casing 24. is discharged through the second outlet port 24c. In each of the above structures, the thickness of the base material portion 11a is 0.15 to 1.5 mm, and the average pore diameter is 0.2 to 5 μm.
, and the thickness of the separation membrane portion 11b is 2~
100μm, average pore diameter less than 1000Å. If the average pore diameter of the base material portion 11a is less than 0.2 μm, the diffusion resistance of the base material portion 11a cannot be ignored, and if the average pore diameter exceeds 5 μm, it becomes difficult to form the separation membrane portion 11b made of uniform fine particles. Become.
Further, the amount of pure nitrogen that permeates through the base material portion 11a, which will be described later, is 20 times or more the same amount of permeation through the partition wall 11. In addition,
The partition wall 11 of each of the structures described above is a two-layer structure consisting of a base material part 11a and a separation membrane part 11b. may be integrally interposed. In these cases, it is preferable that the average pore diameter of the base material part 11a is 2 to 5 μm, and the average pore diameter of the sub-base material part is 0.2 to 2 μm. A dense and thin separation membrane portion 11b can be easily formed, and the latter partition wall has a function of protecting the separation membrane portion 11b from dust in the gas to be processed. Note that the structures shown in FIGS. 1 to 5 are only examples of the gas separation membrane structure of the present invention, and these structures do not necessarily need to be housed in a casing. The desired separation performance can be obtained even if the structure 10A provided with the structure 10A is installed in a predetermined space filled with the gas to be processed. Also, whether the outer surface of each structure is the gas separation membrane portion 11b or the base material portion 11a,
Alternatively, whether to seal with glaze, adhesive, etc. is selected as appropriate depending on the operational state of the structure. Further, the exposed portions of the partition wall 11 at both ends of the structure can be sealed with an adhesive or a gas separation membrane can be attached thereto. Furthermore, by using the exposed parts of the partition wall 11 at both ends of the structure as the base material part 11a, it can be used as a gas discharge part, and in this case, it is necessary to plug at least one end of the fluid passage 12. (2) Method for preparing the base material portion 11a The base material portion 11a constituting the partition wall 11 is prepared using the methods (a) to (e) below.
Each was prepared using the following method. (a): To a mixture of 90 parts of α-Al 2 O 3 particles with an average particle size of 0.8 μm and 10 parts of kaolin, water and polyvinyl alcohol as an organic binder are added and kneaded. The obtained clay is extruded, dried, and then fired in the atmosphere at 1350°C for 3 hours. The average pore diameter of the obtained molded body (base material part) was 0.2 μm,
The pore volume is 0.1 cc/g. (b): A base material part was obtained by the preparation method (a) except that α-Al 2 O 3 particles with an average particle size of 1.5 μm were used. The average pore diameter of the obtained base material portion was 0.7 μm, and the pore volume was 0.19 cc/g. (c): Using α-Al 2 O 3 particles with an average particle diameter of 5 μm, a base material portion with an average pore diameter of 2.0 μm and a pore volume of 0.23 cc/g was obtained in the same manner as in the preparation method (b). (d): Using α-Al 2 O 3 particles with an average particle size of 12 μm,
A base material portion having an average pore diameter of 5.0 μm and a pore volume of 0.25 cc/g was obtained in the same manner as in the preparation method (c). (e): Preparation method (a) except that the firing temperature was 1500℃
A base material part was obtained. The average pore diameter of the obtained base material portion was 0.1 μm, and the pore volume was 0.07 cc/g. (3) Method for preparing the separation membrane part 11b The separation membrane part 11b constituting the partition wall 11 is prepared in the following (a) to
Each was prepared by the method (e). (a): Aluminum isopropoxide is heated and hydrolyzed, and nitric acid, which is a deflocculant, is added thereto to prepare a sol-supported solution. This sol-supported liquid was coated and supported on the surface of many through-holes in the base material portion, dried, and then baked at 400° C. for 3 hours in the atmosphere.
The average pore diameter of the obtained thin membrane (separation membrane part) is 50
Å, film thickness is 15 μm. (b): The thin film obtained in preparation method (a) was heated with sodium silicate for 3 hours to obtain a separation membrane with an average pore diameter of 30 Å and a film thickness of 15 μm. (C): Prepare a supporting slurry by adding water, nitric acid, and polyvinyl alcohol to α-Al 2 O 3 particles with an average particle size of 0.5 μm, and coat and support the slurry on the circumferential surface of the through hole in the base material. 1300℃ in the air after drying
After firing for 3 hours, the average pore size of the base material was 0.2μ.
A sub-base material portion with a film thickness of 50 μm was formed. Next, a separation membrane part with an average pore diameter of 50 Å and a film thickness of 15 μm was formed on this sub-substrate part by the preparation method (a) (three-layer structure). (d): r-Al with a specific surface area of 80 m 2 /g. 2 O 3 powder to water,
A supporting slurry was prepared by adding nitric acid, and this slurry was coated and supported on the circumferential surface of the through hole of the base material portion, dried, and then baked at 800° C. for 3 hours in the atmosphere. The average pore diameter of the obtained separation membrane portion was 100 Å, and the membrane thickness was 50 μm. (E): Prepare a supporting slurry by adding water and nitric acid to commercially available zirconium hydroxide, coat and support the slurry on the circumferential surface of the through hole in the base material, dry, and sinter at 400°C in the atmosphere for 3 hours. Average pore size 250
A separation membrane portion with a film thickness of 80 μm was obtained. According to the preparation methods (a) to (e) above, the membrane forming component made of substantially uniform particles is deposited on the base material part 11a and fired, thereby forming a separation membrane part made of uniform pores. 11b is obtained. (3) N2 permeation amount Based on base material preparation methods (a) to (e), outer diameter 10 mm, wall thickness 1
Sample S 1 for base material part measurement in the shape of a bottomed pipe with a length of 150 mm and a sample for partition wall measurement equipped with a separation membrane part based on separation membrane part preparation methods (a) to (e) using the same sample. S 2 was prepared. Each of the measurement samples S 1 and S 2 was subjected to the measurement method shown in FIG. 6, and the amount of N 2 permeation was measured by the underwater displacement method.
In addition, for measurement, each measurement sample S 1 , S 2 is housed in an airtight container 31, and the connecting tube 32 is connected to each sample S 1 , S 2 .
Connect hermetically to the open end of the As a result, N 2 gas adjusted to a predetermined pressure is supplied from the cylinder 33 into the inner holes of each sample S 1 and S 2 ; , the same N 2 gas passes through each sample S 1 and S 2 and flows out through the discharge pipe 34 connected to the container 31. The supply pressure of N2 gas (pressure difference inside and outside the sample) is as follows for sample S1 for base material measurement.
0.2~0.5 atm, 1~ for bulkhead measurement sample S2
3atm, N2 permeation amount Qmol/ m2
hr・atm is calculated. Q=V/(A・△P) However, V: N2 permeation amount (mol/hr) A: Permeable membrane area of each sample ( m2 ) △P: Pressure difference between inside and outside of N2 gas (atm) ( 4) Dehumidification Experiment In order to remove moisture from the air, a dehumidification experiment was conducted using the first structure 10A to the third structure 10C shown in the drawings. The preparation method and characteristics of each structure are shown in Table 1, the results are shown in Table 2, and the shape, structure, and experimental conditions of each structure are as follows. Each structure is a honeycomb structure with a length of 81 mm, a width of 81 mm, and a length of 150 mm, and each fluid passage 12 has a uniform diameter of 3.5 mm.
The thickness of a is 1 mm, and a separation membrane part 11b having a predetermined thickness is formed on the base material part 11a. The volume of the structure is 984 cm 2 and the separation area is 6840 cm 2 . Each structure is used by being housed in stainless steel casings 21 and 24 with an outer diameter of 120 mm and a length of 200 mm.
Of each structure, the first structure 10A type uses a discharge pipe 13 with an inner diameter of 20 mm, and the second structure
In the structure 10B type, the outer surface 11c that functions as a discharge part is formed over a length of 130 mm, and in the third structure 10C type, the discharge hole 14 is 13.5 mm long, 50 mm wide, and deep. It is formed to a size of 45mm. Air at a temperature of 25° C. and a relative humidity of 70% was used in the dehumidification experiment, and the air was flowed into each structure at a flow rate of 6 m 2 /hr. Note that the pressure on the discharge pipe 13 and second outlet port 24c side was reduced to 5 to 10 torr. As a comparative example, a dehumidification experiment was conducted using the following two types of pipe bundle type structures 10D and 10E, with the air to be treated flowing in perpendicularly to the outer periphery of the structures. Structure 10D has a pipe body with a length of 150 mm, which has a separation membrane part on the outer periphery of a pipe-shaped base material part, with an interval of 20 mm.
Arranged in a square array of 144 and bundled inside the casing, the volume of the structure was 8640 cm 2 and the area of the separation membrane was
6782 cm 2 (same membrane area). The structure 10E consists of 16 pipes arranged in the same way and bundled inside the casing, and the volume of the structure is 960 cm 2 and the area of the separation membrane is
It was set to 754cm2 . (Same volume).

【表】【table】

【表】 (5) 考察 第2表を参照すると、本発明に係る構造体(No.
1〜No.10)においては除湿性能が高く、隔壁に対
する基材部のN2透過量の比が20以上において特
に高(No.11参照)。さらにN2透過量の比が50以上
の場合には出口相対湿度が低くて除湿量が多く、
効率的な除湿が行われる(特にNo.4、No.5参照)。
基材部11aの平均細孔径は0.2〜5μmが好適で
あり、平均細孔径が5μmと大きい場合には副基
材部を形成し、同基材部上に分離膜部を形成する
ことが製膜上および分離効率上好ましい(No.5参
照)。基材部11aのN2透過量は1000〜
9500mol/m2・hr・atmの値が好適である。ま
た、除湿性能を有する隔壁11のN2透過量は5
〜250mol/m2・hr・atmの値であるが、
100mol/m2・hr・atm以下の値の場合には空気
洩れ量が少くて好適である。本発明に係る構造体
においては、分離膜面積当りの水の透過速度がパ
イプ結束型(No.12、13)とほぼ同じであり、基材
部11a内が水の流通路として機能していること
が明らかである。パイプ結束型(No.12)におい
て、本発明に係る構造体と同一の性能を得るには
約9倍の体積が必要であり、またこれら両者の体
積を約同じにした場合にはパイプ結束型(No.13)
はほとんど除湿性能を備えていない。膜構造体1
0A〜10Cに関しては、除湿性能上膜構造体1
0Cが好適である(No.3、No.9、No.10参照)。 なお、本発明においては、No.3の構造体を使用
してH2−N2系混合ガスからのH2の選択分離が可
能で、十分に効果があることを確認している。同
様にH2O−EtOH系混合ガスからのH2Oの選択分
離が可能であること、さらにH2O−EtOH系を液
体で供給してもH2Oの選択分離(パーベーパレ
ーシヨン)が可能であることも確認している。
[Table] (5) Discussion Referring to Table 2, the structure according to the present invention (No.
1 to No. 10), the dehumidifying performance is high, and the ratio of N 2 permeation amount of the base material portion to the partition wall is particularly high when it is 20 or more (see No. 11). Furthermore, when the ratio of N2 permeation amount is 50 or more, the outlet relative humidity is low and the amount of dehumidification is large;
Efficient dehumidification is performed (see especially No. 4 and No. 5).
The average pore diameter of the base material part 11a is preferably 0.2 to 5 μm, and when the average pore diameter is as large as 5 μm, it is possible to form a sub-base material part and form a separation membrane part on the same base material part. This is preferred in terms of membrane performance and separation efficiency (see No. 5). The N2 permeation amount of the base material part 11a is 1000~
A value of 9500 mol/m 2 ·hr·atm is suitable. In addition, the amount of N 2 permeation through the partition wall 11 having dehumidifying performance is 5
The value is ~250mol/ m2・hr・atm,
A value of 100 mol/m 2 ·hr · atm or less is suitable because the amount of air leakage is small. In the structure according to the present invention, the water permeation rate per separation membrane area is almost the same as that of the pipe bundle type (Nos. 12 and 13), and the inside of the base portion 11a functions as a water flow path. That is clear. In order to obtain the same performance as the structure according to the present invention, the pipe bundle type (No. 12) requires about 9 times the volume, and if the volumes of both are made approximately the same, the pipe bundle type (No.13)
has almost no dehumidification performance. Membrane structure 1
Regarding 0A to 10C, membrane structure 1 with superior dehumidification performance
0C is suitable (see No. 3, No. 9, No. 10). In the present invention, it has been confirmed that H 2 can be selectively separated from a H 2 -N 2 mixed gas using the structure No. 3, and that it is sufficiently effective. Similarly, it is possible to selectively separate H 2 O from a H 2 O-EtOH mixed gas, and even if the H 2 O-EtOH system is supplied in liquid form, H 2 O can be selectively separated (pervaporation). We have also confirmed that this is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る第1ガス分離膜構造体の
斜視図、第2図は同構造体の部分拡大断面図、第
3図は本発明に係る第2ガス分離膜構造体の斜視
図、第4図は本発明に係る第3ガス分離膜構造体
の斜視図、第5図は同構造体の部分拡大断面図、
第6図はN2透過量測定法の説明図である。 符号の説明、10A,10B,10C……ガス
分離膜構造体、11……隔壁、11a……基材
部、11b……分離膜部、12……流体通路、2
1,24……ケーシング。
FIG. 1 is a perspective view of a first gas separation membrane structure according to the present invention, FIG. 2 is a partially enlarged sectional view of the same structure, and FIG. 3 is a perspective view of a second gas separation membrane structure according to the present invention. , FIG. 4 is a perspective view of a third gas separation membrane structure according to the present invention, and FIG. 5 is a partially enlarged sectional view of the same structure.
FIG. 6 is an explanatory diagram of a method for measuring the amount of N 2 permeation. Explanation of symbols, 10A, 10B, 10C... Gas separation membrane structure, 11... Partition wall, 11a... Base material part, 11b... Separation membrane part, 12... Fluid passage, 2
1,24...Casing.

Claims (1)

【特許請求の範囲】 1 隔壁にて囲まれて互に並列する多数の流体通
路を備えるとともに、前記隔壁が多孔質の基材部
と前記流体通路側の実質的に全てに位置し前記基
材部と一体のガス分離膜部を備えてなるガス分離
膜構造体であり、前記基材部の純窒素透過量が前
記隔壁の純窒素透過量の20倍以上で、かつ前記ガ
ス分離膜部の平均細孔径が1000Å以下であり、被
処理流体が前記流体通路を流動するとともに、前
記被処理流体中の特定のガス成分が前記ガス分離
膜部を濃縮されて透過し前記基材部中を拡散しつ
つ同基材部のガス排出部を経て構造体外へ排出さ
れることを特徴とするガス分離膜構造体。 2 前記基材部の純窒素透過量が前記隔壁の純窒
素透過量の50倍以上である特許請求の範囲第1項
に記載のガス分離膜構造体。 3 前記隔壁の純窒素透過量が100mol/m2
hr・atm以下である特許請求の範囲第1項または
第2項に記載のガス分離膜構造体。 4 前記ガス排出部を外壁の側面部に備えている
特許請求の範囲第1項、第2項または第3項に記
載のガス分離膜構造体。 5 前記ガス排出部を外壁の一端部に備えている
特許請求の範囲第1項、第2項または第3項に記
載のガス分離膜構造体。 6 前記ガス排出部が外壁から内部に延在してい
る特許請求の範囲第4項または第5項に記載のガ
ス分離膜構造体。 7 前記隔壁がセラミツク質からなる特許請求の
範囲第1項、第2項、第3項、第4項、第5項ま
たは第6項に記載のガス分離膜構造体。
[Scope of Claims] 1. A fluid passageway including a large number of parallel fluid passages surrounded by partition walls, and wherein the partition walls are located in substantially all of the porous base material portion and the fluid passage side, A gas separation membrane structure comprising a gas separation membrane unit integral with a gas separation membrane unit, wherein the amount of pure nitrogen permeation through the base portion is 20 times or more that of the amount of pure nitrogen permeation through the partition wall, and The average pore diameter is 1000 Å or less, and as the fluid to be treated flows through the fluid passage, specific gas components in the fluid to be treated are concentrated and permeate through the gas separation membrane section and diffused in the base material section. A gas separation membrane structure characterized in that the gas is discharged to the outside of the structure through a gas discharge part of the base material part. 2. The gas separation membrane structure according to claim 1, wherein the amount of pure nitrogen permeated through the base portion is 50 times or more the amount of pure nitrogen permeated through the partition wall. 3 The amount of pure nitrogen permeation through the partition wall is 100 mol/m 2 .
The gas separation membrane structure according to claim 1 or 2, wherein the gas separation membrane structure has a gas separation temperature of hr.atm or less. 4. The gas separation membrane structure according to claim 1, 2, or 3, wherein the gas discharge portion is provided on a side surface of an outer wall. 5. The gas separation membrane structure according to claim 1, 2 or 3, wherein the gas discharge part is provided at one end of the outer wall. 6. The gas separation membrane structure according to claim 4 or 5, wherein the gas discharge portion extends inward from the outer wall. 7. The gas separation membrane structure according to claim 1, 2, 3, 4, 5, or 6, wherein the partition wall is made of ceramic.
JP62222771A 1987-09-04 1987-09-04 Gas separation membrane structure Granted JPS6467224A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62222771A JPS6467224A (en) 1987-09-04 1987-09-04 Gas separation membrane structure
EP88308210A EP0306350B1 (en) 1987-09-04 1988-09-05 Honeycomb structure for fluid filtration
DE8888308210T DE3864219D1 (en) 1987-09-04 1988-09-05 HONEYCOMB STRUCTOR FOR FLUID FILTRATION.
US07/240,723 US4894160A (en) 1987-09-04 1988-09-06 Honeycomb structure for fluid filtration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62222771A JPS6467224A (en) 1987-09-04 1987-09-04 Gas separation membrane structure

Publications (2)

Publication Number Publication Date
JPS6467224A JPS6467224A (en) 1989-03-13
JPH0471566B2 true JPH0471566B2 (en) 1992-11-16

Family

ID=16787633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62222771A Granted JPS6467224A (en) 1987-09-04 1987-09-04 Gas separation membrane structure

Country Status (1)

Country Link
JP (1) JPS6467224A (en)

Also Published As

Publication number Publication date
JPS6467224A (en) 1989-03-13

Similar Documents

Publication Publication Date Title
US4894160A (en) Honeycomb structure for fluid filtration
KR100908800B1 (en) A ceramic honeycomb wall-flow filter
EP2045001B1 (en) Ceramic filter
EP0780148A1 (en) Filtration device or membrane device with increasing thickness walls
US6214227B1 (en) Ceramic filter module
WO2012147534A1 (en) Method for washing ceramic filter
JP4800646B2 (en) Ceramic filter and manufacturing method thereof
JP2004113887A (en) Honeycomb catalyst carrier and its production method
JP2000354746A (en) Filter using ceramic porous body
WO2004091756A1 (en) Ceramics honeycomb filter and method of manufacturing the same
JP2012500176A (en) Mullite module for liquid filtration
JP6490665B2 (en) Monolithic separation membrane structure, method for producing monolithic separation membrane structure, and dehydration method
JP7169401B2 (en) Manufacturing method of ceramic membrane filter
JPH0699039A (en) Monolithic ceramic filter
US20030184954A1 (en) Separation module and method for producing the same
JP5408865B2 (en) Honeycomb catalyst body
JPH0471566B2 (en)
JPH0477609B2 (en)
JPH059126B2 (en)
JP2007229564A (en) Manufacturing method of ceramic filter
JP2002143655A (en) Ceramic filter and producing method of ceramic filter
WO2004082807A1 (en) Ceramic filter
JP2002219340A (en) Filter module
JP2002274967A (en) Gamma alumina porous body, method for manufacturing the same and fluid separation filter by using the same
JP4703023B2 (en) Filter module

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071116

Year of fee payment: 15